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Abstract—Vegetation canopy structure is a critically important
habitat characteristic for many threatened and endangered birds
and other animal species, and it is key information needed
by forest and wildlife managers for monitoring and managing
forest resources, conservation planning and fostering biodiversity.
Advances in Light Detection and Ranging (LiDAR) technologies
have enabled remote sensing-based studies of vegetation canopies
by capturing three-dimensional structures, yielding information
not available in two-dimensional images of the landscape pro-
vided by traditional multi-spectral remote sensing platforms.
However, the large volume data sets produced by airborne LiDAR
instruments pose a significant computational challenge, requiring
algorithms to identify and analyze patterns of interest buried
within LiDAR point clouds in a computationally efficient manner,
utilizing state-of-art computing infrastructure. We developed
and applied a computationally efficient approach to analyze a
large volume of LiDAR data and characterized the vegetation
canopy structures for 139,859 hectares (540 sq. miles) in the
Great Smoky Mountains National Park. This study helps improve
our understanding of the distribution of vegetation and animal
habitats in this extremely diverse ecosystem.

I. INTRODUCTION

Forest ecosystems are a complex mosaic of diverse plant

and tree species, the location and distribution of which are

driven by a number of gradients like climate (ex. temperature,

precipitation regimes), topography (ex. elevation, slope, as-

pect), geology (ex. soil types, textures, depth), hydrology (ex.

drainage, moisture availability) etc. Diverse combinations of

these gradients support diverse composition and distribution of

vegetation which in turn supports an array of wildlife. Under-

standing the vegetation canopy structure is critical to under-

stand, monitor and manage the complex forest ecosystems like

those in the Great Smoky Mountain National Park (GSMNP).

Vegetation canopies not only help understand the vegetation,

but are also a critically important habitat characteristics of

many threatened and endangered animal and bird species for

which the GSMNP is home.

Remote sensing has been widely used to monitor regional to

global forest ecosystems and for mapping of vegetation types.

However, traditional remote sensing methods for vegetation

classification often use light reflectance from the top layer

of vegetation. Advances in Light Detection and Ranging (Li-

DAR) technologies have enabled remote sensing-based stud-

ies of vegetation canopies by providing a three-dimensional

representation of vegetation structure throughout the canopy.

While the application of LiDAR for study of forest ecosystems

is becoming more common, the richness of these data sets

are generally under-utilized due to the large volumes of the

data produced by these instruments and lack of computational

resources and analysis algorithms. Most of the LiDAR studies

focus on the development of high resolution Digital Elevation

Models, canopy heights and occasionally understory density

[1], [2]. While LiDAR dervied metrics have proven to be

useful for an array of applications [1]–[5], three-dimensional

information provided by the LiDAR are left unutilized.

The objective of this study is to develop methods to realize

the potentials of rich LiDAR data set to map and characterize

the three-dimensional structure and distribution of vegetation

canopies. We develop and apply data analytic techniques to

identify the ecologically important and understandable struc-

tural types by mining the large and complex volumes of

LiDAR data.

II. MATERIALS

A. Study area

The geographic area for this study was the Great Smoky

Mountains National Park (GSMNP), which in part covers

the Great Smoky Mountains and the Blue Ridge Mountains,

encompassing 816 sq. miles across Tennessee and North

Carolina in the United States. Results presented here focus

primarily on the Tennessee side of the GSMNP (approximately

540 sq. miles). The GSMNP covers complex topography

with elevations ranging from 876–6,643 feet above mean sea

level. The GSMNP is ecologically rich and diverse, consisting

of about 1,600 species of flowering plants, including 100

native tree species and over 100 native shrub species [6]. The

distribution of vegetation in the park is strongly influenced by

topography, moisture and other environmental gradients [7].
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B. Airborne LiDAR data

Airborne LiDAR for 1,400 sq. km (540 sq. miles) for the

Tennessee portion of the GSMNP and the Foothills Parkway

was acquired by The Center for Remote Sensing and Mapping

Science at the University of Georgia and Photo Science, Inc.

under a U.S. Geological Survey (USGS)-funded program [8].

