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ABSTRACT: In November 2021, the Artificial Intelligence for Earth System Predictability (AI4ESP) workshop was held,
which involved hundreds of researchers from dozens of institutions. There were 17 sessions held at the workshop, including
one on ecohydrology. The ecohydrology session included various breakout rooms that addressed specific topics, including
1) soils and belowground areas; 2) watersheds; 3) hydrology; 4) ecophysiology and plant hydraulics; 5) ecology;
6) extremes, disturbance and fire, and land-use and land-cover change; and 7) uncertainty quantification methods and techni-
ques. In this paper, we investigate and report on the potential application of artificial intelligence and machine learning in
ecohydrology, highlight outcomes of the ecohydrology session at the AI4ESP workshop, and provide visionary perspectives
for future research in this area.
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1. Introduction

Research in ecohydrology bridges the gap between ecosys-
tem ecology and water cycle science by incorporating knowl-
edge of land surface processes, plant physiology, atmospheric
science, and hydrology (Rodriguez-Iturbe 2000; Asbjornsen

Dennedy-Frank’s current affiliation: Department of Marine et al. 2011; Guswa et al. 2020). Ecohydrology encompasses
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microbes, aquatic organisms, soils, the atmosphere, and sur-
face and subsurface hydrology. Plant evapotranspiration and
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FIG. 1. Schematic representation of primary processes and functionality in land surface models, shown as an example of integrated
ecohydrologic processes required for modeling across scales. For biogeochemical cycles, the black arrows denote carbon fluxes, and the
purple arrows denote nitrogen fluxes. SCF is snow cover fraction, BVOC indicates biogenic volatile organic compounds, and C/N is the

carbon-to-nitrogen ratio.

productivity (Scott et al. 2006), ecophysiology (Hultine et al.
2011; Vico et al. 2015), plant-soil interactions (Asbjornsen
et al. 2011; Wang et al. 2019), and the biogeochemistry of ter-
restrial ecosystems (Kim et al. 2006; Wang et al. 2015) are all
topics of interest in ecohydrology. These carbon, hydrologic,
and energy cycle processes operate at scales ranging from
stomates and microorganisms to canopies, watersheds, con-
tinents, and the entire globe (Fig. 1). Understanding interac-
tions between important mechanisms across different scales
is challenging. Constraining ecohydrologic models is limited
by mechanistic knowledge gaps and by observations that are
available at limited spatiotemporal scales of interest or at
few sites (Rings et al. 2013; Massoud et al. 2019).

Artificial intelligence (AI) and machine learning (ML) ap-
proaches open up new possibilities for obtaining mechanistic
insight from the diversity of data available at various scales.
However, traditional hypothesis testing has been difficult to
achieve with AI/ML models because much of the phenomenal
success for some problems has been driven by “deep” neural
network models that can be opaque and difficult to interpret
in terms of process or underlying physical mechanism (Peters
et al. 2007; Franz et al. 2010). Despite this obstacle, some in-
ferences about the relative importance of different drivers
with careful interpretation of variable importance estimates
or model experiments have been made (Barnes et al. 2021).
Generally, the terms “artificial intelligence” and “machine
learning” are often used interchangeably; however, it is im-
portant to note that machine learning is a subset of the
broader category of Al For this paper, we refer to AI/ML
methods as the broader category of using Al or ML strategies
for ecohydrology.

Here we identify fundamental challenges in ecohydrology
research across scales that can potentially be addressed by
AI/ML approaches. We then provide a background of the
state of the science in using AI/ML for ecohydrology. Following
this, we highlight experimental, data and modeling opportunities
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that are available for this field. We then list the research priori-
ties moving forward, and address the short-term, 5-yr, and 10-yr
goals for using AI/ML in ecohydrology. Finally, we conclude
with remarks on visionary perspectives for future ideas and po-
tential research that can be achieved in ecohydrology.

2. Grand challenges

Various challenges are identified for using AI/ML in ecohy-
drology, which we have synthesized into three grand challenges:
1) accurate representation of complex ecohydrologic processes;
2) understanding and prediction of ecohydrologic responses to
disturbance; and 3) machine learning applications for ecohy-
drology data and models.

The first of these grand challenges is to develop accurate and
multiscale representations of land processes that incorporate
heterogeneous patterns of water storage and fluxes, vegetation
patterns and processes, water potential gradients, physiological
function of vegetation, heterogeneous soil properties and pro-
cesses, and biogeochemical cycling to understand and predict
responses to climate change and climate extremes. Current
models are starting to capture the necessary land processes to
accurately simulate ecohydrologic processes at the plant scale
(e.g., an increasing representation of plant hydrodynamics). For
example, the Community Land Model (CLM; Lawrence et al.
2019) recently incorporated a submodule to simulate plant
hydrodynamics mechanistically (Christoffersen et al. 2016;
Kennedy et al. 2019), and the Bayesian-Based Carbon Data—
Model Framework (CARDAMOM) now has a process-based
hydrology model (Yang et al. 2022; Massoud et al. 2022) to
simulate the hydrologic cycle and includes processes such as
rooting depth and soil matric potential. Biological data for root
network density and depth, root trait variability, and root re-
sponses to varying stresses are sparse and variable in space and
time. Likewise, data on soil properties and processes are insuffi-
cient for constraining models. While aboveground processes are
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better understood, there are still significant gaps in the data
needed to resolve species differences in ecophysiological pro-
cesses, such as transfer of energy and mass between the atmo-
sphere and the land surface, carbon assimilation and allocation,
plant hydrodynamics, nutrient limitation, and the degree to
which species-specific traits are plastic and adapted to local con-
ditions (Fatichi et al. 2019; Xu and Trugman 2021). Moreover,
traditional methods for integrating available data have been in-
adequate for developing insights into plant-soil interactions and
how those interactions respond to and feed back on hydrology
at the watershed, regional, and global scales (Ehrenfeld et al.
2005; Chen et al. 2021).

