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Abstract: Using a recent Leaf Area Index (LAI) dataset and the Community Land Model 
version 4 (CLM4), we investigated percent changes and controlling factors of global 
vegetation growth for the period 1982 to 2009. Over that 28-year period, both the  
remote-sensing estimate and model simulation show a significant increasing trend in 
annual vegetation growth. Latitudinal asymmetry appeared in both products, with small 
increases in the Southern Hemisphere (SH) and larger increases at high latitudes in the 
Northern Hemisphere (NH). The south-to-north asymmetric land surface warming was 
assessed to be the principal driver of this latitudinal asymmetry of LAI trend. 
Heterogeneous precipitation functioned to decrease this latitudinal LAI gradient, and 
considerably regulated the local LAI change. A series of factorial experiments were 
specially-designed to isolate and quantify contributions to LAI trend from different 
external forcings such as climate variation, CO2, nitrogen deposition and land use and land 
cover change. The climate-only simulation confirms that climate change, particularly the 
asymmetry of land temperature variation, can explain the latitudinal pattern of LAI change. 
CO2 fertilization during the last three decades was simulated to be the dominant cause for 
the enhanced vegetation growth. Our study, though limited by observational and modeling 
uncertainties, adds further insight into vegetation growth trends and environmental 
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correlations. These validation exercises also provide new quantitative and objective metrics 
for evaluation of land ecosystem process models at multiple spatio-temporal scales. 

Keywords: global vegetation growth trend; LAI; CLM4; factorial simulation; evaluation; 
detection and attribution study 

 

1. Introduction 

Human induced global warming characterizes recent and foreseen projections of climate change [1]. 
Climate plays an important role in ecosystem functioning and is significantly regulated by terrestrial 
ecosystems through biogeophysical and biogeochemical feedbacks [2]. The ultimate effects of a 
changing climate on society, economies, and the natural environment are still unknown because of the 
complicated nature of the Earth system [3–5]. Continuous observation of water, energy, carbon and 
nutrient budgets are useful in investigating these nonlinear interactions at different spatial and temporal 
scales [6,7]. During recent decades, long-term global monitoring of the structural and functional 
characters of vegetation such as Normalized Difference Vegetation Index (NDVI), LAI and Fraction of 
Photosynthetically Active Radiation (FPAR) have become possible with the aid of satellite-based 
remote sensing instruments and associated data streams. Such fine resolution data sets over large areas 
have been analyzed to identify trends and variability in vegetation activity and their correlations with 
spatio-temporal modes of key climate variables [8,9]. 

Process models contain multiple measurable variables and hypothesis-oriented algorithms that can 
be assessed and improved through comparison with observations. Process-based land surface models 
represent terrestrial ecosystem dynamics and environmental feedbacks using generalized response 
functions [10]. They are designed to diagnose both historical and future environmental changes 
through interactive coupling with climate models or by non-interactive simulations driven by offline 
forcing agents [11,12]. To achieve credible results, these models must be systematically parameterized, 
calibrated and evaluated using independent observations at multiple spatial and temporal scales [13–15]. 
The rapidly increasing availability of remote sensing data has created unique opportunities for 
validating and improving these land surface models, especially at global and regional scales [16–20]. 

Multiple studies over the past three decades have investigated the global-scale relationships 
between climate and vegetation changes by employing available satellite datasets and ecosystem 
models. Generally, under warming conditions, the global enhancement of plant growth was detected 
and simulated particularly over the northern mid-high latitudes [21–25]. However, considerable 
uncertainties still exist regarding geographical distributions, pattern evolutions and external and 
internal factors that alter these changes. Moreover, to what extent these dynamic vegetation processes 
affect the magnitude and the sign of global carbon cycles is unclear [26–28].  

