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Future increases in Amazonia water stress 
from CO2 physiology and deforestation

Yue Li    1 , Jessica C. A. Baker    2, Paulo M. Brando    3,4, Forrest M. Hoffman5, 
David M. Lawrence    6, Douglas C. Morton7, Abigail L. S. Swann8,9, 
Maria del Rosario Uribe3 & James T. Randerson1

Several different drivers are contributing to climate change within the 
Amazon basin, including forcing from greenhouse gases and aerosols, 
plant physiology responses to rising CO2, and deforestation. Attribution 
among these drivers has not been quantified for Shared Socioeconomic 
Pathway (SSP) climate simulations. Here we identify the contribution of 
CO2 physiology and deforestation to future hydroclimate change in the 
Amazon basin by combining information from four experiments and eight 
different Earth system models in Coupled Model Intercomparison Project 
Phase 6. Together, forcing from CO2 physiology and deforestation account 
for about 44% of the projected annual precipitation decline, 48% of surface 
relative humidity decline and 11% of warming over the Amazon basin by 
2100 for SSP3-7.0. Other Coupled Model Intercomparison Project Phase 6 
SSP simulations have similar contributions from the two drivers. Insight 
from our attribution analysis can aid in identifying research priorities aimed 
at reducing uncertainty in future projections of water availability, carbon 
dynamics and wildfire risk.

Climate change is a major threat to Amazon rainforests as warming  
and drying contribute to higher levels of tree mortality in intact  
forests1,2 and to more destructive fires that escape human control3,4. To 
explore both future climate change and its impacts within the Amazon 
basin, Earth system model (ESM) simulations from the 5th and the 6th 
Phases of the Coupled Model Intercomparison Project (CMIP)5–12 are 
widely used. Specifically, simulations from ScenarioMIP13 for different 
future Shared Socioeconomic Pathway (SSP)14 scenarios have been 
analysed extensively to assess climate change impacts on ecosystem 
composition15, carbon storage16, the hydrological cycle17, fire risk18 and 
socioeconomic systems19, often with the CMIP simulations serving as 
external forcing for a set of downstream models that resolve the basin 
with a higher spatial resolution or greater process representation (for 
example, ref. 16). Another important application of the CMIP simula-
tions is their use in the development of emergent constraints20, which 

allow for a better understanding of the individual models from the 
broader ensemble that are more likely to accurately predict the sign and 
magnitude of future change21–23. Despite the extensive use of SSP simu-
lations for these purposes, we do not clearly understand how different 
forcing agents within the simulations contribute to projected future 
changes in climate and the hydrological cycle in the Amazon basin.

Identifying the forcing agents responsible for projected future 
changes in climate is important for identifying research priorities to 
reduce uncertainties in key model components. In CMIP6 SSP simula-
tions, critical forcing agents include well-mixed greenhouse gases, 
aerosols and land use change. Particularly for the Amazon basin, it is 
well established that the surface evapotranspiration changes from 
plant stomatal responses to rising atmospheric CO2 and deforestation 
are important drivers of the precipitation response24–29, yet studies 
analysing SSP simulations may include an implicit assumption that 
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100 ppm (Fig. 1a). Multiplied by the quadrupling increase in CO2 (that is, 
from 285 ppm to 1,140 ppm between last and first 20 years of the C4MIP 
BGC simulations) and a basin-wide mean annual precipitation climato-
logy of 6.1 mm per day, this precipitation response to the CO2 physio-
logical forcing is equivalent to −0.47 mm per day, which is broadly 
consistent with estimates for this response from the mean of previous 
CMIP5 models (for example, −0.48 mm per day in Kooperman et al.25). 
We also find that all of the individual CMIP6 models analysed here 
show a significant negative precipitation response to CO2 physiological 
forcing (ranging from −0.5% to −1.6% per 100 ppm CO2 increase), high-
lighting a reasonably coherent response of Amazonian precipitation 
to CO2 physiological forcing within CMIP6 (Supplementary Table 2).

Deforestation also significantly decreases mean annual precipita-
tion in the Amazon basin (Fig. 1b). The multi-model average response 
is −1.0 ± 0.3% per 10% deforestation (P < 0.001), relatively linear, and 
equivalent to about 10% or −0.61 ± 0.18 mm per day for 100% (com-
plete) deforestation of the whole basin. The magnitude of the multi-
model average precipitation response from the fully coupled LUMIP 
simulations for complete deforestation is similar to a recent estimate 
of −12 ± 11% (per 100% deforestation) derived from a meta-analysis 
synthesizing information from climate models with various degrees 
of ocean, ice and atmospheric coupling39. Moreover, we find all mod-
els agree on the sign of the response, with their magnitude ranging 
from −0.15% to −2.3% in response to a 10% loss of forest cover, despite 
important structural differences in the CMIP6 models with respect to 
the representation of vegetation-hydrology coupling and biophysical 
responses to land use change28,29.