The second grand challenge identified is to develop models
of pulse and press stresses, ecophysiological responses, and
ecosystem structure and function to understand and predict
ecosystem disturbances and recovery. Land surface models
adequately simulate mean state behavior of vegetation, soils,
and interactions with the atmosphere, but they often fail to
capture responses to climate extremes either because of miss-
ing key processes or sensitivity to changes in temperature and
precipitation that are too weak or too strong. Ecosystem
disturbances and recovery patterns are especially challenging
because traditional big-leaf models do not incorporate vegeta-
tion structural elements required to mechanistically account
for changes in structure and function induced by climate, me-
teorological extremes, or biotic disturbance, like windthrow,
fire, frost, drought, and insect or pathogen outbreaks (Seidl
et al. 2011; Xu and Trugman 2021). Furthermore, biases in at-
mosphere forcing data, as well as scaling issues, can strongly
affect land surface model ecohydrologic responses to climate
extremes (Bonan et al. 2019). Models that do take into ac-
count disturbance processes and their relationships to dy-
namic ecosystem structure are still challenged in representing
the complex processes that govern plant mortality or ecosys-
tem assembly following disturbance, dramatically expanding
the scope of model processes and thus increasing the com-
plexity of the models (Liu et al. 2011; Huber et al. 2020).

The third and final grand challenge is to apply AI/ML to as-
similate and calibrate emerging datasets, constrain model
complexity, develop functional model benchmarks, and quan-
tify the magnitude and sources of model and data uncertainty.
A wide diversity of satellite and airborne remote sensing and
in situ measurements are available to support ecohydrology
research (e.g., Farella et al. 2022); however, these data are not
well integrated and often do not include observations of varia-
bles needed by models (Karthikeyan et al. 2020). For example,
Yan et al. (2023) demonstrated the hydrological sensitivity to
parameter choices in a land surface model, and many of the
parameters to which the model is sensitive are poorly con-
strained by observations because data are not well integrated
(or spatially continuous) to support ecohydrology research.
Furthermore, Yan et al. (2023) showed that hydrologic pro-
cesses depend on a parameter defining the maximum storage
of liquid water on leaf surface, but there is large uncertainty in
this parameter, and the range of plausible values was deter-
mined by expert review of various individual peer reviewed
papers. There are no integrated observational datasets that
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quantify this parameter to the extent required by land surface
models.

To improve model performance, scientists tend to increase
the complexity of models to capture processes for which there
are insufficient measurements and highly uncertain parame-
ters. AI/ML approaches are already being used to improve
data through multisensor data fusion and quantitative methods
for extrapolation and accounting for spatiotemporal heteroge-
neity (Shivaprakash et al. 2022). Similar approaches are show-
ing promise for calibrating model parameters and quantifying
model structural uncertainty (Dagon et al. 2020). AI/ML ap-
proaches are needed to further improve data, develop multivari-
ate model benchmarks of functional performance, and constrain
the ever-increasing complexity of models.

3. State of the science

In general, ecohydrology involves the coupling of soils,
plants, and the atmosphere, requiring computationally inten-
sive iterative solutions, which are difficult to integrate with
limited observations. AI/ML approaches are already being
used to 1) interpolate, extrapolate, and integrate data and
models, accounting for nonlinear relationships among varia-
bles, to constrain and improve models (Mao et al. 2021);
2) build data-driven model components or parameterizations
of processes from measurements and observational data prod-
ucts (Saunders et al. 2021); and 3) develop emulators and sur-
rogate models of complex, nonlinear process representations
for more efficient parameter estimation and optimization and
model calibration (Massoud 2019; Dagon et al. 2020).

Bilinear interpolation, kriging, cluster analysis, random for-
ests, model tree ensembles, convolutional neural networks,
and other AI/ML methods have been applied to spatially
sparse measurements to understand their representativeness
(e.g., Hoffman et al. 2013; Kumar et al. 2016), to design opti-
mal sampling networks (e.g., Keller et al. 2008; Hoffman et al.
2013; Vitharana et al. 2017), to analyze multidimensional model
outputs (e.g., Braghiere et al. 2020; Burke et al. 2021), to con-
strain Earth system model projections (Yu et al. 2022), and to
intelligently upscale and extrapolate environmental fluxes and
characteristics over larger spatial domain (e.g., Langford et al.
2019; Steidinger et al. 2019; Jung et al. 2020; Konduri et al.
2020; Mishra et al. 2020; Barnes et al. 2021) using inferred rela-
tionships with environmental gradients, ecosystem dynamics,
and remote sensing radiances.

