
Multivariate Geographic Clustering Using aBeowulf-style Parallel ComputerForrest M. Ho�manOak Ridge National Laboratory�Environmental Sciences DivisionP.O. Box 2008Oak Ridge, TN 37831{6036, U.S.A. William W. HargroveUniversity of TennesseeEnergy, Environment, and Resources Center10521 Research Drive, Suite 100Knoxville, TN 37932, U.S.A.Abstract The authors present an applicationof multivariate non-hierarchical statistical cluster-ing to geographic environmental data from the 48conterminous United States in order to producemaps of regions of ecological similarity called ecore-gions. Nine input variables thought to a�ect thegrowth of vegetation are clustered at a resolutionof one square kilometer. These data representover 7.8 million map cells in a 9-dimensional dataspace. For the analysis, the authors built a 126-node heterogeneous cluster|aptly named the StoneSouperComputer|out of surplus PCs. The authorsdeveloped a parallel iterative statistical clusteringalgorithm which uses the MPI message passing rou-tines, employs a classical master/slave single pro-gram multiple data (SPMD) organization, performsdynamic load balancing, and provides fault toler-ance. In addition to being run on the Stone Souper-Computer, the parallel algorithm was tested onother parallel platforms without code modi�cation.Finally, the results of the geographic clustering arepresented.Keywords: multivariate geographic clustering, Be-owulf, load balancing, fault tolerance1 ClusteringStatistical clustering is the division, or classi�-cation of a number of non-identical objects into�Oak Ridge National Laboratory, managed by Lock-heed Martin Energy Research Corp. for the U.S. De-partment of Energy under contract number DE{AC05{96OR22464.

subgroups or categories based on their similar-ity. Hierarchical clustering provides a series ofdivisions, based on some measure of similarity,into all possible numbers of groups, from onesingle group (which contains all objects) to asmany groups as there are objects, with eachobject being in a group by itself. Hierarchicalclustering, which results in a complete simi-larity tree, is computationally intensive, andthe assemblage to be classi�ed must be lim-ited to relatively few objects. Non-hierarchicalclustering provides only a single, user-speci�edlevel of division into groups; however, it canbe used to classify a much larger number ofobjects.Multivariate geographic clustering employsnon-hierarchical clustering on the individualpixels in a digital map from a Geographic In-formation System (GIS) for the purpose ofclassifying the cells into types or categories.The classi�cation of satellite imagery into landcover or vegetation classes using spectral char-acteristics of each cell from multiple imagestaken at di�erent wavelengths is a commonexample of multivariate geographic clustering.Rarely, however, is non-hierarchical cluster-ing performed on map cell characteristics asidefrom spectral reectance values.Maps showing the suitability or characteri-zation of regions are used for many purposes,including identifying appropriate ranges forparticular plant and animal species, identifyingsuitable crops for an area or identifying a suit-able area for a given crop, and identifying Plant

Hardiness Zones for gardeners. In addition,ecologists have long used the concept of theecoregion, an area within which there are sim-ilar ecological conditions, as a tool for under-standing large geographic areas [1, 2, 3, 4, 13].Such regionalization maps, however, are usu-ally prepared by individual experts in a rathersubjective way, and are essentially objecti�ca-tions of expert opinion.Our goal was to make repeatable the pro-cess of map regionalization based not on spec-tral cell characteristics, but on characteristicsidenti�ed as important to the growth of woodyvegetation. By using non-hierarchical multi-variate geographic clustering, we intended toproduce several maps of ecoregions across theentire nation at a resolution of one square kilo-meter per cell. At this resolution, the 48 con-terminous United States contains over 7.8 mil-lion map cells. Nine characteristics from threecategories|elevation, edaphic (or soil) factors,and climatic factors|were identi�ed as impor-tant. The edaphic factors are 1) plant-availablewater capacity, 2) soil organic matter, 3) to-tal Kjeldahl soil nitrogen, and 4) depth toseasonally-high water table. The climatic fac-tors are 1) mean precipitation during the grow-ing season, 2) mean solar insolation during thegrowing season, 3) degree-day heat sum dur-ing the growing season, and 4) degree-day coldsum during the non-growing season. The grow-ing season is de�ned by the frost-free periodbetween mean day of �rst and last frost eachyear. A map for each of these characteristicswas generated from best-available data at a1 sq km resolution for input into the cluster-ing process [9]. Given the size of these inputdata and the signi�cant amount of computertime typically required to perform statisticalclustering, we decided a parallel computer wasneeded for this task.2 The Stone SouperComputerBecause of the geographic clustering applica-tion and other computational research oppor-tunities, a proposal was developed which would

