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Abstract

Background: Countries have long been making efforts by reducing greenhouse-gas emissions to mitigate climate
change. In the agreements of the United Nations Framework Convention on Climate Change, involved countries
have committed to reduction targets. However, carbon (C) sink and its involving processes by natural ecosystems
remain difficult to quantify.

Methods: Using a transient traceability framework, we estimated country-level land C sink and its causing
components by 2050 simulated by 12 Earth System Models involved in the Coupled Model Intercomparison Project
Phase 5 (CMIP5) under RCP8.5.

Results: The top 20 countries with highest C sink have the potential to sequester 62 Pg C in total, among which,
Russia, Canada, USA, China, and Brazil sequester the most. This C sink consists of four components: production-
driven change, turnover-driven change, change in instantaneous C storage potential, and interaction between
production-driven change and turnover-driven change. The four components account for 49.5%, 28.1%, 14.5%, and
7.9% of the land C sink, respectively.

Conclusion: The model-based estimates highlight that land C sink potentially offsets a substantial proportion of
greenhouse-gas emissions, especially for countries where net primary production (NPP) likely increases substantially
and inherent residence time elongates.

Keywords: Carbon sink, Carbon storage, Earth system models, Net primary productivity, Residence time, Terrestrial
ecosystems

Introduction
Climate change is a big threat to the whole world. The
global mean surface temperature has increased by 1.0 °C
since pre-industrial levels, which is mainly caused by hu-
man activities; and the anthropogenic global warming is
still ongoing at a speed of 0.2 °C per decade (IPCC
2018). Great efforts have been made by scientists and
governments both nationally and internationally to adapt
to and mitigate climate change. The United Nations
Framework Convention on Climate Change (UNFCCC)

adopted in Rio de Janeiro, Brazil in 1992, which envis-
aged a significant reduction in emissions of greenhouse
gases (GHGs) into the atmosphere, primarily carbon di-
oxide (СО2), was a historical start for the collective com-
mitments by many countries to mitigate climate change
(Akaev 2017). Following that, a big milestone was ac-
complished in 1997 in Kyoto, Japan, i.e., the Kyoto
Protocol. In the Kyoto Protocol (https://unfccc.int/
resource/docs/convkp/kpeng.pdf), it was specified the
reduction of СО2 emissions for many countries of the
world. At the 21st Conference of the Parties (СОР 21)
to the UNFCCC, held in December of 2015 in Paris, a
new climate agreement, the Paris Agreement, was
adopted by many countries to replace the Kyoto
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Protocol after 2020 for continuous efforts to mitigate cli-
mate change. The target of the Paris Agreement is
“holding the increase in the global average temperature
to well below 2 °C above pre-industrial levels and pursu-
ing efforts to limit the temperature increase to 1.5 °C
above pre-industrial levels, recognizing that this would
significantly reduce the risks and impacts of climate
change” (https://unfccc.int/process/conferences/
pastconferences/paris-climate-change-conference-
november-2015/paris-agreement).
Recognizing the dramatic differences in the impacts

and risks for selected natural, managed, and human sys-
tems between 1.5 and 2 °C warming, the special report
of IPCC (2018), Global Warming of 1.5 °C, has provided
different 1.5 °C-consistent emission pathways to limit
warming either below 1.5 °C, or returning to 1.5 °C by
around 2100 following an overshoot. These pathways, as
well as those emission reductions in the Kyoto Protocol
and the Paris Agreement, however, are primarily built
upon a rapid phase out of CO2 emissions and deep
emission reductions in other GHGs and climate forcers
through broad transformations in the energy, industry,
transport, buildings, Agriculture, Forestry, and Other
Land-Use (AFOLU) sectors. Carbon (C) sequestered by
natural terrestrial and ocean ecosystems is not well
quantified to act as a critical C sink to offset a propor-
tion of the anthropogenic emissions.
Indeed, natural terrestrial and ocean ecosystems can

sequester substantial CO2 from the atmosphere each
year. For example, the terrestrial ecosystems are esti-
mated to take up 3.0 ± 0.8 Gt C year−1, approximately
one-third of the CO2 emissions from fossil fuels and in-
dustry (Le Quéré et al. 2018; Friedlingstein et al. 2019).
Forests can play a key role in meeting climate targets in
the Paris Agreement by providing a quarter of emission
reductions committed by countries and turning the
globe from a net anthropogenic C source during 1990–
2010 to a net C sink by 2030 (Grassi et al. 2017). There-
fore, the C sink from natural terrestrial and ocean eco-
systems needs to be taken into account as an important
component when different countries make their policies
to reach net zero or negative emissions in order to limit
global warming to 1.5 °C.
Scientists have long been exploring C sink of the nat-