Widening adoption of deep neural networks and the growth
of meteorological and climate data have fueled interest in
adopting AI/ML technologies for use in weather and climate
models (Dueben and Bauer 2018). Leveraging the successes
in rainfall prediction (Miao et al. 2015; Tao et al. 2016), soil
moisture retrievals (Santi et al. 2016; Kolassa et al. 2017), and
surface turbulent flux retrievals (Alemohammad et al. 2017,
Jung et al. 2020; Braghiere et al. 2020), researchers are train-
ing deep neural networks as model parameterizations, initially
for convection and subgrid-scale processes (Rasp et al. 2018;
Gentine et al. 2018; Brenowitz and Bretherton 2018, 2019;
Brenowitz et al. 2020), which are poorly captured by current
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models or are computationally prohibitive for decadal or longer-
time-scale simulations.

Mimicking the response surface of model outputs using em-
ulators or surrogate models has also become a useful AI/ML
technique in ecohydrology. Massoud (2019) used polynomial
chaos expansion emulators and sparse grid sampling for models of
increasing complexity, including a 7-parameter hydrologic model,
a 15-parameter ecohydrologic model, and an 81-parameter land
surface model that was coupled to a vegetation dynamics model
with ecosystem demography. Burke et al. (2021) employed ran-
dom forests to identify the relative importance of biophysical
and climatic parameters in predicting effects of fuel treatment in
forests on forest dynamics. These researchers found that interac-
tions between biophysical settings, climate, and fuel treatments
are complex and have nonlinear effects on forest dynamics,
water fluxes, and fire behavior. They further indicated that
random forest models could be used to test additional scenar-
ios without needing to run the complex model.

Overall, the types of AI/ML techniques for ecohydrologic
applications are plentiful. Many works have emerged that
make use of methods like deep neural networks, random for-
ests, or hybrid AI/ML. For example, Saunders et al. (2021)
uses many forms of random forest algorithms to improve on
stomatal conductance estimates in comparison with older em-
pirical approaches. In Aboelyazeed et al. (2023), a differentia-
ble ecosystem modeling framework was introduced, which
uses neural networks for photosynthesis simulations In
ElGhawi et al. (2023), the authors combine physics-based
modeling with AI/ML to infer stomatal resistances for hy-
brid modeling of evapotranspiration. So overall, many dif-
ferent applications of AI/ML in ecohydrology are possible.
In the U.S. Department of Energy’s (DOE’s) Artificial
Intelligence for Earth System Predictability (AI4ESP) work-
shop report (Hickmon et al. 2022), various AI/ML methods are
mentioned and elaborated on. For instance, there is an entire
chapter based on a session that investigated cross-cut AI/ML
technologies.

4. New data and modeling opportunities

Advancing Earth system predictions with AI/ML meth-
ods requires large quantities of data regarding relevant
processes across multiple spatial and temporal scales. Data
requirements for training ML algorithms typically exceed
the data needs for traditional process model development,
verification, and validation. Therefore, additional data may
be required from new laboratory and field measurements,
manipulative experiments, airborne and satellite remote
sensing, multisensor fusion and data synthesis, and model-
ing studies. Collecting, aggregating, distributing, and ar-
chiving these larger quantities of data and newly derived
data products requires a systematic and organized approach to
data management. Creating, finding, accessing, analyzing, visu-
alizing, and utilizing these data to train ML algorithms
necessitates an integrated storage and computational infra-
structure available across projects, institutions, and indi-
vidual investigators.
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a. New data products

Ecohydrology research suffers from a lack of sufficient data
across spatial scales from microbial and leaf scales to water-
shed and continental scales (e.g., Lin et al. 2023). In particu-
lar, because of its high spatial heterogeneity and difficulty in
sampling, many more belowground data are needed to reduce
characterization uncertainties and understand relationships
between soil organic carbon and environmental factors (e.g.,
soil moisture, soil texture) that influence its formation and
turnover and to understand root density, distribution and
how roots change with environmental conditions. Similarly,
species-specific plant data are needed globally to improve the
representation of vegetation communities in models and
better characterize and simulate responses to environmen-
tal change.

A wide variety of measurement techniques is required
across scales, and a hierarchy of process-based and ML-based
models is needed to simulate important processes across those
scales and improve Earth system predictability (Fig. 2). For
example, on the leaf scale, Yang et al. (2023) showed how the
leaf angle is an important trait to consider in leaf-level photo-
synthesis representation. On the canopy scale, Lamour et al.
(2023) investigated the effect of the vertical gradients within
a canopy on the choice of photosynthetic parameters. On
the global scale, Global Ecosystem Dynamics Investigation
(GEDI) satellite data can be used for mapping forest canopy
height globally (Potapov et al. 2021). A/ML can be useful in
acquiring such data through optimization of sampling or mon-
itoring networks (e.g., Keller et al. 2008; Hargrove et al. 2003;
Hoffman et al. 2013), autonomous control of measurement or
sampling devices under changing conditions and extreme
events, intelligent gap-filling and extrapolation of point meas-
urements (e.g., Mishra et al. 2020; Jung et al. 2020), and fusion
of data from different scales, multiple sensors, and in situ data
from different agencies and measurement campaigns (e.g.,
Langford et al. 2017). New data products should be con-
structed in a manner that makes them easily accessible as a
collection in standard, well-documented formats to facilitate
ease of use and testing with a wide range of AI/ML ap-
proaches. One prominent example of such benchmark data-
sets, called ImageNet (Russakovsky et al. 2015), consists of a
collection of images with associated labels (nouns) that can be
used by the research community to train and test any number
of object detection algorithms. ImageNet is, arguably, one of
the major catalysts of the current AI/ML boom, and its impact
has been such that various mainstream publications have
written about it (e.g., https://qz.com/1034972/the-data-that-
changed-the-direction-of-ai-research-and-possibly-the-world).
Curated benchmark datasets like ImageNet for AI/ML in the
Earth sciences can have a significant impact for ecohydrology
and related topics.