Previous work shows that there is asymmetry in the land surface temperature trend between the 
northern and southern hemispheres, associated with latitudinal asymmetry in the fractions of land 
(highest in NH) and ocean (highest in SH) [29]. Such asymmetric warming characteristic raises 
interesting questions: (1). How is vegetation activity related to inhomogeneous land warming? (2). Can 
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the response of vegetation growth to this temperature change be robustly and realistically represented 
by current land surface models?  

Recently, a new global LAI product was derived from the NDVI version 3g of Advanced Very 
High Resolution Radiometer (AVHRR) for Global Inventory Modeling and Mapping Studies 
(GIMMS) (GIMMS-LAI3g), providing an unprecedented estimate of monthly to annual distribution of 
vegetation dynamics over the whole globe [30]. In this study we assess the historical trends of this 
global remote sensing derived LAI and the prognostic LAI simulated at half-degree spatial resolution 
by CLM4 between 1982 and 2009. Our main objective is to evaluate both consistencies and 
discrepancies between the observations and CLM4 simulations in terms of the LAI trends and their 
relation to climate change, particularly the asymmetrically changing temperature pattern. To gain 
insight into various mechanisms controlling these vegetation tendencies, possible effects caused by 
other attributive factors such as CO2 concentration, nitrogen deposition and land use and land cover 
change (LULCC), are simulated and analyzed.  

2. Dataset and Methodology 

2.1. LAI Data  

New global 15-day LAI and FPAR data sets at 8 km spatial resolution for the period July 1981 to 
December 2011 were generated from the AVHRR GMMS NDVI3g data set using an Artificial Neural 
Network (ANN) model. The ANN model for generating the LAI data set was trained with overlapping 
GIMMS NDVI3g and best-quality MODIS LAI data. The full temporal coverage of the GIMMS 
LAI3g data set was then generated using GIMMS NDVI3g data and the ANN model. A similar 
procedure was used to generate the GIMMS FPAR3g data set. These new GIMMS LAI3g and 
FPAR3g data sets were evaluated through direct comparisons with field data and indirectly through  
(a) inter-comparisons with similar satellite-data products at biome and site scales, (b) comparison against 
known relationships between these variables and climatic variables (temperature and precipitation), and 
(c) comparison to simulations from multiple dynamic vegetation models. These exercises resulted in 
estimates of uncertainity for these new data sets. Further details can be found in [30]. 

2.2. Model and Experimental Design  

The process-based carbon-nitrogen version of CLM4 was used to prognostically generate  
spatially-and temporally-consistent field of LAI. CLM4 has been applied extensively over global 
regions at varying time scales [19,20,31–33]. It is designed to quantify the effects of changing climate, 
atmospheric CO2, nitrogen deposition and LULCC on the terrestrial ecosystem dynamics. For this 
study, we conducted 6 experiments at 0.5° spatial resolution and in half-hour time steps on data from 
the years 1850 to 2009. The transient simulation of LAI was forced by the historical CRUNCEP 
meteorological fields (http://dods.extra.cea.fr/data/p529viov/cruncep/) and includes historical trends in 
atmospheric CO2, nitrogen deposition and LULCC dynamics (simulation “ALL”). The climate-only 
simulation (“CLI”) was designed to consider the impact of varying climate on LAI change, which used 
historical variations of meteorological data sets but held other non-climate factors constant at their 
values for 1850. A control run (“CTRL”) used cyclic climate forcing, repeating years between 1901 
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and 1920 with all other forcings kept constant at their 1850 levels. For the remaining simulations, the 
climate forcing is identical to “CTRL” while a single non-climate forcing varies in time. From the 
difference with “CTRL”, separate contribution to LAI change from CO2 (“CO2”), nitrogen deposition 
(“NDE”) and land use/land cover change (“LUC”) was quantified. Further details on the forcings and 
experiments are documented in several other studies [19,20,33].  