Figure 1: The Stone SouperComputer at OakRidge National Laboratorysupport the construction of a Beowulf-stylecluster of new PCs [5]. With the proposal re-jected and signi�cant e�ort already expended,we chose to build a cluster anyway using theresources that were readily available: surplusIntel 486 and Pentium PCs destined for sal-vage.Commandeering a nearly-abandoned com-puter room and scavenging as many surplusmachines as possible|from Oak Ridge Na-tional Laboratory, the Y{12 production plant,and the former K{25 site (all federal facilitiesin Oak Ridge)|we setup a \chop shop" to pro-cess machines and proceeded to construct avery low cost parallel computer system. Aptlynamed the Stone SouperComputer, after theage-old children's fable entitled Stone Soup [6],the heterogeneous cluster grew slowly to 126nodes as PCs became available and were ei-ther cannabilized or fashioned into acceptablenodes. The nodes contain a host of di�er-ent motherboards, processors (of varying speedand design), controllers, and disk drives. Eachhas 32 MB of memory, at least 400 MB of diskspace (for booting and local �le access), and isconnected to a private 10 Mb/s Ethernet net-work for inter-cluster communications. In ad-dition, one of the nodes is also connected to the

external network for logins and �le transfers.The system runs RedHat Linux, the GNU com-pilers, and the PVM and MPI message pass-ing libraries for parallel software development[11, 12].The parallel cluster, which is used for par-allel program development and running mod-els, is constantly changing. As new versions ofMicrosoft Windows are released, better hard-ware becomes available for assimilation intothe cluster since users must upgrade their desk-top PCs. Staying just behind the curve meansthe Stone SouperComputer will have a freesupply of upgrades inde�nitely.The Stone SouperComputer has proven tobe an excellent platform for developing par-allel models which will port directly to othersystems and for solving problems like non-hierarchical multivariate geographic clustering.3 The AlgorithmIn our implementation of non-hierarchical clus-tering, the characteristic values of the 9 inputvariables are used as coordinates to locate eachof the 7.8 million map cells in a 9-dimensionalenvironmental data space. The map cells canbe thought of as galaxies of \unit-mass stars"�xed within this 9-dimensional volume. Thedensity of \unit-mass stars" varies throughoutthe data space. \Stars" which are close toeach other in data space have similar valuesof the nine input variables, and might, as a re-sult, be included in the same map ecoregion or\galaxy." The clustering task is to determine,in an iterative fashion, which \stars" belong to-gether in a \galaxy." The number of cluster, or\galaxies," is speci�ed by the user. The coor-dinates of a series of \galaxy" centroids, or its\centers of gravity," are calculated after eachiteration, allowing the \centers of gravity" to\walk" to the most densely populated parts ofthe data space.The non-hierarchical algorithm, which isnearly perfectly parallelizable, consists of twoparts: initial centroid determination, calledseed �nding, and iterative clustering until con-