ural ecosystems both on land and in Ocean. Carbon sink
of various terrestrial ecosystems has been widely studied
at local or regional scale in the context of mitigating cli-
mate change (Smith et al. 2005; Tan and Lal 2005; Niu
and Duiker 2006; Grelle et al. 2007; Kaul et al. 2010;
Kongsager et al. 2013; Zhou et al. 2015). Carbon seques-
tration by terrestrial ecosystems in response to climate
change in the future has also been predicted with statis-
tical models, process-based ecosystem models, or land
surface models, commonly showing a considerable

global land C sink potential (Espinosa et al. 2005; Smith
et al. 2005; Friedlingstein et al. 2006, 2014; Jones et al.
2013; Hararuk et al. 2014; Tan et al. 2015; Chazdon
et al. 2016). However, to date, there are no such studies
on land C sink and its causing components at the coun-
try level.
Carbon sink is usually investigated as changes in C

storage or as flux that C enters into an ecosystem, often
known as net ecosystem production (NEP) or net eco-
system exchange (NEE). Both changes in C storage or C
influx to an ecosystem are C dynamics in response to
external climate forcing, land use change or succession,
so-called transient C storage or C flux. In terms of re-
moving CO2 from the atmosphere in the long run, it is
important that we know not only how much C that an
ecosystem or the globe can potentially sequester, but
also what component(s) dominates this C sink. Yet, the
causing components, or in other words, the involving
processes, of land C sink have not been well explored.
Using a linearization approach, Koven et al. (2015) sepa-
rated C storage changes in response to doubled atmos-
pheric CO2 of the live and dead carbon pools simulated
by five Earth system models (ESMs) involved in the
Coupled Model Intercomparison Project Phase 5
(CMIP5) into input-related changes, i.e., productivity-
driven changes and output-related changes, i.e.,
turnover-driven changes. More theoretically or mechan-
ically, transient C storage of any ecosystem at a time has
been quantified as the difference between instantaneous
C storage capacity and instantaneous C storage potential
by Luo et al. (2017). In detail, C storage capacity is the
maximum amount of C that an ecosystem can store at
any given time and it is the product of net primary pro-
duction (NPP) and C residence time. Instantaneous car-
bon storage potential represents the internal capability
of an ecosystem to equilibrate the current C storage with
the C storage capacity. It indicates a potential of an eco-
system to store additional C when it has a positive value
or a potential to lose C when the value is negative at a
given time. This new framework that decomposes transi-
ent C storage into instantaneous C storage capacity and
instantaneous C storage potential has an advantage over
the traditional ways in investigating dynamics of C stor-
age because it takes into account the inherent character-
istics of an ecosystem, such as NPP and C residence
time. NPP and C residence time are the most important
components that dominate uncertainty in terrestrial
vegetation and soil C responses to climate and atmos-
pheric CO2 (Todd-Brown et al. 2013; Friend et al. 2013;
Jiang et al. 2015).
The theory of transient C storage developed by Luo

et al. (2017) has been applied to explore the mechanisms
behind the dynamic of the transient C storage in re-
sponse to climate change among different ecosystems
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(Jiang et al. 2017) or among different ESMs (Zhou et al.
2018). In this study, we analyzed model output of 12
ESMs involved in CMIP5 based on this theoretical de-
composition of transient C storage. The objective is to
quantify the land C sink and its causing components of
different countries by the middle of the twenty-first cen-
tury under the most severe climate change scenario with
a new framework and therefore, to help policy makers to
better mitigate climate change.

Materials and methods
The transient traceability framework for carbon storage
dynamics
In this study, land C sink of different countries by 2050
was explored with a transient traceability framework for
C storage dynamics with CMIP5 model output. Carbon
sink refers to the difference in C storage between two
time steps, i.e., year 2050 (average of 2046–20250) and
year 2005 (average of 2001–2005), respectively.
The transient traceability framework for C storage dy-

namics was first theoretically analyzed by Luo et al.
(2017) based on the fact that most land C cycling models
shared some common properties. It was then applied to
two forest ecosystems to trace the different responses of
C storage to climate change and to reveal the mecha-
nisms underlying the different responses (Jiang et al.
2017). In this traceability framework, transient C storage
at a certain time is jointly determined by instantaneous
C storage capacity and instantaneous C storage potential
as expressed by the following equation:

X tð Þ ¼ Xc tð Þ - Xp tð Þ ð1Þ

where X(t) is transient C storage; Xc is C storage cap-
acity, which is defined as the maximum instantaneous C
storage without any environmental or other restrictions
at a given time; and Xp is instantaneous C storage poten-
tial, which represents the unrealized C storage due to
environmental or other limitations at a given time.
Furthermore, C storage capacity, Xc, is co-determined

by C input (gross fv, τ(t), as shown in the following
equation:

Xc tð Þ ¼ NPP tð Þ � τ tð Þ ð2Þ
And instantaneous C storage potential, Xp, is a prod-

uct of net C pool change, X'(t), and chasing time. Chas-
ing time measures the time needed for net C pool
change to be redistributed in the network with all C
pools, which is not further explored in this analysis.