2.3. Analysis  

For direct comparison with model simulations, the GIMMS-LAI3g fields were resampled onto a 
0.5° latitude-longitude grid with a time interval of 1 month consistent with the CLM4 outputs. Model 
simulations from 1982 to 2009 were selected and analyzed, corresponding to the time period for the 
satellite observations. The satellite LAI and each model output were masked with bare ground, defined 
by land cover type 2 in the Collection4 MODIS (Moderate Resolution Imaging Spectroradiometer)  
1-km land cover dataset MOD12Q1, to ensure the same coverage. To facilitate analysis of biome-level 
LAI trend among different products, similar to Figure 1(b) in Mao et al. [20], we used the dominant 
Plant Functional Type (PFT) classified by CLM4 to represent the vegetation type in each half-degree 
grid cell. We focused on annual mean LAI and its correspondence to environmental drivers, as a 
commonly adopted benchmark for long-term vegetation studies [34,35]. To avoid possible errors in 
winter impacted by snow/ice in the satellite data, we focus our analysis on the “growing season” 
months. As [35], grids with <0 °C surface air temperature based on the CRUNCEP monthly climatology 
between 1982 and 2009 were excluded from the annual summaries for both the satellite and model 
LAI. For the current analysis, the annual trend of studied variables is expressed as a percentage change 
relative to its climatological means. 

3. Results  

Figure 1 illustrates the 1982–2009 latitudinal LAI trends as calculated from the annual mean LAI 
for the satellite dataset and “ALL” simulation of CLM4 (LAI_CLM4). The observed latitudinal 
temperature, precipitation and land area trends and their linear fits are also shown. The asymmetry of 
the LAI trend for the CLM4 has a gradient of 0.08%/°N (P < 0.05) (“/°N” hereafter indicates “per 
28 yrs per degree of latitude increase from south to north”) and is consistent with the satellite-derived 
LAI asymmetry of 0.09%/°N (P < 0.05) (Table 1). Both latitudinal variations show broad agreement 
for features of change and exhibit significantly positive correlation (y = x+0.24, R2 = 0.44, P < 0.05). 
In terms of the global averaged LAI trend, the CLM4 produced a value (8.5%/28 yrs) slightly higher 
than that of remote-sensing LAI (6.9%/28 yrs). The LAI increasing trends at south of −46°S, north of 
56°N and between about −15°S–15°N are present but overestimated in the model. The CLM4 LAI 
tends also to show a downward trend at −42°S to −28°S, while the GIMMS-LAI3g suggests a slight 
upward change. 
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Figure 1. Latitudinal gradient of percentage change (%/28 yr) in GIMMS-LAI3g, 
LAI_CLM4, temperature and precipitation for 1982–2009. The gray histogram indicates 
the latitudinal sum of land area (× 106 km2). Dashed lines indicate the linear fit to the 
latitude bands at every-5 degree. 

  

Table 1. Latitudinal trend (TREND_LAT) and spatially averaged annual trend 
(TREND_AVE) of LAI from Boston University (GIMMS-LAI3g), CLM4 LAI of 
simulation “ALL” (LAI_CLM4), CLM4 LAI of simulation “CLI” (LAI_CLI), CLM4 LAI 
of simulation “CO2” (LAI_CO2), CLM4 LAI of simulation “NDE” (LAI_NDE), CLM4 
LAI of simulation “LUC” (LAI_LUC), annual temperature (TEMP) and annual 
precipitation (PREC) for the globe during the study period. Bold values represent trends 
with significance (P < 0.05). The unit for TREND_LAT is %/°N and for TREND_AVE is 
%/28 yrs.  