Spatially, the precipitation response to forcing from a 100 ppm 
CO2 increment is strongest in the north-eastern part of the basin  
(Fig. 2a), with a pattern consistent with previous reports34. Whereas 
the climate response to the basin-wide 10% deforestation is strongest 
in central and western Amazonia, adjacent to the Andes Mountain range 
(Fig. 2b). Further, the CO2 physiological forcing and deforestation 
also influence the seasonality of the precipitation response. Across 
the annual cycle, the CO2 physiology impacts on precipitation are 
somewhat uniform when expressed as a per cent change. However, the 
precipitation response in the southeastern part of the basin is stronger 
towards the end of the dry season (August and September) than at the 
beginning of the dry season ( June and July) (Supplementary Fig. 1). The 
negative precipitation response to deforestation appears to be most 
robust across the models during the wet season (December to May), 
although there is also a strong response and high level of agreement 
across models in the northern and eastern part of the basin during 
August, September and October (Supplementary Fig. 2).

The negative precipitation response to forcing from CO2 physio-
logy and deforestation implies a greater future risk for meteorological 
drought and fire. To provide more insight into potential changes in 
these risks caused by CO2 physiology and deforestation forcing, we 
performed a similar regression analysis (Methods) for surface RH from 
the five models with available output from C4MIP and the four models 
with available output from LUMIP. Basin-wide RH decreases at a rate 
of −0.91 ± 0.02% (P < 0.001) in response to a 100 ppm CO2 increase and 
by −0.5 ± 0.1% (P < 0.001) in response to a 10% loss of tree cover in the 
Amazon basin (Fig. 1c,d). Regressions for each available model also 
confirm that the RH response is consistently negative in response to 
these drivers, although not every model exhibits a statistically signifi-
cant trend (Supplementary Table 2). The spatial pattern of RH response 
to CO2 physiology and deforestation is more homogeneous than the 
one for precipitation, with the largest signal occurring in the central 
Amazon basin (Supplementary Fig. 3a,b).

Similar to precipitation and RH, the surface air temperature 
response in the Amazon basin to forcing from CO2 physiology is mostly 
linear (Fig. 1e), with a regional average warming rate of 0.13 ± 0.01 °C per 
100 ppm increase in CO2 (P < 0.001). All models agree on a significantly 
positive surface air temperature response to rising CO2 (Supplementary 

most of the projected change in the basin is associated with the climate  
system response to radiative forcing from greenhouse gases and 
aerosols since these are the main forcing agents at a global scale (for 
example, ref. 12). To ensure a successful and informative assessment for 
policy- and decision-makers, it is essential to provide comprehensive 
reports on both the magnitude of climate change and its consequences. 
Additionally, it is crucial to clearly quantify the factors that contribute 
to future regional change. Failing to fully understand these key drivers 
hinders progress in reducing uncertainties within climate models30.

Future precipitation changes in Amazonia will probably be influ-
enced by increased atmospheric CO2 and deforestation31,32. The CO2 
impacts on Amazonian precipitation can be separated into radia-
tive and plant physiological effects. The CO2 radiative effect alters 
physical and dynamic processes, with regional Amazonian precipita-
tion responding to large-scale thermodynamical adjustments of the 
ocean–atmosphere system, including the ‘wet regions getting wetter’ 
mechanism identified in past work33,34. By contrast, the plant physio-
logical effect in response to rising CO2 is associated with a reduction 
in plant stomatal conductance and land surface evapotranspiration, 
which, in turn, influences boundary layer processes, the frequency 
of deep convection, and interactions with the tropical jet35. Though 
sharing similar mechanisms of reducing surface evapotranspiration 
and boundary layer humidity, deforestation additionally increases 
surface albedo and reduces surface roughness, two processes that play 
major roles in altering precipitation patterns in various parts of the 
Amazon basin36–38. Across the basin as a whole, it has been suggested 
that increasing the deforestation fraction may cause a linear decline in 
regional average precipitation39 and that for some scenarios of future 
change, this decline in precipitation may be similar in magnitude to 
that caused by forcing from CO2 physiology40.

