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Abstract
Accurate representation of environmental controllers of soil organic carbon (SOC)

stocks in Earth System Model (ESM) land models could reduce uncertainties in

future carbon–climate feedback projections. Using empirical relationships between

environmental factors and SOC stocks to evaluate land models can help model-

ers understand prediction biases beyond what can be achieved with the observed

SOC stocks alone. In this study, we used 31 observed environmental factors, field

SOC observations (n = 6,213) from the continental United States, and two machine

learning approaches (random forest [RF] and generalized additive modeling [GAM])

to (a) select important environmental predictors of SOC stocks, (b) derive empir-

ical relationships between environmental factors and SOC stocks, and (c) use the

derived relationships to predict SOC stocks and compare the prediction accuracy

of simpler model developed with the machine learning predictions. Out of the

31 environmental factors we investigated, 12 were identified as important predic-

tors of SOC stocks by the RF approach. In contrast, the GAM approach identified six

(of those 12) environmental factors as important controllers of SOC stocks: potential

evapotranspiration, normalized difference vegetation index, soil drainage condition,

precipitation, elevation, and net primary productivity. The GAM approach showed

minimal SOC predictive importance of the remaining six environmental factors iden-

tified by the RF approach. Our derived empirical relations produced comparable

Abbreviations: GAM, generalized additive model; ML, machine learning; NDVI, normalized difference vegetation index; RF, random forest; SOC, soil

organic carbon.
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prediction accuracy to the GAM and RF approach using only a subset of environmen-

tal factors. The empirical relationships we derived using the GAM approach can serve

as important benchmarks to evaluate environmental control representations of SOC

stocks in ESMs, which could reduce uncertainty in predicting future carbon–climate

feedbacks.

1 INTRODUCTION

Soils store a large and dynamic fraction of global terres-

trial carbon (Sulman et al., 2020) and affect many ecosystem

services (Adhikari & Hartemink, 2016; Lal, 2013). Soils

can act as sources or sinks of atmospheric carbon dioxide,

depending on land use, management interventions, and envi-

ronmental conditions. Observation-based global soil organic

carbon (SOC) stock estimates show large spatial heterogene-

ity (Batjes, 2016; Hengl et al., 2014). This observed spatial

heterogeneity in SOC stocks is primarily controlled by the

soil forming factors: climate, organisms, topography, parent

material, and time (Jenny, 1941; McBratney et al., 2003). As a

result, different combinations of these environmental factors

have widely been used for spatial prediction of SOC stocks

at different scales (Adhikari et al., 2020; Mishra et al., 2021;

Vitharana et al., 2017). Despite their key role in determin-

ing the spatial heterogeneity of SOC stocks and regulating

land–atmosphere exchanges of carbon, the control of these

environmental factors on SOC stocks are not correctly charac-

terized and represented in current land surface model process

representations. As a result, land models poorly represent

current SOC spatial heterogeneity (Carvalhais et al., 2014;

Todd-Brown et al., 2013), which contributes to large uncer-

tainty in predicting future carbon–climate feedbacks (Arora

et al., 2020; Friedlingstein et al., 2014). Therefore, to reduce

uncertainty in future carbon–climate feedback projections, it

is critical to accurately (i.e., consistent with observations)

represent environmental controllers of SOC stocks in land

surface models.

A variety of approaches have been applied to predict

the spatial heterogeneity and infer environmental controllers

of SOC stocks (Lamichhane et al., 2019; Minasny et al.,

2013). Among different approaches applied for spatial predic-

tions of SOC stocks, linear regression and ordinary kriging

have been most widely used approaches (Minasny et al.,

2013; Olaya-Abril et al., 2017; Zhang et al., 2017). Linear

regressions quantify the strength and direction of relation-

ships between environmental factors and SOC stocks and

have been applied primarily due to their simplicity and

ease of interpretation of the results obtained. Ordinary

kriging uses the spatial autocorrelation among existing sam-

ples to predict the value of SOC stocks at an unsampled

location.