Building collections of labeled Earth science data and offer-
ing them to the community would facilitate rapid testing
of existing AI/ML methods and faster development of new
AI/ML methods aimed specifically at addressing the needs of
ecohydrology and related Earth science research. For example,
Mishra et al. (2022) used a large number of field observations
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FIG. 2. A wide variety of measurement techniques are required across spatial scales from sto-
mata to watersheds to improve representation of ecohydrologic processes with AI/ML ap-
proaches. These observations can be obtained by field and in situ measurements for small-scale
processes, by aircraft sensors and drones for canopies and forests, and by remote sensing for
larger watersheds and entire continents. This figure represents various aboveground processes
and traits that can be measured, and there are also belowground processes not depicted here
that can be main driving factors in ecohydrology.

and data of environmental factors, and derived the nonlinear
relationships between environmental factors and soil organic
carbon (SOC) stocks, which produced similar prediction accu-
racy as the AI/ML approaches. These mathematical relation-
ships between environmental factors and SOC stocks can be
used to benchmark environmental control representations of
Earth system models.

Many data gaps and needs exist in the ecohydrology com-
munity, especially for AI/ML applications. According to the
group of authors on this paper, it is not realistic to expect suf-
ficient data to exist in the short to midterm to cover all data
gaps needed for AI/ML in ecohydrology. With this paper, we
are hoping to direct the community to identify the gaps where
higher data needs exist, and to do so by using AI/ML technol-
ogies for ecohydrologic applications.

b. Hybrid models

Improving and developing new model parameterizations of
ecohydrologic processes is inherent in the grand challenges
presented above. However, where sufficient data are avail-
able, the opportunity exists to train deep neural networks for
specific components within the model. Such efforts have be-
gun, for hydrology (e.g., Slater et al. 2023) and for convection
and subgrid-scale processes (Rasp et al. 2018; Gentine et al.
2018; Brenowitz and Bretherton 2018, 2019; Brenowitz et al.
2020), which are particularly suited to data-driven modeling
approaches, as they are poorly captured by current process-
based models or are computationally prohibitive for decadal
or longer-time-scale simulations. Adding such capabilities in
land surface models for simulating ecohydrologic processes
could greatly advance the utility and performance of these
models. Envisioned is a framework that employs such methods
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for data-driven, hybrid process-based/ML-based Earth system
models (Schneider et al. 2017). As can be seen from this early
work, lack of adequate data, numerical instabilities in cou-
pling, and “out of sample” (i.e., “out of distribution” or ex-
trapolative) problems must be overcome, but the outlook for
these approaches is promising. Employing similar approaches
for adding AI/ML capabilities in land surface models for simu-
lating ecohydrologic processes could greatly advance the util-
ity and performance of these models.

By explaining patterns identified by AI/ML, physically based
models and observational datasets can be improved and opti-
mized by incorporating missing processes, thereby providing
transferability across space and time scales (Fig. 3). For exam-
ple, AI/ML can be used to reduce the complexity of multidi-
mensional outputs from physically based models (Massoud
2019), which would allow such models to be simulated with
less complex input data. One could envision a framework
that employs AI/ML methods for data-driven process repre-
sentation alongside traditional differential equation-based
representation of ecohydrologic processes, resulting in a hy-
brid process-based/ML-based model (Schneider et al. 2017;
Braghiere et al. 2021; Wang et al. 2021a; Tsai et al. 2021;
Feng et al. 2022, 2023). AI/ML can also be useful for the as-
similation of data in process-based models, for example,
by analyzing trait information carefully to determine prior
distributions of parameters or for selecting sites that are
representative of different data types for calibration. Fur-
thermore, AI/ML can assist in the retrieval of remotely
sensed information. To facilitate these visions, existing mod-
els must be made more modular so that individual process-
based or ML-based parameterizations with a model may be
swapped in and out as desired.
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FIG. 3. Combining physically based models and observed datasets with AI/ML methods
enables identification of processes and patterns that can inform future model development and
new observational campaigns. Such hybrid models provide transferability across space and time

scales.

c¢. Computing and data infrastructure

The research community currently has access to high perfor-
mance computing capabilities at large computing centers, such
as the National Energy Research Scientific Computing Center
(NERSC) at Lawrence Berkeley National Laboratory, the
Oak Ridge Leadership Computing Facility (OLCF), and the
Argonne Leadership Computing Facility within the DOE.
The community has access to large collections of data at data
centers, like DOE’s Atmospheric Radiation Measurement
(ARM) Data Center (ADC), Environmental Systems Science
Data Infrastructure for a Virtual Ecosystem (ESS-DIVE),
Earth System Grid Federation (ESGF), NASA'’s Distributed
Active Archive Centers (DAACs), Consortium of Universities
for the Advancement of Hydrologic Science’s (CUAHSI) Hy-
droshare, and others. These data centers operate as stand-alone
resources and require data users to download data to their own
computational resources. This process of downloading data,
preprocessing and integrating the data, and then performing
simulations and analysis is tedious and unnecessary given recent
technological developments. When developing and deploying
AI/ML methods, the difficulty of this workflow will increase
since high-speed access to vastly larger data collections will be
required for training AI/ML models, potentially doing such
training as part of simulation itself.