Variables TREND_LAT TREND_AVE 
GIMMS-LAI3g 0.09011 6.92824 

LAI_CLM4 0.08204 8.48696 
LAI_CLI 0.07449 2.78304 
LAI_CO2 −0.0016 3.71356 
LAI_NDE 0.00532 0.89213 
LAI_LUC −0.00128 0.71303 

TEMP 0.00281 0.2606702 
PREC −0.01059 5.315374 

The latitudinal changes in precipitation are quite variable along different latitude bands and show a 
slight decreasing trend from the SH to NH at −0.01%/°N. Compared with the satellite data, simulated 
latitudinal LAI trends are more significantly and positively correlated with this precipitation pattern 
(Table 2). Globally, the temperature trend is observed to increase over all the study latitudes (Figure 1). 
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Similar to the latitudinal LAI asymmetry in both estimates, the land temperature trends also display a 
significant south-to-north increasing gradient at 0.003%/°N (P < 0.05). In addition to the similarity in 
latitudinal gradient between the LAI and temperature trends, both LAI latitudinal trends correlate 
positively and significantly with the temperature changes across all latitudes (Table 2). Although a 
higher sensitivity to temperature change is diagnosed in satellite-derived LAI than the CLM4 LAI, 
these latitudinal responses of LAI to temperature inferred from different estimates are encouraging and 
suggest a strong control of land temperature on plant growth. 

Table 2. Pearson correlations among the latitudinal trend of annual GIMMS-LAI3g, 
LAI_CLM4, LAI_CLI, TEMP and PREC from 1982 to 2009. Bold values mean 
correlations with significance (P < 0.05). 

  Global    
 GIMMS-LAI3g LAI_CLM4 LAI_CLI TEMP PREC 

GIMMS-LAI3g 1 0.67704 0.62296 0.78811 0.1786 
LAI_CLM4  1 0.97115 0.38456 0.61573 

LAI_CLI   1 0.31198 0.5748 
TEMP    1 −0.20715 
PREC     1 

Figure 2 shows spatial patterns of annual linear LAI, temperature and precipitation trends during 
1982 to 2009. Both observation and CLM4 show that LAI increased mainly in the NH tropics, and in 
the northern mid-high latitudes, particularly over Eurasia and the eastern United States. Decreasing 
LAI changes occurred in both estimates over central-western US, northeastern China, high latitudes of 
South America and eastern Australia. Important local differences are noted, however. Satellite LAI 
suggested downward trends around 55°N over the North America, north central Russia and SH tropics 
over Africa, while the modeled LAI showed upward changes. The change in temperature demonstrated 
an overall warming trend over land (Figure 2(c)). Consistent with the latitudinal trend distribution in 
Figure 1, more area in the NH than the SH experienced significant temperature increases. Precipitation 
trends showed pronounced regional differences with evident precipitation increase over the western 
Amazon, NH tropical and southern Africa, and northeastern Eurasia (Figure 2(d)). Significant 
precipitation decreases were observed over northeastern China and the southern part of the South 
America. Intriguingly, the geographical patterns of LAI change especially for the model result are 
generally collocated with those trends in precipitation for the study period (Figure 2(b,d)). This infers 
that percent change of precipitation may play an important role in affecting regional trends of 
vegetation growth, particularly across areas between 30°S and 50°N. Plant growth displayed a closer 
relationship to the temperature change than the precipitation tendency at the northern mid-high 
latitudes. Nevertheless, in terms of the latitudinal correspondence with the LAI trend, warming, rather 
than precipitation change, resembles the asymmetry pattern of LAI change. This is partly because of 
the cancellation of precipitation effects over individual areas when precipitation trends are averaged 
over latitude bands.  
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Figure 2. The spatial distribution pattern of the relative trend (%/28 yr) in (a) GIMMS-LAI3g; 
(b) CLM4_LAI; (c) temperature; and (d) precipitation. The stippled areas represent the 
changes are statistically significant (P < 0.05). The temperature trend in (c) is scaled by 
multiplying 25 for direct comparison purpose. 