However, several recent studies demonstrated use of non-

linear approaches to predict the spatial heterogeneity of SOC

stocks. Among nonlinear methods, machine learning (ML)

approaches are increasingly being applied to predict soil

properties, including SOC stocks (Lamichhane et al., 2019;

Padarian et al., 2020; Siewert, 2018). Heuvelink et al. (2021)

used a quantile regression forest ML approach to predict the

annual SOC stock of surface soils of Argentina between 1982

and 2017 and reported a larger temporal variation in compari-

son to the Intergovernmental Panel on Climate Change Tier 1

approach of predicting SOC change. Ottoy et al. (2017) com-

pared four digital soil mapping approaches to predict SOC

stocks at a regional scale and reported that boosted regression

trees achieved highest prediction accuracy. Authors identified

drainage condition, soil type, and vegetation type as impor-

tant environmental predictors of SOC stocks. Vos et al. (2018)

used various data mining approaches to identify and interpret

main factors that controlled the cropland SOC stocks. Authors

reported land use, land-use history, clay content, and electri-

cal conductivity as main predictors of the topsoil SOC stocks,

whereas bedrock material, relief, and electrical conductiv-

ity were main predictors of the subsoil carbon stocks. Bui

et al. (2009) reported that SOC in Australian agricultural soils

were related to vegetation, biomass, soil moisture, and tem-

perature patterns. Authors reported that the structure in the

multivariate relationships between environmental factors and

soil properties were consistent with principles of pedogene-

sis and landscape ecology. In a review of digital soil mapping

literature, Ma et al. (2019) documented that the pedological

knowledge can be used in digital soil mapping and digital soil

mapping can also lead to new knowledge discovery regard-

ing the soil formation. However, Wadoux, Samuel-Rosa, et al.

(2020) noted that the knowledge discovery based on ML needs

to be treated with caution. Interestingly, authors demonstrated

how pseudo-covariates not related to any soil-forming factors,

and processes can also accurately predict SOC. Therefore,

careful preselection and preprocessing of pedologically rele-

vant environmental covariates and the posterior interpretation

and evaluation of the recognized patterns can only provide

meaningful insights.

More recently, ensembles of multiple approaches have been

applied to improve the spatial prediction of SOC stocks

(Riggers et al., 2019; Vašát et al., 2017). A recent study

showed that the median prediction obtained from an ensemble
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MISHRA ET AL. 1613

of ML approaches better predicts the spatial heterogeneity

of SOC stocks in comparison to individual ML or hybrid

approaches, such as regression kriging (Mishra et al., 2020).

In a majority of previous studies, ML approaches were used

to identify important environmental predictors and predict the

spatial variation of SOC stocks. In a recent review of ML

applications in soil science, Padarian et al. (2020) identified

two primary research needs: (a) identification of parsimo-

nious ML models and (b) interpretability of the applied ML

models. Similarly, in another review, Wadoux, Minasny, and

McBratney (2020) identified the need to incorporate pedolog-

ical knowledge in ML algorithms to make these approaches

more relevant to soil science. These authors identified plau-

sibility, interpretability, and explainability as the greatest

challenges in using ML approaches in soil science.

Earlier studies in soil science used a number of ML

approaches primarily for digital soil mapping and to identify

important predictors of SOC stocks. However, in these stud-

ies ML is usually used as a “black box” model, which does

not report mathematical relationships between environmental

factors and SOC stocks that can be used to predict the SOC

stocks. Therefore, our overall objective here was to derive

observationally based mathematical relationships describing

environmental controls on SOC stocks. The specific objec-

tives were (a) to use ML to select important environmental

predictors of SOC stocks, (b) to derive empirical relationships

between environmental factors and SOC stocks, and (c) to

use the derived relationships to predict the SOC stocks and

compare the prediction accuracy of simpler model developed

using the derived relationships with ML predictions.

2 MATERIALS AND METHODS

2.1 SOC observations

We used field SOC measurements from the rapid carbon

assessment project of the Natural Resources Conservation

Service’s Soil Science Division of the USDA (Soil Survey

Staff & Loecke, 2016). That assessment project was designed

to produce a robust estimate of SOC stocks in different

kinds of soils and land uses across the conterminous United

States based on consistent and dedicated soil sampling. Over

6,200 sampling sites across the conterminous United States

(Supplemental Figure S1) were established following a hierar-

chical sampling design consisting of major land resource areas

as first-level strata, which were further stratified based on land

use and land cover and soil types in a nested fashion. Soil

samples at observation locations were collected from genetic

horizons and were analyzed for SOC concentration and bulk

density following the Soil Survey Laboratory Methods Man-

ual (Burt, 2004; Grossman & Reinsch, 2002). However, this

study considered SOC stock for only the top 30 cm of soil, cal-

Core Ideas
∙ We used machine learning to derive predictive rela-

tionships between environmental factors and SOC

stocks.