There are efforts in the Earth science community to de-
velop and implement cloud-based virtual centers for comput-
ing and data needs. For example, the DOE is seeking input
on the need and the structure of a unified data framework that
links or integrates existing data activities for next-generation
data management and analysis. However, there have not been
any concrete conversations or plans regarding a cloud-based
virtual center. This could become possible by vendors such as
Amazon Web Services, yet these types of efforts have not
been initiated yet. Importantly, there is a distinction between
commercial clouds and the combination of cloud-based de-
ployments and cloud-based technologies used for research
(e.g., Jupyter hubs and S3 buckets), which do not necessarily
have to be on commerecial clouds. For example, open research
clouds exist, which could be a valuable platform to conduct
the types of efforts outlined in this paper.
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5. Research priorities

Priorities for near-term research in ecohydrology should
aim to prepare the research community to address the grand
challenges listed above. This includes improving characteriza-
tion of soil and vegetation properties, improving representa-
tion of water stores and fluxes, developing models of extremes
and ecosystem disturbance and recovery, and developing new
assimilation and analysis capabilities to help constrain models
and quantify sources of both model and data uncertainty. The
research community is at a stage where progress can be made
in creating benchmark “Al ready” datasets and developing ini-
tial AI/ML parameterizations and process emulators. Initial
research and development activities should engage a broader,
more multidisciplinary, community of researchers, particularly
in mathematics and computer science. Transitioning the com-
munity to significant use of AI/ML approaches in ecohydrol-
ogy and climate science will require enhanced efforts to train
the next generation of researchers to use new tools and meth-
ods. National scientific workforce development activities should
consider how best to deliver the additional knowledge and
training to early career scientists.

a. Benchmark datasets

While Earth system and environmental data centers distrib-
ute and archive a wide variety of data collections from in situ
measurements, monitoring networks, and airborne and satel-
lite remote sensing platforms, they do not typically lead activi-
ties to synthesize data products across those collections for
specific research purposes. Instead, funded or volunteer work-
ing groups are often formed to synthesize data to address spe-
cific science questions or hypotheses. Such working groups
may be catalyzed by existing projects [e.g., Reducing Uncer-
tainties in Biogeochemical Interactions through Synthesis and
Computation (RUBISCO) working groups on Soil Carbon
Dynamics, AmeriFlux, and Soil Moisture], data collection ac-
tivities or databases [e.g., various AmeriFlux and Fluxnet
working groups, International Soil Carbon Network (ISCN),
International Soil Radiocarbon Database (ISRaD), “TRY”
Plant Trait Database, Fine-Root Ecology Database (FRED),
National Ecological Observatory Network (NEON), International
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Soil Moisture Network], or data synthesis centers [e.g., Na-
tional Center for Ecological Analysis and Synthesis (NCEAS),
National Institute for Mathematical and Biological Synthesis
(NIMBioS), Powell Center for Analysis and Synthesis, Critical
Zone Collaborative Network (CZCN),CUAHSI, Aspen Global
Change Institute] sponsored by the National Science Founda-
tion, U.S. Geological Survey, U.S. Department of Agriculture,
and other agencies and nongovernmental organizations. How-
ever, because these working group activities are often narrowly
focused, they may not produce synthesized data products that
are of general use, well-documented, easily distributed, ar-
chived, and maintained over time. A more systematic approach
with a broader vision for reusability and maintainability is re-
quired to generate benchmark datasets for training, testing, and
benchmarking AI/ML models.

Producing and maintaining large collections of understand-
able and reusable data, like that from ImageNet (Russakovsky
et al. 2015), will be of great utility to the ecohydrology re-
search community and will facilitate wider engagement of the
mathematics and computer science communities already in-
volved in developing and applying AI/ML methods. Some of
these datasets will be similar to climate reanalysis data prod-
ucts (e.g., ERAS; Hersbach et al. 2020), synthesized data
either used for model evaluation by software like the Interna-
tional Land Model Benchmarking (ILAMB) package (Collier
et al. 2018) or global/large-scale process investigation (Sprenger
et al. 2021), or satellite-based remote sensing data products
(Dalla Mura et al. 2015; Hong et al. 2021; Potapov et al. 2021).
Such datasets must be highly multivariate for AI/ML methods
to uncover relationships, integrated in a consistent manner for
direct use without translation or conversion, available across
multiple spatial and temporal scales, and contain long time
series of a large number of samples, points, or grid cells. Fur-
thermore, such datasets should draw upon many independent
data sources, such as data fused from multiple remote sensing
platforms, and be calibrated with in situ measurements and
continental-scale monitoring networks (e.g., Wang et al. 2021b).
To be of greatest utility, these data must be maintained and dis-
tributed by existing or new data centers, and integrated com-
puting and storage infrastructure should be developed to
facilitate data discovery and eliminate barriers to data move-
ment and download.