Despite well-understood mechanisms describing how CO2 physio-
logy25,35,40 and deforestation41 cause precipitation reductions, there 
remains a lack of comprehensive and quantitative understanding 
of how these forcing agents contribute to future rainfall and other 
climate variable changes in future (twenty-first century) simulations 
conducted as a part of ScenarioMIP for different SSPs. This attribu-
tion is challenging, in part because each SSP has a different level of 
atmospheric CO2 and prescribed forest cover change. In this Article, 
we attribute changes in Amazonian precipitation, surface relative 
humidity (RH) and climate warming in the SSP simulations to forc-
ings from CO2 physiology and deforestation. For this purpose, we 
analysed idealized model simulations from two model comparison 
projects (MIPs) that were undertaken as a part of CMIP6 (Methods), 
namely the Coupled Climate–Carbon Cycle Model Intercomparison 
Project (C4MIP42) and the Land-Use Model Intercomparison Project 
(LUMIP43). Idealized experiments of the land surface response to rising 
CO2 in C4MIP (known as the biogeochemically coupled or BGC simula-
tions) and to deforestation in LUMIP enabled us to first quantify the 
climate response of Amazonia rainforest to these two mechanisms 
under uniform simulation protocols. We specifically analysed transient 
simulations from eight models participating in C4MIP and six models 
participating in LUMIP (Supplementary Tables 1 and 2). This analysis 
revealed that regional annual mean precipitation, surface RH and air 
temperature respond linearly to atmospheric CO2 concentration and 
forest cover fraction in the Amazon basin. In a second step, we applied 
linear models of the climate response to the absolute change in CO2 
concentration or forest cover fraction to quantify the contribution of 
these mechanisms to climate change in the Amazon basin for different 
CMIP6 SSP simulations.

Isolating the climate response to rising CO2 or 
deforestation
We find that for the influence of rising CO2 on plant physiology, the 
models show a significant (and mostly linear) decline in mean annual 
precipitation of −0.91 ± 0.07% (P < 0.001, t-test) for a CO2 increase of 

http://www.nature.com/natwater


Nature Water

Article https://doi.org/10.1038/s44221-023-00128-y

Table 2). This warming signal is likely to increase the water saturation 
vapour pressure, which, combined with the declined surface moisture 
availability due to declining stomatal conductance, contributes to the 
RH decline observed in the models for CO2 physiology.

The surface air temperature response to deforestation is consider-
ably noisier than for the other climate variables shown in Fig. 1f, with 
a 10% loss in forest fraction contributing to a basin-wide warming of 
0.03 ± 0.02 °C (P = 0.058). Further regression analysis was performed 
for each model, revealing that the sign and magnitude of deforesta-
tion impact on surface air temperature diverge considerably from 
model to model (−0.19 °C to 0.15 °C in response to 10% deforestation; 
Supplementary Table 2). Specifically, CanESM2 and UKESM1 show 
decreases in surface air temperature from deforestation in contrast to 
the other models that show a warming trend (Supplementary Table 2).  
Some of this variation may be linked to cooling from deforestation 
in the extra-tropics in the LUMIP simulations28. As a result, the mean 
estimate of climate warming from deforestation reported here is prob-
ably a lower bound and has a high level of uncertainty that is associated 
with model-to-model variability (for further information, see Discus-
sion). Compared with the spatial pattern of the precipitation response,  
the spatial patterns for the warming response to CO2 physiology 
and deforestation are diffuse and broadly similar, with the strongest 
response in the central part of the basin (Supplementary Fig. 3c,d).

The climate responses to CO2 physiology and deforestation  
are not directly comparable in Figs. 1 and 2, with the slopes having 

different units. However, we can compare relative impacts of the  
two drivers by specifying a fixed increment of atmospheric CO2 and 
then identifying the equivalent level of deforestation necessary  
to generate the same magnitude of climate change. For precipitation, 
a 100 ppm CO2 increase is equivalent to a 9% increase in deforestation 
in terms of generating an equivalent amount of climate change for  
the CMIP6 models analysed here. Similarly, for RH, a 100 ppm CO2 
increase is equivalent to an 18% increase in deforestation, and for 
temperature, a 100 ppm CO2 increase is equivalent to a 43% increase 
in deforestation.