∙ Soil drainage, evapotranspiration, and vegetation

index were important controllers of SOC stocks.

∙ Derived relationships produced comparable pre-

diction accuracy using only a subset of environ-

mental factors.

∙ Derived relationships can be used to benchmark

land model representations of SOC stocks.

culated after correcting it for coarse fragments (Equation 1).

For soil samples with missing bulk density measurements, a

pedotransfer function based on a RF approach was developed

(Sequeira et al., 2014) and SOC stock was calculated as

SOCstk =
[
(SOC × BD ×𝐷) ×

(
1 − CF

100

)]
(1)

where SOCstk is the SOC stock (t C ha−1), SOC is the SOC

concentration (g C 100 g−1 soil), BD is the soil bulk density

(g cm−3), D is the soil layer thickness (cm), and CF is the

volumetric fraction of the coarse fragments.

The average SOC stock of continental U.S. surface soil was

9.5 kg m−2, ranging from 0.06 to 127 kg m−2. The observed

SOC stocks showed unimodal (kurtosis = 24.7) and positively

skewed (coefficient of skewness = 4.3) distribution. After the

SOC data was log-transformed, the skewness coefficient and

mean dropped to −0.04 and 3.9 Mg ha−1, respectively, with

a standard deviation of 1.0 and a CV of 25.7%. About 70%

of our SOC data was less than 100 kg m−2, whereas 1.5% of

SOC data was larger than 1,000 kg m−2. If we train a ML

model for this highly unbalanced dataset, the resulting model

will be biased to fit the small fraction of the extremely large

values. Therefore, the modeling tasks were conducted using

log transformed SOC stocks.

2.2 Environmental predictors of SOC
stocks

We compiled 31 environmental variables from different

sources and evaluated their usefulness as predictors of SOC

in the study area (Supplemental Table S1). These variables

were representative of major soil forming factors: climate,

vegetation, topography, and parent material (Jenny, 1941;

McBratney et al., 2003). Seven of the 31 variables were

climatic variables, obtained from the parameter-elevation

regressions on independent slopes model and global climate
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1614 MISHRA ET AL.

and weather data: the 30-yr (1981–2010) annual average

of minimum, mean, maximum, and dewpoint temperatures;

precipitation as rainfall; rainfall during the wettest and

driest quarter in a year; and potential evapotranspiration

(Supplemental Table S1). Six of the 31 variables described

vegetation characteristics: land use, land cover, potential

vegetation cover, remote sensing data (median value of

surface reflectance during the growing season), net primary

production, and ecological regions. Ten variables related to

topography were derived from the national digital elevation

model at 30-m spatial resolution that was resampled to

100-m grid scale for this study: elevation, slope aspect, slope

length factor, multiresolution valley bottom flatness index,

melton ruggedness index, midslope position, wetness index,

slope height, slope gradient, and valley depth. Five variables

described parent material and soil climate: soil types, surface

geology, natural drainage condition, hydrological unit, and

soil temperature regime. For these 31 environmental vari-

ables, vector layers were rasterized when necessary, and all

the raster layers and point SOC observations were projected

to a common Universal Transverse Mercator projection sys-

tem (NAD 1983). The NAD83 projection uses a geocentric

datum and geographic coordinate system based on the 1980

Geodetic Reference System ellipsoid. The values of the envi-

ronmental variables at sampling locations were then extracted

and a matrix of SOC stock and 31 predictors (6,123 rows, 34

columns) was created for modeling. All the categorical vari-

ables were converted to integer variables before using in this

analysis.

2.3 Dimensionality reduction using RF

We used a random forest (RF) regression approach to identify

important environmental predictors of SOC stocks. Random

forest is based on a decision tree model and consists of an

ensemble of randomized classification or regression trees

with a bootstrap aggregation (Breiman, 2001). In RF, a train-

ing dataset is first randomly drawn with replacement from the

original data set. Then, a decision tree is fitted to the training

data set by randomly selecting a subset of the input variables

at each branch split. Typically, only p/3 variables are used to

decide a branch split for a regression tree, where p is the num-

ber of predictor variables. The process is repeated to build a

large number of uncorrelated trees, hence the name “forest,”

and the prediction is computed by averaging the predictions of

each tree. Random forest is one of the most popular predictive

models in ML due to its outstanding performance even with

little parameter tuning (Hastie et al., 2001). The RF model

was trained by using the “randomForest” package in R (Liaw

& Wiener, 2002). The total number of regression trees (ntree)

was set to 500, and mtry = 10 (≅31/3) variables were ran-

domly selected to compute a split at each branch. The number

of minimum data points to stop growing a tree was set to

nodesize = 10.