While details of data acquisition and processing are described

by [8], we briefly summarize the data here.

A total of 1,658 flight miles of data were collected during

the period of February–April 2011. Four multiple discrete

returns per pulse were collected at a rate of 20.2 Hz by the

LiDAR instruments employed for the data collection. There

was overlap of 40–50% between adjacent flight lines for a

nominal flying height of 1,981.2 m above ground level. Scan

angles were ±16◦ for a swath width of 1,134.7 m. Data

were calibrated and LiDAR points categorized as Unclassified,

Ground, Noise or Overlap. Data sets were split up into 1,500 m

× 1,500 m adjacent and non-overlapping tiles (Figure 1). The

tiled data sets, consisting of 724 tiles in “las” format (94 GB

total size), were obtained from the Great Smoky Mountains

National Park Service.

Fig. 1. LiDAR tiles for TN side of Great Smoky Mountains National Park.
The underlying color image is a 1.5 m resolution digital elevation map for
the region.

C. Digital elevation model (DEM)

The LiDAR point cloud was processed by [8] using ESRI

ArcGIS software to create a 1.5 m resolution bare-earth digital

elevation model raster (DEM) (Figure 1). This DEM was used

as the bare Earth topography in the analysis presented here.

III. METHODS

A computationally efficient Python-based workflow (Fig-

ure 2) was developed to process and analyze the LiDAR point

cloud data sets.

A. Topographic detrending of LiDAR point cloud

The LiDAR point cloud data set for the GSMNP was based

on a vertical datum (NAVD88 – Geoid09). Raw LiDAR point

cloud elevations contain the imprints of the underlying topog-

raphy (Figure 3(a)). A topographic detrending was required

in order to convert the elevations from an absolute datum to

an above ground level (AGL) elevation (Figure 3(b)). Thus,

for every point in the point cloud data set, the corresponding
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Fig. 2. Computational workflow for the analysis carried out using n processes
in embarrassingly parallel fashion.

ground level elevation was identified using the 1.5 m DEM

(described in Section II-C), and the AGL elevation was cal-

culated (elevation from datum − ground level elevation). All

further analysis was done on the detrended point cloud.

B. Vertical canopy structure

The topographically detrended LiDAR point cloud was pro-

cessed to generate the vertical canopy structure of vegetation

in the full study area. A horizontal grid of 30 m × 30 m

resolution was used, to match the resolution of LANDSAT,

NLCD and other existing vegetation mapping products for the

GSMNP [9] and to enable comparison and further analysis.

Employing a 30 m × 30 m resolution also ensured suffi-

cient LiDAR point density to construct a three-dimensional

vegetation canopy structure. A 1 m vertical resolution was

used to identify vegetation height from the ground surface to

a maximum height of 75 m. The number of LiDAR points

in each vertical 1 m bin (at each 30 m × 30 m cell in the

horizontal grid) was identified to construct a vertical density

profile (Figure 3(d)). Normalized density profiles were created

by computing the percent of total points (at that cell) in 1 m

vertical bins.
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(a) (b)

(c) (d)

Fig. 3. (a) 3-D LiDAR point cloud at 30 m × 30 m region (black square) in a
typical GSMNP cove forest. (b) The raw LiDAR point cloud (3,985 points),
showing the imprints of the underlying cove topography. (c) LiDAR point
cloud after topographic detrending and filtering (3,936 points) that converted
the elevations to above ground level elevation. (d) Distribution of LiDAR
point density along the vertical profiles in a cove forest dominated by tall
trees and a dense understory.

C. Noise and ground filtering of LiDAR data

Raw LiDAR point cloud data often contain anomalous

and noisy returns used as elevation data, and identification

and elimination of these points is essential prior to analysis

(Figure 3(c)) [1], [10], [11]. Anomalously high elevation

values are often caused by atmospheric aerosols, dust and

smoke, birds and insects, or other unknowns, while very low

elevations are caused by low-lying vegetation (like shrubs,

grasses) or ground litter and complex slopes and topographic

relief. The following noise-removal steps were performed on

the entire LiDAR point cloud:

1) Anomalous high elevation points: The tallest tree

recorded within the GSMNP is a 190 foot (57.9 m)

high tulip-tree (Liriodendron tulipifera) [12] [13]. A

maximum height of 75 m (higher than the tallest possible

tree) was used in the analysis, and any LiDAR points

with AGL elevation higher than 75Am were filtered out

as noise.