Contribution of CO2 physiology and 
deforestation within SSPs
The analysis shown in Fig. 1 provides evidence that the climate response 
to atmospheric CO2 concentration or deforestation is mostly linear in 
CMIP6 models for the domain of the Amazon basin. As a next step, we 
used these linear relationships to separately isolate climate change 
arising from these two drivers in widely used SSP scenarios13 by the 
end of the twenty-first century. We estimated their contributions as the 
product of the multi-model average climate response from Fig. 1 and 
the changes in future atmospheric CO2 concentration or deforestation 
fraction from each SSP simulation (Fig. 3 and Methods). Contributions 
from CO2 physiology and deforestation have yet to be systematically 
identified for ScenarioMIP SSP simulations that integrate the forcing 
from many different climate change drivers.
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Fig. 1 | Transient response of annual mean precipitation, surface RH and air 
temperature to CO2 physiology and deforestation in the Amazon basin.  
a–f, The precipitation changes were computed in percentage from each model, 
and then averaged across eight CMIP6 models. Each data point represents the 
cross-model regional average computed for each year from their 140 year and 

50 year simulations from the C4MIP and LUMIP experiments, respectively 
(Methods). Climate changes are solely due to CO2 physiology (no radiative 
effects) in the left column and deforestation in the right column. The exact  
P values for regression slope by t-test are 4.5 × 10−28 (a), 2.1 × 10−4 (b), 8.8 × 10−73 (c), 
6.0 × 10−6 (d), 9.4 × 10−51 (e) and 0.058 (f).
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SSP scenarios have different pathways of future atmospheric CO2 
concentration and land use, depending on different assumptions about 
the strength of international cooperation, technology and economic 
development14. SSP1-2.6 has been described as the most sustainable 
future with global temperature stabilizing below 2 °C of warming 
by 2081–2100 (ref. 44). In this scenario, atmospheric CO2 increases 
slowly, reaching a maximum of 474 ppm in 2063, and then declining  
to a mean level of 456 ppm by 2081–2100. By contrast, atmospheric  
CO2 concentrations under the other three scenarios keep rising 
throughout the twenty-first century, reaching 597 ppm for SSP2-4.5, 
792 ppm for SSP3-7.0 and 1,005 ppm for SSP5-8.5. The CO2 increments 
for these SSPs, relative to the background level in 1850 for the pre-
industrial control, are summarized in Fig. 3.

Although SSP5-8.5 has the highest atmospheric CO2 increase, its 
assumptions regarding global energy development are not closely 
coupled to land use change, and therefore the deforestation fraction 
in the Amazon basin remains nearly constant at 6.4% from 2021–2040 
through 2081–2100. This projection is similar to the 6.1% deforesta-
tion fraction for SSP1-2.6. For SSP2-4.5, Amazonian deforestation first 
increases to 8.3% during 2041–2060 and then decreases to 5.2% during 
2081–2100 as a consequence of forest recovery (Fig. 3b). The greatest 

Amazonian forest cover loss occurs under SSP3-7.0 where deforestation 
increases to 12.4% by 2081–2100 (Fig. 3c).

Precipitation decreases by 4.8% (−0.26 mm per day) for SSP1-2.6 by 
2081–2020 relative to the pre-industrial mean level in 1850 (5.5 mm per 
day). For this scenario, we find that the sum of contributions from CO2 
physiology and deforestation account for 46% (−0.12 mm per day) of 
future precipitation decline over the Amazon basin (Fig. 4a). Similarly, 
of the 13.2% decline (−0.72 mm per day) in Amazonia precipitation 
occurring by 2100 for SSP3-7.0, 44% of this decrease (−0.32 mm per 
day) can be attributed to the combined effect of CO2 physiology and 
deforestation. Across all the different future scenarios and time inter-
vals shown in Fig. 4, the combined contributions of CO2 physiology and 
deforestation to Amazonian precipitation change vary between 34% 
and 56% (Fig. 4). For surface RH, a key driver of fire risk45,46, the impact 
of CO2 physiology and deforestation is even greater in magnitude, 
accounting for 48% of the RH decline for SSP3-7.0 and 52% for SSP5-8.5 
(Supplementary Fig. 4). These findings highlight the importance of 
decreases in surface evapotranspiration due to both CO2 physiology 
and deforestation (Supplementary Fig. 5a,b) as key model drivers 
influencing the future hydroclimate of the Amazon basin (Fig. 5).

By contrast, for surface air temperature, the contribution from 
the two drivers to warming is relatively small, primarily because of 
the stronger regional and global temperature response to radiative 
forcing from greenhouse gases. For example, for SSP3-7.0 about 11% 
of future Amazonian warming can be attributed to forcing from CO2 
physiology and deforestation by the end of the century (Fig. 5 and 
Supplementary Fig. 6).