Figure 2: Clusters (or galaxies) in a 3-dimensional data space. Although the actualclusters are all roughly the same diameter, inthis visualization sphere color and size are in-dicative of the number of map cells in each clus-ter (or the total mass of each galaxy if eachmap cell is represented by a unit-mass star).vergence is reached. The algorithm begins witha series of \seed" centroid locations in dataspace|one for each cluster desired by the user.In the iterative part of the algorithm, each mapcell is assigned to the cluster whose centroid isclosest, by simple Euclidean distance, to thecell. After all map cells are assigned to a cen-troid, new centroid positions are calculated foreach cluster using the mean values for each co-ordinate of all map cells in that cluster. Theiterative classi�cation procedure is repeated,each time using newly recalculated mean cen-troids, until the number of map cells whichchange cluster assignments within a single iter-ation is smaller than a convergence threshold.Once the threshold is met, the �nal cluster as-signments are saved.Seed centroid locations are ordinarily estab-lished using a set of rules which sequentially ex-amines the map cells and attempts to preservea subset of them which are as widely-separated

in data space as possible. This inherently serialprocess is di�cult to parallelize; if the data setis divided equally among N nodes, and eachnode �nds the best seeds among its portionof the cells, and then a single node �nds the\best-of-the-best," this set of seeds may not beas widely dispersed as a single serially-obtainedseed set. On the other hand, the serial seed-�nding process is quite slow on a single node,while the iterations are relatively fast in paral-lel. It is foolish, in terms of the time to �nal so-lution, to spend excessive serial time polishinghigh-quality initial seeds, since the centroidscan \walk" relatively quickly to their ultimatelocations in parallel. Thus, we opted to imple-ment this \best-of-the-best" parallel seed �nd-ing algorithm. It has proven to produce rea-sonably good seeds very quickly.The iterative portion of the algorithm is im-plemented in parallel using the MPI messagepassing routines|speci�cally, MPICH fromArgonne National Laboratory [7, 8]|by di-viding the total number of map cells intoparcels or aliquots, such that the number ofaliquots is larger than the number of nodes.We employ a classical master/slave relation-ship among nodes and perform dynamic loadbalancing because of the heterogeneous natureof the Stone SouperComputer on which thealgorithm is run. This dynamic load balanc-ing is achieved by having a single master nodeact as a \card dealer" by �rst distributing thecentroid coordinates, and then distributing analiquot of map cells to all nodes [10]. Eachslave node assigns each of its map cells to a par-ticular centroid, then reports the results backto the master. If there are additional aliquotsof map cells to be processed, the master willsend a new aliquot to this slave node for as-signment. In this way, faster and less-busynodes are e�ectively utilized to perform themajority of the processing. If the load on thenodes changes during a run, the distributionof the work load will automatically be shiftedaway from busy or slow nodes onto idle or fastnodes. At the end of each iteration, the mas-ter node computes the new mean centroid posi-tions from all assignments, and distributes the

new centroid locations to all nodes, along withthe �rst new aliquot of map cells. Because allnodes must be coordinated and in-step at thebeginning of each new iteration, the algorithmis inherently self-synchronizing.If the number of aliquots is too low (i.e., thealiquot size is too large), the majority of nodesmay have to wait for the slowest minority ofnodes to complete the assignment of a singlealiquot. On the other hand, it may be advan-tageous to exclude particularly slow nodes sothat the number of aliquots, and therefore theamount of inter-node communication, is alsoreduced, often resulting in shorter run times.Few aliquots work best for a parallel machinewith few and/or homogeneous nodes or veryslow inter-node communication, while manyaliquots result in better performance on ma-chines with many heterogeneous nodes and fastcommunication. Number of aliquots is a manu-ally tunable parameter, which makes the codeportable to various architectures, and can beoptimized by monitoring the waiting time ofthe master node in this algorithm.In order to provide some fault-tolerance, themaster node saves centroid coordinates to diskat the end of each iteration. If one or morenodes fails or the algorithm crashes for somereason, the program can simply be restartedusing the last-saved centroid coordinates as ini-tial seeds, and processing will resume in theiteration in which the failure occurred.4 The ResultsIn an e�ort to gauge the e�ciency and scal-ability of the parallel clustering algorithm, a�ve-iteration test version of the code was de-veloped and run, using a representative datasetof about 900,000 map cells, on a number of dif-ferent architectures with two di�erent aliquotsizes. The tests were performed on the StoneSouperComputer, an Intel Paragon XPS5, acluster of Sun Microsystems Ultra 2 worksta-tions, and a Silicon Graphics Inc. (SGI) Origin2000. The test was performed using 8, 16, 32,and 64 processors where available.