2) Anomalous low elevation points: Topographic features

(like steep slopes, and high reliefs, etc.) and surface

litter often cause anomalous reflections that are recorded

by the sensors as negative elevations, especially after

topographic detrending due to errors in the DEM. Thus,

the points with negative elevations were filtered out.

3) Low height vegetation: Some areas of the GSMNP are

dominated by low height vegetation (shrubs and grasses)

and are often lower than one meter in height. Grid

cells where 95% or more LiDAR return points were

within 1 m from the ground surface were identified and

classified as low lying vegetation.

4) Anomalously high number of returns at the same ele-

vation: Due to errors and noise in the point cloud data,

some locations contain an anomalously large fraction of

total returns at a cell recorded at the same elevation.

Thus, a correction was performed if more than 30%

of total returns at a cell were recorded from the same

1 m vertical bin, by applying a smoothing and replacing

the anomalous return counts in the vertical bin with a

simple average of return counts in bins directly above

and below. This simple correction allowed identification

and removal of anomalous spikes in vertical canopy

structures. The scheme was manually spot checked at a

number of locations and was determined to be adequate

and not to introduce any artifact in the data.

While we developed a number of steps to remove noise and

applied corrections to the data, inaccuracies remain in the data

and are carried throughout the rest of the analysis, requiring

careful ecological interpretation of the results to identify and

filter useful signals from noise.

D. Classification and spatial distribution of vegetation canopy
structure

A key objective of this study was to understand the spa-

tial distribution, pattern and dominance of various vegetation

types and canopy structures in the study area. Multi-variate

clustering techniques have been widely used in Earth science

for delineation of ecoregions that are relatively homogeneous

with respect to a collection of observable environmental and

climate characteristics [14]–[17].

Here, we used a k-means algorithm to cluster the gridded

vertical canopy structure data set (Section III-B) into groups

containing locations with similar vertical canopy structures

(Figure 3d). The k-means algorithm groups data (X1, X2,

. . . , Xn) with n records into a desired number of clusters, k,

equalizing the full multi-dimensional variance across clusters

[18]. The number of clusters, k, is supplied as an input

and remains fixed. The k-means algorithm starts with initial

centroid vectors (C1, C2, . . . , Cn) and calculates the Euclidean

distance of each pixel (Xi, 1 ≤ i ≤ n) to every centroid

(Cj , 1 ≤ j ≤ k), assigning it to the closet existing centroid.

The centroid vector is recalculated as the vector mean of

all dimensions of each pixel assigned to that centroid. This

classification and re-calculation process is iteratively repeated

until fewer than some small fixed proportion of observations

changes their cluster assignment between iterations. We as-

sumed convergence was achieved when fewer than 0.05% of

the observations changed cluster assignments.

In [16], we developed a parallel version of the k-means al-

gorithm to accelerate convergence, handle empty cluster cases,

and obtain initial centroids through a scalable implementation

of the triangular equality based acceleration method [19]. [20]

extended this to a fully distributed and highly scalable parallel

version of the k-means algorithm for analysis of very large

data sets, which was used in this study.
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E. Computational workflow
A computationally efficient workflow was developed in

Python for processing and analyzing the massive LiDAR

point cloud. To exploit the inherent parallelism in analysis of

LiDAR point cloud data, an embarrassingly parallel scheme

was implemented to allow processing of each “las” file in a

different process on a multi-core machine. The “laspy” [21]

Python module was used for processing LiDAR point cloud

data sets in “las” format. The Geo-spatial Data Abstraction
Library 2.0.0 [22] was used for analyzing geospatial data sets

(e.g., DEM), which allowed for efficient access to elevation

data sets for desired geographical regions within the parallel

workflow. Figure 2 shows a schematic of the analysis workflow

implemented for mapping vegetation canopy structure and

distribution using LiDAR.