We used a “greedy” approach (Edmonds, 1971) to

identify uncorrelated sets of environmental predictors of SOC

stocks. In the “greedy” approach, the environmental predic-

tors were first arranged according to the variable importance

rank from the RF model. The Pearson’s correlation coeffi-

cients between the environmental predictors were calculated,

and environmental predictors with absolute value of the corre-

lation coefficients larger than a threshold (taken as 0.6), were

removed from the dataset. After removing the correlated vari-

ables, there were 19 environmental predictors remaining in

the dataset. Another RF model was trained with the remaining

19 environmental predictors.

The variable importance was computed by the random per-

mutation method, where one of the environmental variables

is randomly permutated between the out-of-bag samples and

the change in the prediction accuracy [R2(1 − residual sum

of square/total sum of square) and RMSE] due to the ran-

dom permutation provides a measure for the importance of the

environmental variable (Hastie et al., 2001). The permutation-

based importance is one of the most common approach to

assess the relative importance between input variables in the

RF approach. However, the variable importance rank provides

only the qualitative importance of the environmental predic-

tors. To quantitatively investigate the effects of environmental

predictors on SOC stocks, we trained a set of RF models with

different sets of environmental predictors and measured the

changes in the prediction accuracy. The number of environ-

mental predictors in RF models was varied from 1 to 19. The

first RF model is trained with the environmental predictor

with the highest importance and, in the successive models, the

number of environmental predictors is gradually increased in

the order of the variable importance.

2.4 GAMs to derive empirical relationships
between environmental predictors and SOC
stocks

Random forest is a powerful ML technique due to its strength

in computing nonlinear relations between input and output

variables. However, RF is essentially a “black box” model,

which does not provide detailed information about the rela-

tionships between the input and output variables. The function

between predictor variables and response is particularly chal-

lenging to tease apart. This makes it difficult to use RF to

find an empirical relationship between a particular environ-

mental predictor and SOC, particularly when the data points

are not uniformly distributed over the high-dimensional fea-

ture space. Therefore, we used a generalized additive model

(GAM) to derive empirical relationships between the RF-

identified environmental predictors and SOC stocks. In GAM,
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MISHRA ET AL. 1615

the relationship in the data can be modeled as (Hastie &

Tibshirani, 1990; Hastie et al., 2001):

𝑌 = 𝐶 +
∑𝑝

𝑖 = 1
𝑓𝑖

(
𝑋𝑖

)
(2)

Here, Y is the target variable (e.g., observed SOC), Xi is

an environmental variable, fi is a smooth function, and C is

a constant, which is usually a mean of Y. Generalized addi-

tive models can be thought as a generalization of multilinear

regression, but without the linear assumptions. This is per-

formed by replacing the linear β parameters of the form 𝑌 =
𝐶 +

∑𝑝

𝑖=1β𝑖𝑋𝑖 with a smoothing function f, usually in the

form of additive splines. This allows the influence of an indi-

vidual predictor variable to be decoupled and compared with

the target variable, without requiring linearity of relationship

between the predictor variable and target variable.

The thin plate spline is used for the smoother, fi(Xi)

(Wood, 2003). For a one-dimensional problem, the smoothing

function is found by minimizing

𝑁∑
𝑖 = 1

[
𝑌 𝑖 − 𝑓

(
𝑋𝑖

)]2 + λ ∫
[
d2𝑓 (𝑥)
d𝑥2

]2
d𝑥 (3)

in which Yi and Xi, respectively, denote the target and the

input feature, N is the total number of data, and λ is a penalty

parameter. The function that minimizes Equation 3 is given as

𝑓 (𝑥) =
𝑁∑
𝑖=1

δ𝑖η
(||𝑥 −𝑋𝑖||) + 2∑

𝑗=1
α𝑗ϕ𝑗 (𝑥) (4)

Here, δi and αj are unknown parameters, ϕj is the (j − 1)-th

order polynomial, and η(r) = r3. Furthermore, δ is approxi-

mated by a reduced order basis as δ = Ukδk, in which Uk is a

rank-k matrix. The rank of Uk denotes the maximum degree

of freedom of the thin plate spline. To prevent an overfit-

ting, k is chosen to be four. The unknown parameters, Uk, δk,

and, α, are estimated from the data by solving a regularized

optimization problem as shown in Wood (2003). The GAM

model (Equation 2) is then computed by iteratively computing

the one-dimensional thin plate splines for each environmental

variable, using the backfitting algorithm (Hastie et. al., 2001).