 

Factorial contributions to the simulated latitudinal LAI trends from the influence of CO2, nitrogen 
and LULCC are illustrated in Figure 3. Total LAI trend estimated by “CLI” is 2.8%/28 yrs and lower 
than those of “ALL” and satellite-derived LAI trends. Positive and significant correlations between the 
“CLI” and “ALL” LAI trends, and the “CLI” LAI and precipitation changes were simulated implying 
that the precipitation generally affected the inter-latitudinal LAI trend variation in the same direction 
(Table 2). The climate only simulation produced a south-to-north gradient close to the “ALL” result 
(Table 1), which further confirmed that the LAI asymmetry trends were driven by the corresponding 
asymmetry in major climate variables, principally temperature. The CO2-induced LAI trends show an 
increasing tendency at all latitudes and a very small south-to-north slope (−0.0016%/°N). This 
beneficial effect of CO2 fertilization outweighed the “CLI” LAI trends and largely compensated for the 
climate-induced global LAI underestimation (Table 1). Both the “NDE” and “LUC” simulations 
produced slightly increasing global LAI but the opposite latitudinal LAI gradient (Table 1 and Figure 3(a)). 
High LAI changes caused by nitrogen deposition are mainly at latitudes between 15°N to 55°N, and 
the LULCC-induced LAI relative trends varied by latitude bands.  

PFT level analysis denotes that main vegetation types (with coverage area greater than  
0.05 × 108 km2) were observed and simulated to have close positive LAI trends (Figure 3(b)). The 

 (a) (b) 

 (c) (d)
!
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natural variation in climate ruled the vegetation growth over broadleaf evergreen tropical tree and 
broadleaf deciduous boreal shrub. In contrast, the CO2 fertilization controlled the LAI trends for other 
PFT types, the globe and each hemisphere. 

Figure 3. (a) Latitudinal gradient of percentage change (%/28 yrs) in GIMMS-LAI3g, 
LAI_CLM4, LAI_CLI, LAI_CO2, LAI_NDE, and LAI_LUC from 1982 to 2009. The gray 
histogram indicates the latitudinal sum of land area × 106 km2). Dashed lines indicate the 
linear fit to the latitude bands at every-5 degree; (b) LAI percentage trend (%/28 yrs) from 
satellite LAI and CLM4 simulations over main CLM4 plant functional types (PFTs), the 
globe (Global), northern hemisphere (NH), and southern hemisphere (SH). Abbreviations 
for PFTs are needleleaf evergreen boreal tree (NEBor Tree), broadleaf evergreen tropical 
tree (BETro Tree), broadleaf deciduous tropical tree (BDTro Tree), broadleaf deciduous 
boreal shrub (BDBor Shrub), C3 nonarctic grass (C3NA Grass), C4 grass, and corn. The 
yellow square denotes global and each hemisphere numbers. 

 

Figure 4 depicts the spatial variation of time trends in CLM4-predicted LAI (%/28 yrs) as affected 
by individual causative factors for the period from 1982 to 2009. LAI trends for the simulation forced 
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by observed interannual variation in climate (“CLI”, Figure 4(a)) closely resemble the patterns for the 
simulation driven by multiple factors (“ALL”, Figure 2(b)). Increasing CO2 caused increases in LAI 
over most regions, although isolated areas showed declining LAI, presumably as the result of increased 
fuel load and fire frequency in drought-prone regions (Figure 4(b)) [33]. Nitrogen deposition caused 
decreasing LAI trends mainly over central Europe and increasing vegetation growth over North 
America, central Amazon and east Eurasia (Figure 4(c)). These different responses of vegetation 
growth over global land areas for the “NDE” experiment followed the different trend changes of 
annual nitrogen deposition (Figure S4(a,b) in [19]). The LAI change simulated by “LUC” is regionally 
dependent, and shows substantial increases over central Europe and obvious decreases over eastern 
China (Figure 4(d)). Such a geographical difference of LAI trend is closely related to the extent of 
afforestation or deforestation (Figure S4(c–f) in [19]). The spatial pattern of dominant factor 
determining change in LAI, either positive or negative, is shown in Figure 4(e). Climate variability 
functions as a dominant controller over most areas of the globe. CO2 fertilization is the primary factor 
accounting for the LAI trends over some parts of the Amazon basin, central Africa and the Canadian 
high-latitudes around 50°N. Land use changes over this period were a dominant, positive factor 
influencing LAI over parts of central Europe, southern China and tropical Asia. 