IV. RESULTS AND DISCUSSION

A. Unique Vegetation Canopy Structures
A gridded data set of vertical canopy structure (Sec-

tion III-B) was classified using a k-means clustering algorithm

(Section III-D) to identify patterns of vegetation and to create

clusters of unique vegetation canopy structures. While large

volumes of LiDAR data are typically difficult to understand,

our classification method enables derivation of higher order

products that can be easily analyzed and understood by forest

and wildlife managers. Data sets were classified at various

levels of division (k = 5, 10, 15, 20, 25, 30, 50, 75, 100). While

at lower levels of division (small k), different canopy structures

of interest may be lumped together, higher levels of division

may define clusters with insignificant differences in canopy

structures. Various approaches for determining the optimal

level of division for k-means clustering have been developed

and reported in the literature [23], [24]. However, most of these

methods are not effective for data sets like LiDAR that contain

significant amounts of errors and noise. Thus, we classified

and analyzed the data sets at various level of divisions. k=30

was selected for subsequent analysis because it appeared to

have an optimal signal to noise ratio while allowing sufficient

resolution to distinguish different vegetation canopy structures.

A geospatial map of 30 vegetation classes was developed

(Figure 4(a)), with each class defined by a nominal vertical

canopy structure (Figure 4(b)).
Canopy structure classes (Figure 4(b)), identified well the

range of vegetation present in the GSMNP from tall and dense

tree canopies with very low understory vegetation (unimodal

profiles like 10 and 13), to tree canopies with understory

vegetation (represented by bi-modal profiles 5, 14, 17, etc.) to

low height shrub dominated vegetation (profiles 1, 4, 16, etc.).

While the classification method was able to identify unique

canopy structures, it also identified the areas with outliers or

noisy data in unique clusters (like 3 and 11), making it easy to

eliminate them from further analysis. Noise and errors along

the boundaries of the point cloud data tiles were identified

(potentially introduced by processing of the data [8]) and

filtered out in our analysis, imprints of which are visible in

the final map product (Figure 4(a)).

B. Translating Canopy Structures into Vegetation Types

We used Mapcurves [25] to identify the best “translation

table” between LiDAR clusters and vegetation types defined

by [9] (Table I). Although Mapcurves identifies the single

vegetation type having the best fit in terms of spatial overlap,

each LiDAR cluster is likely to overlap with many other vege-

tation types; however, Table I shows only the single vegetation

category [9] exhibiting the largest spatial co-registration.

Indeed, the inherently different natures of vegetation type

or composition and the above-ground vertical biomass distri-

bution might act to minimize any agreement between these

two maps. A number of different forest compositions might

show similar vertical structure distributions, despite substantial

differences in species composition. Conversely, a single forest

type might, throughout its successional development, sequen-

tially adopt a series of substantially distinct vertical profiles.

Moreover, the wide discrepancy in inherent resolution of these

two maps might further complicate their direct comparison.

While the vegetation type map consists of generalized descrip-

tive polygons, the analytical LiDAR map was coarsened to 30

horizontal meters.

Despite these differences, a number of consistencies emerge

from the comparison of these two maps. Successional vege-

tation types, including grasses, are restricted to LiDAR cat-

egories 0 and 3, although this is somewhat artificial, since

cluster 0 was defined a priori as low-stature vegetation less

than 1 m tall, and cluster 3 is anomalous, accounting for little

area in the map. The Spruce-fir type predominates within

a single profile cluster, number 21, and typifies these short

stature, high elevation forests. Similarly, profile cluster 27

solely predominates the Ericaceous shrub type. The Yellow

pine type has the majority of overlap with three profile clusters

(15, 24, and 29), which seem to differ in their degree of canopy

height, perhaps reflecting separate phases of successional

development.