Solely considering contributions from the response of physiology 
to rising CO2, precipitation declines ranged between 33% for SSP1-2.6 
and 46% for SSP5-8.5 (Fig. 4a,d). Deforestation contributions to pre-
cipitation declines varied between 4% for SSP5-8.5 and 13% for SSP1-2.6. 
CO2 physiology also had a much larger impact than deforestation for 
RH and temperature changes within the different SSP simulations.
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Discussion
CO2 physiology and deforestation are found to account for over 40%  
of the declines in both precipitation and surface RH in the Amazon  
basin by the end of the twenty-first century (Fig. 4 and Supplementary 
Fig. 4). These results indicate that a considerable amount of future  
Amazonian precipitation and meteorological drought7–12 can be 
attri buted to drivers other than the radiative effects of greenhouse 
gases and aerosols. The important role of climate forcing from the 
land surface could enable a relatively fast (and positive) hydroclimate 
response in the Amazon basin if climate policies are enacted that allow 
for reforestation or a decline in atmospheric CO2 levels. This contrasts 
with the considerably slower (multi-decadal) response time of climate 
to radiative forcing from greenhouse gases as a consequence of long-
term adjustments in ocean heating47. The estimated contributions of 
deforestation to future precipitation at the basin scale vary between 
4% and 13% across the different SSPs. These estimates also serve as 
a range for the potential co-benefits in hydroclimate that could be 
achieved by preventing further deforestation, complementing carbon 
and ecological co-benefits reported in previous work48.

As a consequence of land–atmosphere interactions, past work 
has identified a loss of 40% of forest within the Amazon basin as a  
‘tipping point’, beyond which hydroclimate changes would threaten 
the viability of remaining forests31. Our analysis also points to the nega-
tive consequences of deforestation for precipitation but additionally 
suggests that, at least for widely analysed SSPs, threats to the future 
hydroclimate of the Amazon basin are even larger from the radiative 
effects of greenhouse gases and aerosols and from direct ecosystem 
responses to rising levels of atmospheric CO2.

The substantial contributions of CO2 physiology to future  
Amazonian precipitation change in CMIP6 SSP simulations highlight 
the importance of improving our knowledge of land–atmosphere 
interactions and their response to climate change, atmospheric CO2 
and deforestation within the Amazon basin49. For rising CO2, key drivers 
of the land surface response include changes in evapotranspiration, 
albedo, and leaf area index shown in Supplementary Fig. 5. To reduce 
model uncertainties, additional observations and model simulation 
are needed to understand subsequent changes in boundary layer, deep 
convection and regional circulation. While CMIP models provided a 
coherent and robust response to CO2 forcing associated with plant 
physiology, the magnitude of this response remains highly uncertain 
mainly because there are relatively few ecosystem-level observations 
from tropical forests available for model testing. This highlights the 
importance of new, sustained stomatal conductance and evapotran-
spiration measurements at different CO2 levels, such as those planned 
as a part of the Amazon FACE experiment50. Additionally, acclimation 
of stomatal conductance responses to long-term increasing levels 
of atmospheric CO2 remains a key unresolved issue in this respect51.

Other key process-based uncertainties include the representa-
tion of land–atmosphere coupling and atmospheric convection that 
influence the precipitation recycling ratio in the Amazon basin52, and 
the ability of the models to capture the influence of changing ocean 
dynamics on future atmospheric circulation (and precipitation). For 
example, a recent study reported there is a systematic bias in CMIP6 
models in capturing the cooling signal over the eastern equatorial 
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Relative humidity decline

5%43% 52%
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Fig. 5 | Conceptual diagram of the mechanisms by which CO2 physiology 
and deforestation influence climate change in the Amazon basin. Taking the 
SSP3-7.0 as an example, the contributions of CO2 physiology and deforestation 
to Amazonian climate change by the end of the twenty-first century (2081–2100) 
were quantified using the CMIP6 idealized experiments described in Methods. 
More information about evapotranspiration, albedo and leaf area index model 
responses, which have a key role in regulating the integrated climate response, 
can be found in Supplementary Fig. 5. PFT, plant functional type. Additional 
analysis of the underlying mechanisms can be found in previous work by  
Swann et al.24, Zhou et al.27 and Boysen et al.28.
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Pacific in the past four decades53. Such a cooling pattern resembles a 
La-Niña-like condition that could increase the precipitation in the Ama-
zon basin through changes in local Walker circulation54. Some of the 
model-to-model differences in the magnitude of the SSP precipitation 
response (shown with the error bars in Fig. 4; Supplementary Table 3) 
can probably be traced back to the ocean response to radiative forc-
ing from greenhouse gases and aerosols55,56, which also needs further 
exploration in future work.