CMIP5 model output
We used model output of historical simulations and rep-
resentative concentration pathway (RCP) 8.5 of 12 ESMs
in CMIP5, including bcc-csm1-1-m, BNU-ESM,

CanESM2, CESM1-BGC, GFDL-ESM2G, HadGEM2-ES,
inmcm4, IPSL-CM5A-LR, MIROC-ESM, MPI-ESM-LR,
MRI-ESM1, and NorESM1-ME. Details of these ESMs
were given in Table 1. RCP8.5 represents the most se-
vere climate change scenario among all scenarios. We
downloaded model output of monthly C mass in all land
C pools, including C in vegetation (variable “cVeg”),
course wood debris (variable “cCwd”), litter (variable
“cLitter”), and soil (variable “cSoil”). Carbon pools were
then added together to get ecosystem C. Monthly NPP
(variable “npp”) was also downloaded for decomposition
of land C sink. For the inmcm4 model, we calculated its
npp as the difference between GPP (variable “gpp”) and
autotrophic respiration (variable “ra”) because this model
did not have direct output of npp. Monthly C pools and
NPP were converted to yearly data. In addition, land
area fraction (variable “sftlf”) of each model was used for
computing carbon storage and NPP of different
countries.
For each model, we used the ensemble member r1i1p1

as it is the only ensemble available for all CMIP5
models. In addition, a previous study has demonstrated
that simulations among the multiple ensembles from a
single model were similar in general (Jiang et al. 2015).
The letters “r,” “i,” and “p” in the ensemble name indi-
cate the initial condition, initialization method and per-
turbed physics version, respectively and “1” after each
letter is the realization number for the respective param-
eter (Taylor et al. 2010, 2012).
We analyzed land C sink of 12 ESMs at both grid level

and country level and decomposed the land C sink into
four components at country level as described in the
next section. Land C sink was calculated as the C stor-
age difference between year 2050 (average of 2046–
2050) of RCP8.5 and year 2005 (average of 2001–2005)
of historical runs. The country border map we used was
from WorldClim (http://www.worldclim.org). Because
the original resolutions of CMIP5 model outputs were
different from one another (Table 1) and were also dif-
ferent with the country border map, we regridded C
density and NPP of model outputs to match the reso-
lution of the country border map using conservation of
mass.

Application of the transient traceability framework to
CMIP5 model outputs
Land C sink, i.e., the difference in C storage between
two time steps, ΔX, can be achieved by the following
equation according to Eq. 1:

ΔX ¼ ΔXc−ΔXp ð3Þ

Change of C storage capacity (ΔXc) is equal to:
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Table 1 Summary of CMIP5 ESMs and their land carbon cycle components

Model name
of ESMs

Version Modeling group Land carbon
cycle
components

Number
of plant
functional
types

Number
of live
carbon
pools

Dynamic
vegetation

Nitrogen
cycle

Original
resolution
of latitude
and
longitude
(° lat × ° lon)

References

BCC-CSM1.1 20120918 Beijing Climate Center,
China Meteorological
Administration

BCC-AVIM1.0 15 3 No No 2.81 × 2.81 Ji et al. 2008;
Wu et al. 2013

BNU-ESM 20120504 College of Global Change
and Earth System Science,
Beijing Normal University

CoLM+BNUDGVM
(based on LPJ)

10 4 Yes No 2.81 × 2.81 Dai et al. 2003,
2004; Ji et al.
2014

CanESM2 20120410 Canadian Centre for
Climate Modeling and
Analysis

CLASS2.7+CTEM1 9 3 No No 2.81 × 2.81 Arora and
Boer. 2010

CESM1-BGC 20121029 Community Earth System
Model Contributors

CLM4 15 4 No Yes 0.94 × 1.25 Thornton and
Zimmermann
2007; Thornton
et al. 2007,
2009; Lawrence
et al. 2011

GFDL-ESM2G 20121206 Geophysical Fluid
Dynamics Laboratory

LM3 5 5 Yes No 1.99 × 2.48 Shevliakova
et al. 2009;
Dunne et al.
2013

HadGEM2-ES 20111007 Met Office Hadley Centre TRIFFID 5 3 Yes No 1.24 × 1.88 Cox 2001;
Collins et al.
2011; Jones
et al. 2011; The
HadGEM2
Development
Team 2011

INM-CM4 20110323 Institute for Numerical
Mathematics

LSM 1.0 12 3 No No 1.50 × 2.00 Bonan 1996;
Volodin 2007

IPSL-CM5A-MR 20120430 Institut Pierre Simon
Laplace

ORCHIDEE 12 8 No No 1.26 × 2.50 Dufresne et al.
2013; Krinner
et al. 2005

MIROC-ESM 20120710 Japan Agency for Marine-
Earth Science and
Technology, Atmosphere
and Ocean Research
Institute (The University of
Tokyo), and National
Institute for Environmental
Studies