The two profile types predominantly associated with Mon-

tane cove types reflect the tallest forests growing on the

most fertile sites, but the Montane Oak-Hickory type has four

otherwise similar vertical profile forms. The Northern/acid

hardwood type dominates five different profile types, which

may differ in the degree of understory, possibly Rhododen-

dron, that is present. As might be expected, the Chestnut

oak vegetation type, which accounts for much of the area

in the map (43%) is manifested across 12 different profile

types, perhaps reflecting differences in both forest age and

compositional differences.

C. Validation case studies

We conducted a number of case studies to verify the

LiDAR based canopy structures against best available maps

of vegetation in the GSMNP [9], which were available at

the same spatial resolution of 30 m. While the map resolu-

tion is the same, LiDAR-derived canopy structures developed

here represent aggregation from significantly higher resolution

source data compared to vegetation maps that classify the

region in traditional vegetation classes.
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TABLE I
Mapcurves BASED TRANSLATION OF LIDAR DATA DERIVED 30 UNIQUE

VEGETATION CANOPY STRUCTURES TO TRADITIONAL VEGETATION

CLASSES FOR THE GREAT SMOKY MOUNTAIN NATIONAL PARK

Cluster Dominant Vegetation Type

0 Successional or modified vegetation

1 Chestnut Oak Forest

2 Chestnut Oak Forest

3 Successional or Modified Vegetation

4 Chestnut Oak Forest

5 Northern Hardwood/acid Hardwood Forest

6 Chestnut Oak Forest

7 Yellow Pine Forest

8 Northern Hardwood/acid Hardwood Forest

9 Chestnut Oak Forest

10 Montane Cove Forest

11 Chestnut Oak Forest

12 Northern Hardwood/acid Hardwood Forest

13 Montane Oak-hickory Forest

14 Northern Hardwood/acid Hardwood Forest

15 Yellow Pine Forest

16 Chestnut Oak Forest

17 Montane Cove Forest

18 Montane Oak-Hickory Forest

19 Chestnut Oak Forest

20 Montane Oak-Hickory Forest

21 Spruce-Fir Forest

22 Northern Hardwood/Acid Hardwood Forest

23 Chestnut Oak Forest

24 Yellow Pine Forest

25 Montane Oak-Hickory Forest

26 Chestnut Oak Forest

27 Ericaceous Shrubs (Heath Bald Type)

28 Chestnut Oak Forest

29 Yellow Pine Forest

30 Chestnut Oak Forest

Cades Cove, located in a valley surrounded by mountains,

is one of the most popular destinations in the GSMNP. Cades

Cove consists of woodlots interspersed within old-fields that

are mowed and burned to mimic a 19th century agrarian

settlement [26]. Figure 5(a) shows the area of low height

(less than 1 m tall) vegetation class identified by our study

which shows very good correspondence to the “Successional

or modified vegetation” types (Figure 5(b)) as mapped by

vegetation map of the GSMNP [9].

In contrast to the low height vegetation in Cades Cove,

forests in the mountain coves of the GSMNP are dominated

by tall trees with dense canopies, especially on North-facing

slopes. The Great Smoky Mountain Institute at Tremont

(GSMIT) is surrounded by “Montane Cove” and “Hemlock”

forests with tall and dense canopies (Figure 6(b)). Strong

correspondence and spatial overlap with vegetation canopy

classes 10 and 13 was identified for the region (Figure 6(a)).

(a)

(b)

Fig. 5. Vegetation in Cades Cove valley in the GSMNP. (a) Low height (less
than 1 m tall) vegetation class identified by LiDAR derived canopy structure
product. (b) “Successional or modified vegetation” mapped by [9].

Vegetation canopy classes 10 and 13 represent some of the

tallest vegetation in the GSMNP, having canopy heights of up

to 50 m from the ground, high density/biomass in tree canopies

with relatively low understory growth due to competition for

light and nutrients. The canopy profiles at a number of “Citizen

Science” phenology plots (marked by blue circles in Figure 6)

maintained by GSMIT were studied to match the known tree

types at the sites.

D. Computational performance

The compute and data intensive steps involved in process-

ing, filtering/correcting and gridding of the LiDAR point cloud

data (Section III-A,III-B,III-C) were conducted with a Python

based workflow (Section III-E) developed for this research.