For deforestation, paths for reducing uncertainty in coupled 
model estimates of the Amazonian climate response include more 
extensive comparison of models with observations and refinement  
of the LUMIP protocol for CMIP7. In this study, we report that the 
local biophysical temperature effects range from −0.19 °C to 0.15°C 
in response to 10% deforestation in the Amazon basin (Supplementary 
Table 2). Although the multi-model mean warming response is consist-
ent with past work41, variability in the magnitude of the response across 
the different CMIP models is large and stems from at least three possible 
sources. First, there is a difference in the level of calibration and vali-
dation efforts from each modelling group to improve the biophysical 
temperature effects of deforestation. For example, the land model 
component of CESM2, the Community Land Model, has been improved 
through parameter optimization57 and benchmarking with satellite 
observations58. Second, there are still a limited number of observations 
in the Amazon basin to help with the model calibration. For instance, a 
recent comparison of biogeochemical and biophysical climate effects 
of deforestation59, which includes observational datasets from Bright 
et al.60 and Duveiller et al.61, is still limited by a paucity of paired forested 
and non-forested eddy-covariance sites and relatively sparse satellite 
data coverage due to frequently cloudy conditions. Third, the CMIP6 
LUMIP deforestation protocol is global in scope28. In designing the 
future LUMIP protocol for CMIP7, consideration of a tropical-only 
experiment with an increased number of ensemble members may 
provide a stronger basis for robustly characterizing regional climate 
responses. Further analysis of drought and fire metrics in LUMIP simu-
lations, including soil moisture and burned area, is also needed to 
understand better the processes of regional-scale dynamic vegetation 
feedbacks to Amazonia hydroclimate from changes in forest cover.

By recognizing the relatively fast adjustment time and linear 
relationship between land surface forcing and Amazonian climate 
response, we developed a first attempt to separate CO2 physiology and 
deforestation contributions to climate change in CMIP6 SSP simula-
tions. While the assumption of linearity and independence of the two 
forcing agents simplified our analysis, it is important to recognize 
potential interactions and feedback between these two drivers and 
target these interactions in future work. Further deforestation, for 
example, may weaken the regional climate response to rising CO2 as 
forests are replaced with pastures and grasslands that have a lower 
surface roughness and canopy fraction for transpiration. Across the 
SSPs, the deforestation fraction is generally small, as predicted in 
the SSPs by the end of the twenty-first century and ranges from 5.2% 
in SSP2-4.5 to 12.4% in SSP3-7.0. To estimate the potential magnitude 
of some of these interactions, we performed a back-of-the-envelope 
calculation. Specifically, for the SSP3-7.0 scenario, we reduced the CO2 
physiological contribution by 12% to reflect the concurrent loss of total 
forest cover. With this simple assumption, which is probably an upper 
bound due to the largest deforestation fraction of 12%, the precipitation 
decline attributed to CO2 physiology decreases from 35% to 31%. Some 
additional non-linearities are likely to be introduced from interactions 
between the radiative effects of greenhouse gases and the land surface 
forcing mechanisms explored here. Supplementary Fig. 7, for example, 
shows that the CO2 physiology effect on precipitation is largely inde-
pendent of the deforestation effect but has a weak relationship with 
precipitation response to the CO2 radiative effect. These illustrative 
calculations and analysis suggest that interactions may slightly reduce 
our estimated magnitude of precipitation effects but are unlikely to 

change our study’s main findings qualitatively. This also highlights 
the need to explore feedback between forcing agents in future work. 
One effective way to accomplish this in CMIP7 would be to add a CO2 
physiology simulation (for example, a BGC simulation) and a land use 
simulation to the DAMIP62 for historical and one to two SSPs to 2100.

In this study, we provide an attribution analysis of Amazonian cli-
mate change in widely used SSP simulations by isolating contributions 
from the plant physiological response to rising CO2 and deforestation. 
We accomplish this by combining information from two different ideal-
ized experiments from CMIP6. From the idealized (biogeochemically 
coupled) CO2 experiment from C4MIP and the idealized deforestation 
experiment from LUMIP, we identify that the climate change response 
to feedbacks from changes in the land surface are rapid and mostly 
linear across the basin and across the dynamic range of CO2 concentra-
tion and land cover change captured by the SSPs. The combined effects 
from the two drivers account for more than 40% of future basin-wide 
precipitation and surface RH declines, but less than 11% of warming over 
the Amazon basin by the end of the twenty-first century. This implies 
a substantial contribution from CO2 physiology and deforestation to 
increasing risk of future meteorological drought and wildfire. Our 
findings provide insight about the sources of uncertainty of climate 
model projections and may help with identifying the full scope of 
climate benefits associated with forest conservation policies in the 
Amazon basin.