MATSIRO+SEIB–
DGVM

13 4 Yes No 2.81 × 2.81 Sato et al.
2007;
Watanabe et al.
2011

MPI-ESM-MR 20120503 Max Planck Institute for
Meteorology

JSBACH 12 3 Yes No 1.88 × 1.88 Raddatz et al.
2007; Brovkin
et al. 2009;
Reick et al.
2013

MRI-ESM1 20130307 Meteorological Research
Institute

Models of the
biochemical
photosynthesis
processes at leaf
level and LPJ-
DGVM at
ecosystem level

10 3 Yes No 1.00 × 0.50 Adachi et al.
2013

NorESM1-ME 20120225 Norwegian Climate Centre CLM4 15 4 No Yes 1.88 × 2.50 Tjiputra et al.
2013
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ΔXc ¼ NPP1 � τ1−NPP0 � τ0 ð4Þ
where NPP1 and τ1 are NPP and τ at time step 2, re-

spectively, which is year 2050 in this study; and NPP0
and τ0 are NPP and τ at time step 1 (i.e., year 2005),
respectively.
If we add and then minus a term, NPP1 × τ0, which

does not change the equation, equation 4 becomes:

ΔXc ¼ NPP1 � τ1−NPP1 � τ0 þNPP1

� τ0−NPP0 � τ0 ð5Þ
Because the term “τ1 - τ0” is actually the change of

τ(Δτ), and similarly, the term “NPP1 - NPP0” means the
change of NPP (ΔNPP), equation 5 can be changed to:

ΔXc ¼ Δτ �NPP1 þ ΔNPP � τ0 ð6Þ
As explained above, NPP1 is sum of NPP0 and the

change of NPP (ΔNPP), so equation 6 can be written as:

ΔXc ¼ Δτ � ðNPP0 þ ΔNPPÞ þ ΔNPP � τ0 ð7Þ
And Eq. 7 can be reorganized into the following

format:

ΔXc ¼ ΔNPP � τ0 þ Δτ �NPP0 þ ΔNPP� Δτ ð8Þ
Combining Eqs. 3 and 8, we get the equation for deriv-

ing C sink (ΔX):

ΔX ¼ ΔNPP� τ0 þ Δτ �NPP0 þ ΔNPP
� Δτ−ΔXp ð9Þ

With Eq. 9, we can trace land C sink into four compo-
nents, i.e., production-driven change (ΔNPP × τ0),
turnover-driven change (Δτ × NPP0), interaction be-
tween production-driven change and turnover-driven
change (ΔNPP × Δτ), and change in instantaneous C
storage potential (ΔXp). Initial NPP and initial τ here
represent values of NPP and τ at time step 1, i.e., year
2005 in specific. In this study, we calculated τ and Xp

using the method adopted by Zhou et al. (2018):

τ ¼ X

NPP−X′ ð10Þ

Xp tð Þ ¼ Xc tð Þ - X tð Þ ð11Þ
We calculated yearly X′, τ, Xc, and Xp at both grid

level and country level. For both levels, we averaged re-
sults from 2001 to 2005 to represent year 2005 and the
results from 2046 to 2050 to represent year 2050. At
grid level, we excluded τ greater than 500 years before
outputting the results because most previous studies
have shown that global averaged ecosystem residence
time is much less than 100 years (Carvalhais et al. 2014;
Lu et al. 2018; Wu et al. 2020). At country scale, we first
regridded ecosystem C and NPP of each model to the

resolution of the country border map after multiplying
by land area fraction. Then we could calculate ecosystem
C storage and NPP of countries. After that, X′, τ, Xc,
and Xp of countries for each model were calculated.
Within each model, if a country had 0 or missing values
in ecosystem C and/or NPP in 3–5 years, we excluded
that country. In contrast, if a county had 0 or missing
values in ecosystem C and/or NPP in only 1–2 years, we
kept that country, but removed all variables for that
year(s). The same processing was made for a country
with τ that was < 0 or > 500 years. Finally, for each coun-
try, we reported results from multiple model means. If a
country had either “0” or missing values in any of the
variables, including ecosystem C storage, NPP, τ, Xc, and
Xp in more than 6 models, we did not include that coun-
try. The validations of derived land C sink of top 20
countries were provided in Fig. 1.
The calculations of the yearly average of C pools and

NPP of model outputs, regridding of C pools and NPP
of model outputs, and sums of C and NPP for countries
were performed with the NCAR Command Language
(Version 6.6.2, 2019).

Results
Global distribution of land carbon sink
The global distribution of land C sink shows that most
area on Earth will gain C in terrestrial ecosystems under
RCP8.5 by the middle of the twenty-first century (Fig. 2).
As for the magnitude of C sink, BNU-ESM, HadGEM2-
ES, IPSL-CM5A-LR, and MRI-ESM1 predict higher land
C sink that other models. Moreover, most ESMs predict
that tropical and tundra regions will gain more C than
other regions. MRI-ESM1 also predicts greater C sink in
northern America and Europe. On the contrary, two
ESMs with nitrogen (N) coupled, CESM1-BGC and
NorESM1-ME, simulate substantial C loss in tropical re-
gion. The C sink in these two models in other regions
are also substantially lower than other models.