Figure 4. (a–d) Spatial distribution pattern of changes in simulated annual LAI (%/28 yrs) 
and (e) their dominant controlling factors from 1982 to 2009. (a) experiment “CLI”, 
(b) experiment “CO2”, (c) experiment “NDE”, and (d) experiment “LUC”. 

 
  

(a) 

 (c)  (d)

(b) 

!



Remote Sens. 2013, 5 1493 
 

Figure 4. Cont. 

 

4. Concluding Remarks  

In this study, we estimated satellite-derived and model-simulated relative change in global annual 
LAI from the years 1982 to 2009. The response of LAI trends to relative changes in primary climatic 
forcings like temperature and precipitation, changing CO2 concentration, nitrogen deposition, and 
LULCC were also systematically quantified. Both the remote-sensing product and CLM4 offline 
simulations demonstrate significant increasing trends of annual vegetation growth during the last three 
decades, in support of previous observations, hypotheses and modeling [19,21–25]. We find that the 
latitudinal distribution of LAI trends show a pattern of south-to-north asymmetry in the satellite 
product, as do the CLM4 “ALL” and “CLI” simulations, i.e., those forced by transient climate change. 
This unique feature was diagnosed to be tightly associated with the latitudinal asymmetry of the land 
surface temperature trend [29]. Precipitation patterns decrease this asymmetric-latitudinal LAI trend, 
with strong local effects. Latitudinal trend in modeled LAI is more responsive to precipitation variation 
than to temperature variation, while the opposite is true for the remotely sensed LAI, suggesting that 
CLM4 may overestimate the response of vegetation dynamics to spatial variations in precipitation, and 
underestimate response to spatial temperature variation [20]. Our factorial experiments indicate that, 
CO2 fertilization was more important than climate variation in determining the magnitude of the 
temporal trend in LAI at the global scale, in each hemisphere, and for most of the modeled plant 
functional types over our study period, in agreement with a previous study using an independently 
developed model [23]. This infers the significance of accurate prediction of responses of terrestrial 
ecosystem function and structure to CO2 fertilization with respect to future climate change. The LAI 
increase primarily controlled by “LUC” was simulated for tropical Asia and the Indonesian Islands in 
particular (Figure 4(d,e)). [36] confirms that transitions in the tropics are dominated by shifts in 

 (e) 
!
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cultivation and agricultural intensification. So, these LAI changes could be driven by significant shifts 
in large-scale cultivation, especially in Borneo and Sumatra. CLM4 global LAI trends are biased over 
the tropical ecosystems between −10°S and 10°N (Tables 1 and 2, and Figure 3(a,b). These may be the 
result of poor quality forcing datasets [37,38], uncertainty in the model representation of canopy 
photosynthesis, and stomatal conductance [39], and/or the model ignoring the mechanism of growth 
limitation due to low phosphorus availability, a likely limitation in many tropical forests [40]. 
Uncertainties relevant to the satellite-based LAI estimate might also have contributed to the 
discrepancy between observed and simulated trends, notably at tropics and high latitudes of each 
hemisphere (Figures 1(a) and 3(a)). Over these areas, the quality of the satellite imagery dataset could 
be limited by known contamination issues, such as the effects of frequent cloud cover, atmospheric 
aerosol, snow coverage and low solar zenith angles [41,42]. A detailed description of these possible 
errors connected to the LAI dataset is beyond the scope of this paper, and more information can be 
found in [30]. Overall, our results enhance the understanding of vegetation activity and its response to 
varying environmental conditions at regional to global scales. Future studies should pay more attention 
to the detection and attribution of vegetation seasonal changes and improve the robustness of 
phenology and seasonality simulation. Further, the modeling and analysis of potential forcing 
feedbacks of terrestrial ecosystems would yield better understanding of the impacts of vegetation 
dynamics on global climate change and the carbon cycle.  
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