b. Hybrid modeling

Given the availability of growing volumes of observational
data and in situ measurements, the Earth system modeling
community is beginning to adopt data-driven approaches for
high resolution weather and climate simulations (Schneider
et al. 2017). A ML framework could be used to integrate the
wealth of leaf-level fluorescence and gas exchange measurements
(e.g., Leafweb), AmeriFlux and Flux Network (FLUXNET)
ecosystem fluxes, and Free Air Carbon Dioxide Enrichment
(FACE) and Spruce and Peatland Responses Under Changing
Environments (SPRUCE) data to develop a unified treatment
of stomatal responses, assimilation, and acclimation to changes
in environmental conditions like hydrology or soil moisture.
AI/ML-based models of stomatal conductance and plant
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hydrodynamics should be employed to produce a hybrid
process-based/ML-based land model with the aim of reducing
the uncertainty in soil moisture and carbon assimilation. Such
models can incorporate as many processes as possible and as a
result can have extremely high dimensionality (Fig. 4) or alter-
natively can have more simple versions with lower dimension-
ality and complexity depending on what is needed for the
specific application (Fig. 5). Such hybrid ecohydrology models
could also inform watershed models to deliver dynamic eco-
logical process representations, such as the EcH20 model
(Maneta and Silverman 2013) that captures the biophysical dy-
namics of vegetation and the hydrologic cycle at the watershed
scale, but such information is often absent in these models. In
addition, ML models can be developed to improve the charac-
terization of soil organic carbon and soil bulk properties to fur-
ther reduce soil moisture uncertainties. ML methods should
be explored to scale leaf-level and ecosystem processes to the
watershed scale for seasonal-to-interannual predictions, through
a hierarchy of ML and process-based models, and further
to regional and continental scales for interannual-to-
decadal predictions. For research questions involving distur-
bance and recovery, new mechanistic modeling approaches
(e.g., Hanan et al. 2021) are advancing our understanding,
and these models would benefit from detailed information
about changing vegetation structure to support both model
parameterization and evaluation. Modeling disturbance
is an area, due to its complexity, that would particularly
benefit from hybrid approaches since AI/ML methods can
fill in some of the knowledge gaps in simulating these
processes.

Under expected future climate change, plant and soil pro-
cesses could experience new conditions that have not yet
been seen by existing observational data. For example, it is
not yet known how the impacts of climate change will affect
things such as the distributions of vegetation as a result of
novel or disappearing climates (Williams et al. 2007), how
changing climate will impact ecosystems at different spatial
scales (Maclean 2020), or how global climate change such as
intensifying droughts will affect forest ecosystems and their
microbiomes across different climatic zones (Baldrian et al.
2023). Thus, experimental data based on analogs to potential
future climate conditions such as FACE and SPRUCE data
should be used to develop climate-adaptive ML models for
the processes described above. This approach could enable
significant steps forward in developing and integrating new
and alternative parameterizations within Earth system models
to produce a hybrid process-based/ML modeling framework
(Reichstein et al. 2019). The requirement for reducing uncer-
tainties in ecohydrologic processes dictates prioritizing pro-
cess representations of land-atmosphere interactions (energy,
water, carbon, and nutrients) that are 1) highly uncertain but
for which observational data are available and 2) computa-
tionally expensive. Measurements of leaf-level responses to
environmental variations can be related to measurements
made at the canopy scale to reduce uncertainties in canopy in-
tegration schemes. AI/ML methods can be applied to scale up
plant responses—informed by ecosystem- and watershed-
scale measurements, upscaled soil properties, and remote

McKeldin Library | Unauthenticated | Downloaded 11/06/23 02:03 AM UTC



ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

VOLUME 2

L
4 |
f ﬁ\
Snow Physics Cano v
Aging < Tuvbul::« ¢ > (a;:‘::y" I:l’nl.
(=
-~
I v A
Watershed Soil Physics Plant Physiology n‘:i.'.’.
Lateral Flow [I] Leaf Allometry m’
Respiration
\\ > (Ciasptration ) Disurbance
All Processes Tissue Nutrient
Represented via a E v ) (_tumover )
Multi-Hypothesis : ] (optical Properties) (__Morphology )
Approachje.g: Forestry

Stomatal Cond.
Plant Hydraulics

Stub Model
e.g., fixed conductance))

BVOCs

Machine Learning
Neural Networks

[ Respiration ][ Allometry ]

Growth )

[ cstorage ) (
=

Land Cover
ange

Joa

[ omen e
( Water Uptake ] [ Resp ] [ Allometry ]

[ Decomposition ) ( Nutrient l.lpmkl] [ C Storage ] [ Growth ] Agricwlture
Xylem Transport ";::i:h':m.ym ] Turnover
[Hi(robicl E(ol.] [Snd ducti ] ] [ y ]

b
J/

AN

FIG. 4. A process schematic of a full-complexity land surface model. Processes, and sets of processes, are represented as boxes in the
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intended to allow alternative specification, including possibly multiple hypothetical process realizations, empirical or machine learning—
derived formulations, and/or simplified stub or null representations to allow for holding a given process constant while other processes

vary (adapted from Fisher and Koven 2020).

sensing data—to bound water budgets for watersheds (e.g.,
Massoud et al. 2022) and quantify risks of flooding and drought,
particularly under water cycle extremes. While the primary
motivation is to improve mechanistic understanding of these
processes across scales, by connecting a chain of hierarchical
Al/ML-empowered models to weather forecasting systems,
the results may be useful for informing probabilistic risk anal-
ysis to quantify risks for urban areas and other built infra-
structure and to better quantify drought impacts on streamflow
for energy and water utilities.