The workflow was tested and optimized for parallel perfor-

mance on low to moderate core-count Linux-based platforms.

We were able to process individual LiDAR “las” files within

15 seconds on average on Intel Xeon 2.40 GHz processors.

Each production run processed 98 GB LiDAR “las” data sets

and were performed using 8 processes with an average turn

around time of 22 minutes. The parallel k-means clustering

tool developed by [20] was used to classify the resulting

gridded canopy structure data sets (Section III-D).
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(a)

(b)

Fig. 6. Vegetation around The Great Smoky Mountain Institute at Tremont (a)
Tall canopy structures classes 10 (orange) and 13 (violet) derived using LiDAR
(b) “Montane Cove” forest mapped by [9]. Blue circles shows the locations
of phenology plots maintained by the Great Smoky Mountain Institute at
Tremont (GSMIT) Citizen Science program.

V. CONCLUSION

In this study, we developed a methodology and computa-

tional tools to analyze large volumes of LiDAR point cloud

data and applied our workflow to map and characterize vege-

tation canopy structures and their spatial distributions for the

Tennessee portion of the Great Smoky Mountain National Park

(GSMNP). LiDAR data sets often suffer from noise and errors

due to reflection/detection errors, conditions at the time of

data collection, complex terrain and relief and heterogeneous

vegetation. We developed schemes to identify and filter out

noise in the data that may induce errors in the characterization

of vegetation canopy structures. Cluster analysis was employed

to develop a canopy structure-based classification of vegetation

in the GSMNP. We found a strong correspondence between

the resulting canopy classes and a map of vegetation types

present in highly biodiverse complex terrain of the park.

The high resolution map of vegetation canopies will provide

forest and wildlife managers with critically important infor-

mation for resource management and conservation planning.

Species composition in the GSMNP is in a state of flux

due to various environmental stressors like fires, hemlock

death due to the wooly adelgid, and other factors, leading to

successional changes in this critically important ecosystem.

Computationally efficient tools developed in this study allow

forest managers to monitor the forest using repeat LiDAR

surveys, which was not previously possible because of the

complexity and volume of airborne LiDAR data sets.

VI. DATA PRODUCTS

All the data sets produced by this study and discussed

throughout this article has been archieved and available at Oak

Ridge National Laboratory Distributed Active Achive Center

[http://www.daac.ornl.gov] [27]. The collection contains the

following key data products from this study.

• 30 unique vegetation canopy structure classes (Fig-

ure 4(a), Section IV-A)

– Geospatial maps of vegetation canopy classes (Fig-

ure 4(a), Section IV-A). Format: Geotiff
– Representative vegetation canopy structures that de-

fine the 30 unique canopy structure classes (Fig-

ure 4(b), Section IV-A). Format: ASCII
• Mapcurves [25] based reclassification of the 30 unique

vegetation canopy classes to vegetationa category exhibit-

ing largest spatial co-registration

– Geospatial maps of reclassified 30 unique vegetation

canopy classes. Format: Geotiff
– Translation table from vertical canopy structure

classes (Figure 4(a), Section IV-A) to vegetation type

[9] Format: ASCII
• Mapcurves [25] was also applied in opposite direction

with vegetation map [9] to identify vegetation canopy

classes that best co-registered with any given vegetation

type

– Geospatial maps of vegetation types [9] reclassed to

vegetation canopy classes. Format: Geotiff
– Translation table from vegetation types [9] to vertical

canopy structure classes (Figure 4(a), Section IV-A)

Format: ASCII
The Universal Transverse Mercator (UTM) projection sys-

tem Zone 17N, Datum NAD83 was used for all the geospatial

data products.
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(a)

(b)

Fig. 4. (a) 30 unique vegetation canopy structure classes identified by a k-means clustering algorithm for the Tennessee portion of the Great Smoky Mountains
National Park. (b) Representative vegetation canopy structures that define the 30 unique canopy structure classes in (a). The percent of total area occupied by
each class is described at the top of each class definition plot. Fill colors for the plots in (b) correspond to the colors for the class in the spatial map in (a).
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