Land carbon sink of top 20 countries
Unlike the grid level, at the country level, we report
results of average land C sink across all CMIP5
models. Land C sink by the middle of the twenty-first
century of the top 20 countries is shown in Fig. 3.
Total land C sequestered by these 20 countries during
45 years from 2005 to 2050 is 62.1 Pg C. Among
them, Russia, Canada, USA, China, and Brazil seques-
ter the most, gaining C of 19.6, 10.4, 9.6, 4.5, and 2.7
Pg C, respectively. These five countries collectively
contribute three quarters of the total C sequestrated
by the top 20 countries, with Russia sequestering
about one third of the total C sink by these 20 coun-
tries. However, the rest 15 countries each only gain C
less than 2.7 Pg C.
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Fig. 1 Validation of land carbon sink (ΔX) calculations with the transient traceability framework. Derived ΔX is calculated by Eq. 9 and direct ΔX is
the difference in carbon storage between the average of 2046–2050 and the average of 2001–2005 calculated directly from CMIP5
model outputs

Fig. 2 Global maps of land carbon sink by the middle of the 21st century. Shown is cumulative carbon sink by 12 ESMs in CMIP5 over the period
from 2005 (average of 2001–2005) to 2050 (average of 2046–2050) under RCP8.5
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Attributions of land carbon sink to its causing
components
According to the transient traceability framework, land
C sink can be decomposed into four components: (1)
production-driven change, (2) turnover-driven change,
(3) interaction between production-driven change and
turnover-driven change, and (4) the change in instantan-
eous C storage potential. Based on the results of averages
across all models, in the four components, production-
driven change accounts for the largest proportion, ap-
proximately half (49.5%), of the C sink (Fig. 4), followed
by turnover-driven change (28.1%), and then the change
in instantaneous C storage potential (14.5%). The inter-
action between production-driven change and turnover-
driven change contributes the least to C sink (7.9%).

Discussion
Spatial distribution of land carbon sink under the most
severe climate change scenario
While there is some uncertainty in simulated land C
sink by the CMIP5 models, it is also convergent that ter-
restrial ecosystems will serve as C sink over the next 30
years in most of the regions on lands as shown in Fig. 2.
The two regions that have higher C sink are tropics and
tundra, which is also agreed among the models except
for the two ESMs with N cycle (CESM1-BGC and
NorESM1-ME), in which tropical region will lose C.
Carbon sink of various vegetation types has been in-

vestigated at local to regional scales mostly from the per-
spective of land use change and land use management
for mitigating climate change. For example, willow

Fig. 3 Land carbon sink by the middle of the 21st century of top 20 countries by 12 ESMs in CMIP5 under RCP 8.5 (model means ± SE). Shown is
cumulative carbon sink over the period from 2005 (average of 2001–2005) to 2050 (average of 2046–2050)

Fig. 4 Contributions of each component to cumulative land carbon sink by the middle of the twenty-first century of top 20 countries by 12 ESMs
in CMIP5 under RCP 8.5. The four components of land C sink are: production-driven change (ΔNPP × τ0), turnover-driven change (Δτ × NPP0),
interaction between production-driven change and turnover-driven change (ΔNPP × Δτ), and change in instantaneous C storage potential (ΔXp).
NPP0 and τ0 represent NPP and τ in year 2005 (average of 2001–2005), respectively. ΔNPP, Δτ, and ΔXp represent changes of NPP, τ, and Xp
between 2050 and 2005 (i.e., average of 2046–2050 minus average of 2001–2005), respectively. NPP: net primary production, τ: C residence time,
Xp: instantaneous C storage potential
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plantation in central Sweden was a sink of ca. 8 ton C
ha−1 year−1, about half of which was attributed to
fertilization (Grelle et al. 2007). In Ohio, USA, sequestra-
tion rate of soil organic C was estimated to be 62 g C
m−2 year−1 with conversion from conservation tillage to
no-till for cultivated Alfisols, and the reforestation of
cropland could increase 71 Tg C in 25 years (Tan and
Lal 2005). The sequestration potential capacity by affor-
estation of marginal agricultural land in the Midwestern
United State was quantified to be 508–540 Tg C over 20
years and 1018–1080 Tg C over 50 years, which would
offset 6–8% of CO2 emissions by combustion of fossil
fuel in that region (Niu and Duiker 2006). Among the
four major plantation crops in tropics, the rubber plan-
tations had much higher C sequestration potential (214
ton C ha−1) than Cocoa (65 ton C ha−1), orange (76 ton
C ha−1), and oil palm (45 ton C ha−1) plantations (Kong-
sager et al. 2013). Second-growth forests in the Latin
American tropics could potentially accumulate 8.48 Pg
C in aboveground biomass over four decades, corre-
sponding to a total sequestration of 31.09 Pg CO2 and
equivalent to C emissions from fossil fuels and industry
by all of Latin America and the Caribbean from 1993 to
2014 (Chazdon et al. 2016).
Globally, most of land C models simulated C sink over