One of the challenges of hybrid models and increasingly
complex ecohydrologic models in general is the opacity of
these modeling frameworks. For users to appropriately apply
these models and gain mechanistic understanding requires
that the underlying assumptions and process representations
be visible (Tague and Frew 2021). Advances in model docu-
mentation and visualization of outputs and of underlying
model architecture and performance will be needed to address
this challenge (e.g., National Water Model; Wan et al. 2022).

¢. Multidisciplinary engagement with AI/ML researchers

New research in ecohydrology employing AI/ML approaches
will benefit from strong collaboration with scientists in mathematics
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and computer science, who routinely apply such methods
in other disciplines and who are actively developing new meth-
ods specific to research needs in other domains (Rolnick et al.
2022; Hickmon et al. 2022; Sukanya and Joseph 2023). For ex-
ample, the review shown in Rolnick et al. (2022) encompasses
exciting research questions as well as promising business op-
portunities for the AI/ML community, and the authors call on
the AI/ML community to join the global effort against climate
change. The paper by Rolnick et al. (2022) is primarily written
by ML experts, and documents how their community can con-
tribute to climate mitigation and adaptation, and Earth system
prediction efforts. Strengthening such collaborations will require
frequent interaction between domain experts and computer sci-
entists, mathematical generalization of specific process represen-
tations in models, and well-documented benchmark datasets.
For ecohydrology, engaging with mathematicians and computer
scientists will enable leveraging of research and development ac-
tivities already underway, and it will foster long-lasting collabo-
rations that will benefit both sets of communities. For long
lasting changes fostering intense cross-disciplinary collabora-
tions, mathematics and computer science should become more
prominent in Earth system science education at both the under-
graduate and graduate levels.
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d. Integrated data and computational research
infrastructure

Adding AI/ML approaches for data acquisition, processing,
assimilation, modeling, and analysis will require improved in-
frastructure for large datasets and high performance computa-
tional capacity targeted for AI/ML. The growth opportunity
is to build integrated computing and data infrastructure that
eliminates the challenges of finding, acquiring, and download-
ing data. Benchmark AI/ML data should be accessible from
all large computing environments, no matter where those data
reside or are archived. This could be accomplished through ap-
plication programming interfaces and data transport services,
like Globus (https:/globus.org/), that hide the details of data
movement and exploit high bandwidth networks to deliver data
as needed for simulation and analysis. Funding agencies might
coordinate in the creation of a model-data integration center
that could provide such integrated storage and computing re-
sources for the growing Earth system science community. The
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center could provide data hosting services, offer compute-
near-the-data computational infrastructure and “AI/ML as a
service” capabilities, and sponsor training activities and multi-
disciplinary working groups focused on improving new or ad-
vanced research topics that may have some element of risk.
Such a center could lower the bar of entry for laboratory and
university scientists, fostering multidisciplinary engagement,
while enabling research with tools not otherwise easily accessi-
ble or usable.

e. Training and workforce development

To advance research with AI/ML approaches, current and
next generation researchers need training on the wide variety of
AI/ML methods, data management, large-scale analytics techni-
ques, and use of integrated computational and data resources.
This could be accomplished through fellowships that support
national laboratory internships for promising graduate students,
training courses for postdoctoral and early career scientists

McKeldin Library | Unauthenticated | Downloaded 11/06/23 02:03 AM UTC


https://globus.org/

10 ARTIFICIAL INTELLIGENCE FOR THE EARTH SYSTEMS

(akin to open access online classes for hydrology at https:/
www.hydrolearn.org/), and seminars and hackathons for exist-
ing staff (like hydrology seminars provided by the CUAHSI
Community at https://www.cuahsi.org/community). These
activities could begin with webinars that highlight existing
research in national laboratories and universities and virtual
hackathons that demonstrate analysis techniques, useful
software packages, and strategies for applying emerging
datasets. These education and training activities should be
an integrated part of training of the next generation work-
force with diverse research scientists to meet the needs of
the nation.

6. Short-, mid-, and long-term goals

In this section, we identify specific goals for each re-
search priority. Incremental progress through the following
goals is expected to reduce model uncertainties and im-
prove prediction accuracies leading to actionable science
outcomes.

a. Short-term (<5 years) goals

e Develop a collection of “Al ready” benchmark datasets
for leaf-level measurements of fluxes of energy, water,
carbon, and nutrients; canopy-level observations of evapo-
transpiration and productivity; and continental-scale es-
timates of carbon and water cycle time series from in
situ measurements and airborne and satellite remote
sensing.