Table 1: Clustering Algorithm, 5 iterations fornaliquot=1280Proc SGI Sun XPS5 Stone8 4:51.3 10:18.4 1:05:31.3 30:12.316 2:35.1 17:56.5 17:05.232 1:54.8 11:33.3 12:49.464 10:15.1 10:31.5Table 2: Clustering Algorithm, 5 iterations fornaliquot=128Proc SGI Sun XPS5 Stone8 5:04.2 10:32.7 39:45.5 30:20.116 2:41.6 21:15.6 16:56.332 1:59.0 10:48.3 12:52.664 6:56.1 10:34.2Tables 1 and 2 show total run times foreach of these systems. Figure 3 shows theperformance results for these machines whennaliquot=1280, i.e., 1280 is the number ofaliquots or groups into which the input datawere split prior to assignment to individualnodes. The number of iterations, that is �ve,was divided by the total run time as a measureof performance and is shown on the y-axis. Fig-ure 4 shows similar results for naliquot=128.For this application, the SGI signi�cantlyoutperformed all the other machines on bothtests. While this tightly-coupled shared mem-ory environment o�ers excellent performance,it is an expsensive system to purchase andmaintain. Further, the largest available SGIhad only 32 processors so it was not possi-ble to obtain a result for 64 processors. Like-wise, the available Sun Ultra 2 cluster waslimited to 8 nodes. The 8 Sun workstationsoutperformed the Stone SouperComputer andthe Paragon; however, the Paragon beat the 8Suns when using 64 processors and the StoneSouperComputer came close when using 64processors. The Stone SouperComputer o�ersperformance similar to the Paragon, beating

System Performance (naliquot=1280)

0 10 20 30 40 50 60 70
Number of Processors

0.000

0.010

0.020

0.030

0.040

0.050

It
e

r
a

ti
o

n
s
 /
 S

e
c
o

n
d

SGI Origin 2000
Sun Ultra 2 Cluster
Stone SouperComputer
Intel Paragon XPS5

Figure 3: System performance for �ve itera-tions of the clustering algorithm for a numberof parallel systems using 8, 16, 32, and 64 pro-cessors (where available) for naliquot=1280.
it when only 8 or 16 nodes are used. TheStone SouperComputer beats the Paragon forsmall numbers of processors because we alwayssort the machinefile list of nodes by speedfrom fastest to slowest whenever running onthe Stone SouperComputer. The decrease inthe positive slope of the performance curve inthe Stone SouperComputer is also attributableto this fact.With the exception of the Paragon, allmachines exhibited better performance fornaliquot=1280. This implies that the prob-lem is not I/O bound even for 1280 aliquots.The clustering algorithm was used to gen-erate maps with 1000, 2000, and 3000 ecore-gions. These maps appear to capture the eco-logical relationships among the nine input vari-ables. This multivariate geographic clusteringcan be used as a way to spatially extend the re-sults of ecological simulation models by reduc-ing the number of runs needed to obtain out-put over large areas. Simulation models canbe run on each relatively homogeneous clus-ter rather than on each individual cell. Thenclustered map can be populated with the sim-ulated results cluster by cluster, like a paint-by-number picture. This cluster �ll-in simula-

System Performance (naliquot=128)