the simulation period from 1959 to 2010 (Huntzinger et al.
2017). Cumulative net land C sink was mainly contributed
by CO2 fertilization and N deposition, whereas climate and
land cover change caused C loss from land in most of the
models (Huntzinger et al. 2017). For tropic region, climate
had a negative effect on land C sequestration, but in north-
ern mid-latitude and arctic-boreal region, it stimulated C
sequestration (Huntzinger et al. 2017). Multimodel mean of
CMIP5 ESMs showed that land lost 19 Pg C from 1850 to
2005 but with a very wide range across models rooted from
the strength of the CO2 fertilization effect and differences
in model’s implementation of land use change (Jones et al.
2013). However, these models agreed with each other much
better on the direction of net land C change in the future;
and most of the models predicted a land C sink under four
future representative concentration pathways although the
magnitude was different among the models (Jones et al.
2013). Similarly, while all eleven coupled climate-carbon
cycle models in the C4MIP simulated a negative sensitivity
for land C cycle to future climate, land will remain as a C
sink by 2100 but with a declining magnitude dominated by
the reduction of land C uptake in tropics (Friedlingstein
et al. 2006).
However, sharing the same land C model (the Com-

munity Land Model, CLM4) and having nitrogen cycle
incorporated (Thornton et al. 2009), CESM1-BGC and
NorESM1-ME simulate a significant C loss in tropical
and tundra regions. The C loss is a result of the limited
response to increasing atmospheric CO2 concentration

(Friedlingstein et al. 2014) due to the down regulation
by N on photosynthesis (Luo et al. 2004; Friend et al.
2013; Jiang et al. 2015).

Land carbon sink of different countries under the most
severe climate change scenario
Among the top 20 countries with higher land C sink by
the middle of the twenty-first century, Russia, Canada,
USA, China, and Brazil sequester the most (Fig. 3),
which is not surprising in terms of area or location of
the countries. These top 20 countries will sequester a
substantial amount of C (62.1 Pg C) in their terrestrial
ecosystems even under the most severe climate scenario,
RCP8.5.
Government policies can have significant effects on

anthropogenic GHG emissions. For example, a 17% re-
duction in daily global CO2 emissions during the
COVID-19 forced confinement has been reported, with
half of reduction resulting from changes in surface trans-
port (Le Quéré et al. 2020). In order to mitigate climate
change, countries in the world have long been engaged
in efforts to reduce anthropogenic emissions by adopting
appropriate policies. In the protocols and agreements
envisaged under UNFCCC, many countries have com-
mitted to reduce their emissions from fossil fuels and in-
dustry with a clear target. However, in these protocols
and agreements, C sink by natural ecosystems and its
causing components are not well quantified to offset
some of the anthropogenic emissions. Globally, an-
thropogenic CO2 emissions from fossil fuels and indus-
try have reached to an average of 9.5 GtC year−1 during
2009–2018 (Friedlingstein et al. 2019). China, USA,
European Union, and India are the top emitters and col-
lectively account for 59% of global fossil CO2 emissions
(Friedlingstein et al. 2019).
Land has acted as C sink historically (Huntzinger et al.

2017) and has taken up about one third of fossil CO2

emissions (Friedlingstein et al. 2019). Land may keep se-
questering C from atmosphere until 2100 as simulated
by 8 out of 11 CMIP5 models, but the strength of land
C sink becomes weaker and weaker toward the end of
the simulation period of 2100 (Friedlingstein et al. 2014).
Fully coupled ESMs under the 1pct CO2 experiment in
CMIP6 also simulate land C sink although the increase
of sink declines as terrestrial CO2 fertilization effect sat-
urates and the respiratory losses increase as a result of
built-up C pools (Arora et al. 2020). For those countries
with large areas, the land C sink can be large and offset
a substantial proportion of the anthropogenic emissions.
For example, in this study, among the four top emitter
regions identified in the results by Friedlingstein et al.
(2019), USA and China can sequester 9.6 and 4.5 Pg C,
respectively by 2050 in their terrestrial ecosystems (Fig.
3), which can contribute to realize their reduction target
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for mitigating climate change. Federal lands across the
conterminous USA will store 19.4% more C in 2050 than
in 2005, with forests and grasslands gaining C from 2006
to 2050 at a rate of 620 and 228 kg C ha−1 year−1, re-
spectively, but shrublands losing C (C sources) at a rate
of 13 kg C ha−1 year−1 (Tan et al. 2015). The C seques-
tration potential by federal lands in the conterminous
USA in the future depends not only on the footprint of
individual ecosystems but also on each federal agency’s
land use and management (Tan et al. 2015). The esti-
mated ecosystem C sink by evergreen needle-leaved for-
ests in China increased rapidly with age, reached peak
value of 0.45 kg C m−2 year−1 at age of 22 years, and de-
creased gradually after that (Zhou et al. 2015). The high-
est C sink efficiency (i.e., C sink per unit NPP) of these
evergreen needle-leaved forests occurred when forest
age was between 11 and 43 years.