Methods
We isolated the climate change response in the Amazon basin to CO2 
physiology and deforestation using output from two idealized CMIP6 
experiments. From C4MIP42 we analysed the idealized 140 year simula-
tions (1pctCO2-bgc) in which CO2 concentrations increase by 1% per 
year, but the CO2 increases are not radiatively active (that is, all models’ 
radiation code uses a constant atmospheric CO2 concentration that was 
held constant at the pre-industrial level). The 1pctCO2-bgc experiment 
from C4MIP allows for the isolation of the climate response resulting 
from plant physiological responses to rising CO2. From LUMIP43 we 
analysed a global idealized deforestation experiment (deforest-glob). 
The LUMIP deforest-glob simulation has an 80 year duration with a total 
forest area of 20 million km2 linearly removed from each model’s top 
30% of forest grid cells across the globe during the first 50 years. This 
results in about a 0.9% per year decline in tree cover fraction across the 
Amazon basin as a whole (that is, the deforestation was mostly spatially 
homogeneous in the simulations). Since there are only deforestation 
effects in this experiment, changes in Amazonia climate can be attrib-
uted solely to this driver.

In a second step, we identified the contribution of plant physiol-
ogy responses to rising CO2 and deforestation to Amazonian climate 
change within CMIP6 future scenario experiments (ScenarioMIP)13. 
We focused on CMIP6 simulations for four widely used SSPs14. These 
SSP simulations have different radiative forcing levels by 2100. They 
are: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The number behind each 
future scenario (for example, 8.5 for SSP5-8.5) indicates the radiative 
forcing level (unit: W/m2) that occurs in the scenario by 2100. To quan-
tify the relative change in Amazonian climate in the future, we also 
include the pre-industrial control (piControl) experiment of CMIP6 
that uses fixed radiative forcing identical to the level during 1850. The 
year of 1850 is also the reference year in our study.

Monthly air temperature (tas), precipitation (pr), surface RH 
(hurs), and tree cover (treeFrac) during the historical and future periods 
from the above CMIP6 experiments were downloaded from the archive 
of Earth System Grid Federation. Before analysis, all variables were 
remapped to a 1-degree grid using the bilinear interpolation method 
from Climate Data Operator63. Because not all CMIP6 modelling centres 
participated in all four experiments as described above, we chose to 
use eight models that have the maximum availability of these variables 
(Supplementary Table 1). They include BCC-CSM2-MR (Wu et al.64), 
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CanESM5 (Swart et al.65), CESM2 (Danabasoglu et al.66), CNRM-ESM2-1 
(Seferian et al.67), IPSL-CM6A-LR (Boucher et al.68), GISS-E2-1-G (Kelley 
et al.69), UKESM1-0-LL (Sellar et al.70) and MPI-ESM1-2-LR (Mauritsen 
et al.71). To obtain the most robust climate response to CO2 physio-
logy and deforestation as possible, climate variables were averaged 
for each model across ensemble members based on their availability 
in both the C4MIP and LUMIP experiments (Supplementary Table 1).  
The ensemble mean approach helps improve the signal-to-noise ratio 
of the climate response to CO2 physiology or deforestation in the 
Amazon basin, considering the different influences from interan-
nual variability from each model. Yet, it also relies on the mechanism  
coherence and traceability across these models. For future SSP scenarios,  
atmospheric CO2 concentrations during the twenty-first century were 
obtained from the input datasets for Model Intercomparison Projects  
(input4MIPS), and their land use including the fraction of forest in  
the Amazon basin was obtained from the Land Use Harmonization 
dataset version 2 (LUHv2f, ref. 72).

To isolate the precipitation response to either plant physiological 
response to increasing CO2 or deforestation within the eight CMIP6 
models, the relative precipitation changes in per cent were computed 
relative to the pre-industrial average for each model in each experi-
ment before determining the average across models. We used simple 
linear regression equations to describe the response of precipitation, 
surface RH and surface air temperature to CO2 concentration and  
forest cover percentage.

y = α + β×x

where y indicates the climate variables such as precipitation, surface 
RH or surface air temperature, and x indicates either CO2 concentra-
tion change or deforestation fraction over the Amazon basin. β and α 
are the slope and y-intercept as estimated from the above equation, 
respectively. As shown in Fig. 1, the estimated β at the basin scale 
was used as the climate sensitivity to either CO2 concentrations in 
C4MIP 1pctCO2-bgc or deforestation fraction in LUMIP deforest-
glob. The y-axis intercept value in Fig. 1 may not be identical to 100% 
for precipitation and to 0 for surface air temperature, probably from 
the influence of the internal variability. We chose not to force the 
regressions through a specified y-axis intercept to avoid overesti-
mating contributions from CO2 physiology and deforestation in our 
attribution analysis. To assess the spatial pattern of the Amazonian 
climate response, we also performed the linear regression analysis 
for each model pixel.