0 10 20 30 40 50 60 70
Number of Processors

0.000

0.010

0.020

0.030

0.040

0.050

It
e

r
a

ti
o

n
s
 /
 S

e
c
o

n
d

SGI Origin 2000
Sun Ultra 2 Cluster
Stone SouperComputer
Intel Paragon XPS5

Figure 4: System performance for �ve itera-tions of the clustering algorithm for a numberof parallel systems using 8, 16, 32, and 64 pro-cessors (where available) for naliquot=128.tion technique has been used by the IntegratedModeling Project to assess the health and pro-ductivity of southeastern forests.5 ConclusionConstructing a Beowulf-style cluster from sur-plus equipment has proved to be well worththe e�ort. Unlike expensive commercial paral-lel systems, this kind of low-cost parallel envi-ronment can be dedicated to speci�c applica-tions. We have used it to develop and run theclustering algorithm and are making it avail-able to others who are developing and run-ning parallel scienti�c models. In addition,small universities and colleges have contactedus and expressed interest in building clustersfrom existing machines. It is clear such \throw-away" equipment represents a hidden resourcein many schools and businesses. This resourcecan be used thanks to the grass root e�ortsbehind Linux, the Free Software Foundation,and academia. This kind of Beowulf-style clus-ter is the ultimate price/performance winner.Finally, we have demonstrated that, while spe-cial considerations, like dynamic load balanc-ing and fault tolerance must be made for al-

Figure 5: National map clustered on elevation,edaphic, and climate variables into 3000 ecore-gions using similarity colors.gorithms running on relatively-large heteroge-neous systems, they are not di�cult to imple-ment, and result in enhanced performance onmany di�erent architectures.References[1] Bailey, R. G. 1983. Delineation of ecosys-tem regions. Environmental Management,7:365-373.[2] Bailey, R. G., P. E. Avers, T. King, W. H.McNab, eds. 1994. Ecoregions and subre-gions of the United States (map). Wash-ington, DC: U.S. Geological Survey. Scale1: 7,500,000; colored. Accompanied by asupplementary table of map unit descrip-tions compiled and edited by McNab, W.H., and R. G. Bailey. Prepared for the U.S.Department of Agriculture, Forest Service.[3] Bailey, R. G. 1995. Description of theecoregions of the United States. (2nd ed.,1st ed. 1980). Misc. Publ. No. 1391, Wash-ington, D.C. U.S. Forest Service. 108 ppwith separate map at 1:7,500,000.[4] Bailey, R. G. 1996. Ecosystem Geography.Springer-Verlag. 216 pp.

[5] Becker, Donald J., Thomas Sterling, DanielSavarese, John E. Dorband, Udaya A.Ranawak, Charles V. Packer. 1995. Be-owulf: A Parallel Workstation for Scienti�cComputation. Proceedings, InternationalConference on Parallel Processing.[6] Brown, M. 1987. Stone Soup. AladdinPaperbacks. 46 pp.[7] Gropp, W. D., E. Lusk. 1996. \User'sGuide for mpich, a Portable Implementa-tion of MPI." ANL{96/6. Mathematicsand Computer Science Division, ArgonneNational Laboratory.[8] Gropp, W., E. Lusk, N. Doss, and A.Skjellum. September 1996. \A High-Performance, Portable Implementation ofthe MPI Message Passing Interface Stan-dard." Parallel Computing, 22(6):789-828.[9] Hargrove, W.W. and R. J. Luxmoore. 1998. A NewHigh-Resolution National Map of Vegeta-tion Ecoregions Produced Empirically Us-ing Multivariate Spatial Clustering. URL:http://www.esd.ornl.gov/~hnw/esri98[10] Hargrove, W. W. and F. M. Ho�man.1999. \Optimizing Master/Slave DynamicLoad-Balancing in Heterogeneous ParallelEnvironments." SuperComputing '99 (sub-mitted).[11] Ho�man, F. M., W. W. Hargrove, andA. J. Schultz. 1997{1999. The StoneSouperComputer|ORNL's First Beowulf-Style Parallel Computer. URL:http://www.esd.ornl.gov/facilities/beowulf[12] Ho�man, F. M. and W. W. Hargrove.March 1999. \Cluster Computing: LinuxTaken to the Extreme." Linux Magaine,Vol. 1, No. 1, pp. 56{59.[13] Omernik, J. M. 1987. Ecoregions of theConterminous United States. Map (scale1:7,500,000). Annals of the Association ofAmerican Geographers.