Components that control land carbon sink
The transient traceability framework allows us to quan-
tify not only the land C sink of different countries but
also the relative contributions of the involving processes,
including production-driven change, turnover-driven
change, interaction between production-driven change
and turnover-driven change, and the change in instant-
aneous C storage potential. Among these four compo-
nents, production-driven change accounts for the largest
proportion of the C sink (Fig. 4). The second important
component is turnover-driven change; and then the
third one is change in instantaneous C storage potential.
The interaction between production-driven change and
turnover-driven change accounts for the least to C sink.
Carbon stored in terrestrial ecosystems is not only de-

termined by how much C enters the ecosystem but also
determined by how long C will stay in that system, with
the former being known as NPP and the latter as C resi-
dence time. NPP is usually high in tropical regions and
low in high latitude (Todd-Brown et al. 2013). Rising
CO2 in atmosphere favorites NPP, which is well known
as CO2 fertilization. The fertilization of CO2 on NPP, in-
cluding both aboveground NPP (ANPP) and below-
ground NPP (BNPP), has been extensively demonstrated
in manipulative experiments with elevated CO2 con-
ducted in dozens of ecosystems (Song et al. 2019).
Models also consistently simulate the fertilization of
CO2 with a multiple model mean for carbon-
concentration feedback parameter β being 0.92 Pg C
ppm−1 (Arora et al. 2013). As a result of CO2

fertilization, cumulative net land C sink over the period
1959 to 2010 is overwhelmingly contributed by atmos-
pheric CO2, especially for tropics and extratropics
(Huntzinger et al. 2017). Global NPP will keep increas-
ing with time till 2100 because of rising CO2 (Friend
et al. 2013)

Changes in precipitation have profound impacts on
NPP. Increased precipitation usually enhances NPP and
decreased precipitation reduces NPP, with ANPP being
more sensitive than BNPP (Wilcox et al. 2017; Song
et al. 2019). However, the sensitivity of ANPP to precipi-
tation change would be saturating, likely driven by
ANPP responses to extreme precipitation (Knapp et al.
2017; Wilcox et al. 2017). Primary production has been
found to be most sensitive to precipitation in dryland
and grassland ecosystems (Maurer et al. 2020). The
trend and interannual variability of the global land C
sink are dominated by semi-arid ecosystems where varia-
tions in precipitation and temperature strongly regulate
ecosystem C balance (Ahlström et al. 2015).
Climate warming, however, has varied effects on NPP.

Earth system models involved in CMIP5 simulate nega-
tive effects of warming on land C fluxes, with the mul-
tiple model mean for carbon-climate feedback parameter
γ of − 58.4 Pg C °C−1 (Arora et al. 2013). In a recent syn-
thesis of the manipulative experiments of warming in
the world, NPP and ANPP both remain unaltered but
BNPP is slightly increased by warming (Song et al.
2019). In contrast, Wu et al. (2011) concluded that ex-
perimental warming stimulates NPP in another global
synthesis with 85 studies. In a 13-year field warming ex-
periment in a tallgrass prairie in Oklahoma, USA, warm-
ing consistently increases ANPP and BNPP, and the
increased ANPP and BNPP are positively correlated with
the proportion of ANPP contributed by C3 forbs (Xu
et al. 2015).
Observational data and model simulations both show

that C residence time is strongly dependent on
temperature, that is, longer in colder regions than in
warmer regions, with tundra and boreal forests having
longest C residence time than other terrestrial ecosys-
tems (Carvalhais et al. 2014). Consistent with the rela-
tionship between C residence time and temperature,
climate warming has been demonstrated to stimulate de-
composition and therefore shorten C residence time, es-
pecially in cold regions (Friend et al. 2013; Tian et al.
2015). However, the widely accepted relationship be-
tween C residence time and warming may not hold true
when accounting for changes in C age structure and
composition of respired C as found by Lu et al. (2018).
In their study, warming can cause an increase in global
C residence time due to the depletion of fast-turnover C
pool and accompanied changes in compartment C age
structures.
Carbon residence time has a strong association with

precipitation in the observation-based data set, which is
surprising, but the pattern is not well reproduced by those
CMIP5 models, highlighting that the hydrological cycle
could be more important in affecting C cycle than it is
represented in model simulations (Carvalhais et al. 2014).
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Rising atmospheric CO2 and N deposition help shorten
residence time of soil C (Tian et al. 2015). The decreased
ecosystem C residence time under elevated CO2 might be
a result of replenishment of C into fast turnover C pool
and subsequent decrease in compartment C age structure
(Lu et al. 2018). A recent study with a global land surface
model indicates that ecosystem C residence time has been
reduced from 74 years in the 1860s to 64 years in the
2000s, due mainly to land use change and climate change
(Wu et al. 2020). For soil C, however, land use change can
bring either increased or decreased residence time of soil
C (Tian et al. 2015). Predicted vegetation C residence
times under future CO2 and climate are increased, de-
creased, or stable, depending on different regions and due
to changes in tree mortality and composition of vegetation
types (Friend et al. 2013).
Conclusions on the relative importance of NPP and C