To estimate the contribution of plant physiological response to 
CO2 to future climate change in the Amazon basin, we first computed 
the changes in the atmospheric CO2 concentration from the pre-indus-
trial era (that is, 1850) to different future periods (that is, 2021–2040, 
2041–2060, 2061–2080 and 2081–2100). We then multiplied this CO2 
change with the slope derived from the linear regression describing the 
response of each climate variable to atmospheric CO2 concentration 
from the C4MIP 1pctCO2-bgc simulations (left column in Fig. 1). In the 
1pctCO2-bgc simulations, land cover was held constant throughout the 
simulations at 1850 levels. Similarly, the deforestation contributions 
were computed as the product of the basin-scale average deforestation 
fraction from each of the future SSPs scenarios relative to 1850 forest 
cover, and the slope derived from the linear regression describing the 
response of each climate variable to Amazonian deforestation fraction 
from the LUMIP deforest-glob simulations (right column in Fig. 1). In the 
LUMIP simulation atmospheric CO2 concentration was held constant 
at 1850 levels43. The regression approach was applied for the purpose 
of deriving the sensitivity of the climate response to CO2 concentra-
tion or deforestation fraction, respectively, using the different C4MIP 
and LUMIP simulations. The contribution by either CO2 physiology or 
deforestation was estimated for the whole Amazon basin, as shown in 
Fig. 4 and Supplementary Figs. 4 and 6.

We assumed that the climate response to CO2 physiological  
forcing and deforestation could be isolated from the CMIP6 simula-
tions because climate responses to land surface forcing, including 
adjustments in boundary layer height and convection from changes  
in surface evapotranspiration, are known to be relatively fast, occurring 
over timescales of days to weeks35. Raw data underlying each figure 
can be found in ref. 73.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All CMIP6 simulations used in this study are publicly available at https://
esgf-node.llnl.gov/projects/cmip6/. Atmospheric CO2 concentrations 
for future SSP scenarios were downloaded from https://esgf-node.
llnl.gov/projects/input4mips/. Future land use datasets LUHv2f were 
downloaded from https://luh.umd.edu/data.shtml. Data supporting 
each major figure can be accessed from ref. 73. Raw data underly-
ing figures from Figs. 1–4 are available at https://doi.org/10.6084/
m9.figshare.23826222.

Code availability
All computer codes used in this study are available via GitHub at  
https://github.com/YueLi92/Contributions_CO2Phys_Def_SSP.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used to collect the data.

Data analysis All computer codes used in this study are available via GitHub at https://github.com/YueLi92/Contributions_CO2Phys_Def_SSP.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All CMIP6 simulations used in this study are publicly available at https://esgf-node.llnl.gov/projects/cmip6/. Atmospheric CO2 concentrations for future SSP 
scenarios were downloaded from https://esgf-node.llnl.gov/projects/input4mips/. Future land use datasets LUHv2f were downloaded from https://luh.umd.edu/
data.shtml.
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Our study did not involve human research participants.

Population characteristics Our study did not involve human research participants.

Recruitment Our study did not involve human research participants.

Ethics oversight Our study did not involve human research participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We analyzed eight CMIP6 Earth system models simulation from the C4MIP and LUMIP. Regression was applied to the model 
simulations to isolate the climate response signal to CO2 concentration and deforestation.

Research sample Research samples are from the CMIP6-C4MIP 140-year simulations and CMIP6-LUMIP 50-year simulations from eight Earth system 
models.

Sampling strategy Based on availability, we used eight models from CMIP6-C4MIP and CMIP6-LUMIP experiments.

Data collection Yue Li downloaded the CMIP6 model simulations from https://esgf-node.llnl.gov/projects/cmip6 and resampled the data to 1-deg.

Timing and spatial scale The CMIP6 data were downloaded from Oct 2019 to May 2020. Since each data has unique labels to indicate specific model and 
experiment, there is no influence from the timing or spatial scale on the data accuracy.

Data exclusions No data were excluded.

Reproducibility Using the code provided in our study, all figures and results can be reproduced.

Randomization We did not allocate CMIP6 model simulations into groups so randomization was not relevant to our study.

Blinding We did not have any preference during the CMIP6 data collection so blinding was not relevant to our study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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