¢ Synthesize existing data in a network-of-networks approach
to provide Al-ready datasets on subsurface characteriza-
tion (e.g., high-frequency soil moisture dynamics, soil water
tracer data) across large environmental gradients to study
the soil-plant feedbacks.
Improve the modularity of current models so that individ-
ual process-based parameterizations can be isolated and
swapped with AI/ML-based versions of parameterizations.
e Develop an initial set of AI/ML-based parameterizations
for photosynthesis, stomatal conductance, and other vege-
tation and soil processes that can be integrated as compo-
nents into hybrid models.
Establish collaborative opportunities across Earth system sci-
ence, mathematics, statistics, and computer science directed
at developing and applying novel and domain-specific AI/ML
methods to improve accuracy of ecohydrology process repre-
sentations in Earth system models.
Design and begin implementation of an integrated data
and computational infrastructure to support AI/ML in
Earth system science. This could leverage existing data cen-
ters, computational centers, and software infrastructure,
and potentially be transitioned to its own center or facility
for broader engagement of the research community.
Initiate a webinar series for educating and training cross-
disciplinary researchers across career stages about the use
of AI/ML methods and tools. Conduct virtual and in-
person hackathons for more rigorous training of gradu-
ate students, postdoctoral scholars, and early career
scientists.
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b. Mid-term (5 years) goals

¢ Develop an initial modeling framework for swapping or in-
terchanging process-based and AI/ML-based parameteriza-
tions within Earth system models.

e Foster cross-disciplinary research and training by sponsor-
ing transdisciplinary working groups that include observa-
tional scientists, modelers, data scientists, mathematicians,
and computer scientists to take advantage of the bench-
mark data, AI/ML model frameworks, and integrated com-
putational and storage resources to address specific science
questions in ecohydrology.

e Develop accurate and efficient science-guided AI/ML sys-

tems or models to predict effects of different ecohydrologic

disturbances and postdisturbance responses and feedbacks.

Employ AI/ML to generate new synthetic data for training

AI/ML algorithms, for example, photographing each root

core collected and developing an AI/ML algorithm to help

understand and fast track improvements in data observa-
tions of this kind.

Develop AI/ML algorithms that can infer what additional

measurements are needed and what optimal sampling fre-

quencies and spatial distributions will lead to improve-
ments in ecohydrology models.

¢. Long-term (10 years) goals

e Deploy a fully functioning modeling framework for easily
configuring and monitoring AI/ML-based parameteriza-
tions alongside process-based parameterizations within
Earth system models, supporting online training and in situ
analysis and visualization.

¢ Deploy a fully functioning explainable AI/ML framework
that can identify where to collect data (space/time gaps),
what processes need to be improved (physics/chemistry/
biology gaps), and how to better manage and analyze data
for ecohydrologic applications.

e Deploy a fully functioning AI/ML-based ecohydrologic

subsystem for Earth system models that is tested and cali-

brated for accurate predictions across relevant space and
time scales and that includes ecosystem disturbance and re-
covery process representations.

Establish a multiagency AI/ML center to provide computa-

tional and storage infrastructure, necessary benchmark

data, a wide variety of models at different scales, software

tools for analysis and visualization, and staff to support a

collection of working groups that have proposed to address

key science questions in ecohydrologic predictability.

7. Visionary perspectives for future ideas and
potential research

The evolution of AI/ML informed Earth system and multi-
scale ecohydrologic models will require a community effort,
involving multiple disciplines, advanced training, and new
ways of designing, implementing, parameterizing, and com-
municating model output for understanding and for solving
environmental problems. The collective teamwork required
may ultimately need new ways of working together, creating
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new incentive structures to promote collaboration and com-
munication. Novel ways are needed to learn not only how to
model, but how to effectively collaborate on AI/ML applica-
tions. New university doctoral programs can be envisioned
that are more closely aligned with multidisciplinary research
laboratories that focus on collaborative AI/ML research. We
expect that expanding multidisciplinary training and cultivat-
ing multidisciplinary collaboration between ecohydrologists
and AI/ML experts will allow AI/ML to drive advancements
in ecohydrology even beyond those envisioned here by our re-
search community.

New efforts aimed at building flexible model structures,
such as the Climate Modeling Alliance (CliMA) for example,
can employ AI/ML methods for data-driven process represen-
tation and can leverage recent advances in the computational
and data sciences, to learn directly from a wealth of Earth ob-
servations from space and the ground. These types of efforts
can develop an Earth system or ecohydrologic model that au-
tomatically learns from diverse data sources and exploits ad-
vances in AI/ML to learn from observations and from data
generated on demand in targeted high-resolution simulations
(Schneider et al. 2017; Braghiere et al. 2021; Wang et al.
2021a).

A new type of modeling framework called digital twins is
also a topic of current and future research for the ecohydro-
logic sciences. In essence, a digital twin is a virtual model of a
physical object, and spans the object’s life cycle and uses real-
time data sent from sensors on the object to simulate its be-
havior. For example, the European Union plans to fund the
development of digital twins of Earth, with aims for these
“twins” to be more than big data atlases, and rather creating a
qualitatively new Earth system simulation and observation ca-
pability (Bauer et al. 2021). It is envisioned that a digital twin
of Earth can act as an information system that exposes users
to a digital replication of the state and temporal evolution
of the Earth system constrained by available observations and
the laws of physics. For practical reasons, the “digital twins of
the Earth” may generate the actionable intelligence that is
necessary to address global change challenges (Nativi et al.
2021). Setting up digital ecosystems to create digital twins for
ecohydrologic applications may be an additional path forward
for fusing AI/ML algorithms, process-based models, and the
wealth of observations available to gain understanding and
make predictions of ecohydrologic systems.
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