residence time in determining land C storage vary with
different C pools. Vegetation C storage is determined
more by C residence time than NPP (Friend et al. 2013;
Jiang et al. 2015). For soil C storage simulated by 11
ESMs in CMIP5, NPP and soil temperature explain
much of the spatial variations in soil C (Todd-Brown
et al. 2013). As for ecosystem C storage, more than half
of land C storage (~ 60%) is determined by ecosystem
baseline residence time (Zhou et al. 2021).
Factors controlling changes in C storage, that is, C

sink or source, might be different from those controlling
transient C storage. The domination of productivity-
driven changes (i.e., ΔNPP × τ0 in this study) over
turnover-driven changes (i.e., Δτ × NPP0 in this study)
in controlling land C pool changes has been detected by
Koven et al. (2015) for both live C pools and dead C
pools. This is understandable from mathematical per-
spective because turnover time is usually 0–48 years and
NPP is 0–2 kg C m−2 year−1 (Koven et al. 2015). How-
ever, less control of turnover-driven change compared to
productivity-driven change on C pool changes in re-
sponse to the imposed forcings may result from the lack
of process representation behind the changing turnover
times, such as allocation and mortality for live C pool;
and permafrost, microbial dynamics, and mineral
stabilization for dead C pool (Koven et al. 2015).
While the contributions by the changes in instantaneous

C storage potential, Xp, is not much, it can help bring
14.5% of C sink. The instantaneous C storage potential,
Xp, is potential C sequestration restricted otherwise by en-
vironmental factors and other factors such as disturbances
(Luo et al. 2017). Our results imply that if we manage our
terrestrial ecosystems to the best conditions for the eco-
systems, the ecosystems can store 14.5% more C. The pro-
portion of instantaneous C storage potential in simulated
global transient land C storage by 7 CMIP6 ESMs is 4.5%
(Zhou et al. 2021), but its contributions in C sink has been

amplified by 3 times. Accounting for only 7.9% of land C
sink, the interaction between production-driven change
and turnover-driven change (i.e., ΔNPP × Δτ) represents
the interaction between change in NPP and change in C
residence time. Our results demonstrate that change in
NPP and change in C residence time are interactive in de-
termining C sink.
In most previous studies that investigated the role of C

residence time, a steady-state assumption has been ap-
plied, in which C residence time is derived by C storage
divided by C inputs, GPP or NPP. This can bring signifi-
cant bias in estimating ecosystem residence time (Lu
et al. 2018). The transient traceability framework allows
us to disaggregate the individual components of land C
sink of different countries, which eradicates the bias
rooted in the steady-state assumption in C residence
time. Due to the challenge to apply the full transient
traceability framework to CMIP5 model outputs (Jiang
et al. 2017), we are not able to further decompose C sink
into more specific C processes in this analysis. In the fu-
ture, with more detailed information of those models,
we may decompose C sink of different countries further
and can thus know how individual C processes regulate
land C sink better. Finally, as acknowledged by Koven
et al. (2015), CMIP5 models may have some fundamen-
tal bias as reflected by the large uncertainty in the simu-
lations across CMIP5 models shown both in this analysis
and in many previous studies, which is a major challenge
in predicting land carbon dynamics. To eliminate any
bias related to selections of individual models, as a com-
mon practice in analyzing model results, we used the
means of multiple models instead of results of any single
model to represent the best model simulation results.
Even though the use of the multiple model means to
best represent the CMIP5 model simulation results in
this analysis, the uncertainty across these CMIP5 models
should be taken into account and needs to be carefully
evaluated when making policies.

Conclusions
Our analysis of CMIP5 results suggests that most areas
in the world will act as land C sink by the middle of the
twenty-first century under RCP8.5, especially in tropical
and tundra regions. The top 20 countries with the high-
est C sink can sequester 62.1 Pg C in total, with Russia,
Canada, USA, China, and Brazil sequestering the most
and collectively accounting for three quarters of the total
C sequestrated by the top 20 countries. Among the four
traceable components of land C sink, production-driven
change contributes the most, approximately half,
highlighting the joint determinations of land C sink by
change in NPP and inherent C residence time of the
countries. Turnover-driven change is the second largest
component of land C sink, which indicates that original
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ecosystem NPP and change in C residence time also play
a relative important role for terrestrial ecosystems to
gain C. Better management of the terrestrial ecosystems
can also help realize the maximal land C sink while the
change in instantaneous C storage potential, Xp, contrib-
utes a small proportion of C sink. Overall, land C sink
from the terrestrial ecosystems can offset a substantial
proportion of greenhouse-gas emissions, which should
be better accounted in the future agreements by the
United Nations Framework Convention on Climate
Change.
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