For our analysis here, we used the “mgcv” package in R to

train a GAM model (Wood, 2017) using a restricted maxi-

mum likelihood method, and a thin plate spline for the smooth

functions (Wood, 2003).

2.5 Evaluation of prediction accuracy

To evaluate the prediction accuracy of the RF, GAM, and

analytical models, we calculated coefficient of determination

(R2) and RMSE using a 10-fold cross validation approach.

In this approach each model is refitted 10 times using 70%

of the SOC observations, and the predictions obtained from

the fitted models were compared with the remaining 30% of

observations. For each model, R2 and RMSE were calculated

using the following equations:

𝑅2 =
(
1 − SSE

SST

)
100%

RMSE =

√√√√1
𝑛

𝑛∑
𝑖 = 1

[
SÔC

(
𝑥𝑖
)
− SOC

(
𝑥𝑖
)]2

where SSE is the sum of squared errors at cross-validation

points, SST is the total sum of squares, SOC(xi) is the mea-

sured SOC, SÔC(𝑥𝑖) is the model predicted SOC, and n is

the number of validation observations. A coefficient of deter-

mination close to 1 indicates a perfect model (i.e., 100%

of variation has been explained by the model). For optimal

predictions, RMSE values should approach zero.

3 RESULTS

3.1 Dominant environmental predictors of
continental U.S. surface SOC stocks

The importance of all the environmental predictors of SOC

stocks in descending order, as estimated by RF, is provided

in Figure 1a. The resulting variable importance shows that

soil drainage has the dominant effect on continental U.S.

surface SOC stocks, followed by normalized difference veg-

etation index (NDVI) and dry-season precipitation. We also

found that many of the environmental predictors used in this

study were correlated with each other (Figure 1b). Whereas

RF offers a good predictive model, it lacks the capability

to identify multicollinearity in the environmental predictors

(Mishra et al., 2020). Hence, as explained in Section 2.4, we

removed the correlated variables (resulting in 19 variables)

and reapplied the RF approach with the reduced number of

environmental predictors.

Variable importance ranking changed after correlated envi-

ronmental predictors were removed (Figure 2a), as did the

incremental changes in R2 with respect to the number of the

environmental predictors (Figure 2b). We found significant

improvement in the RF performance (R2 and RMSE) as the

number of environmental predictors increased from 1 to 8

(with the predictors ordered by the RF-inferred importance;

Figure 2b). However, after 12 environmental predictors, the

improvement in model prediction accuracy was minimal.

These results suggested that among all the environmental
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1616 MISHRA ET AL.

F I G U R E 1 (a) Variable importance for the top 30 variables and (b) absolute values of the correlation coefficients between the variables. The

index corresponds to the variable importance rank. MSE is mean squared error, NDVI is normalized difference vegetation index, P driest is

precipitation in driest season, NLCD is national land cover database, VBFI is valley bottom flatness index, NPP is net primary productivity, PET is

potential evapotranspiration, P wettest is precipitation of the wettest season

predictors we used, only 12 environmental predictors were the

strongest predictors of SOC stocks.

3.2 Nonlinear controls of environmental
factors on SOC stocks

Using the 12 most important environmental predictors iden-

tified by RF as an input feature set, we trained the GAM to

fit the log-transformed SOC stocks (Figure 3). The constant

term in the GAM was C = 3.98. R2 and RMSE were .52

and .69, respectively. The error metrics of GAM were slightly

lower than for the RF (R2 = .56, RMSE = 0.66). Whereas

RF considers high-order nonlinear interactions between the

environmental predictors, in GAM, SOC is modeled by a

linear combination of nonlinear functions of each environ-

mental predictor, not considering interactions between them,

which may have resulted in a slightly lower prediction accu-

racy. Figure 3 shows the GAM-inferred relationships between

environmental factors and log-transformed SOC stocks with

respect to the 12 most important variables. Potential evapo-

transpiration, NDVI, and soil drainage condition are the three

most important variables from RF (Figure 2a).

The empirical relationships between SOC stocks and envi-

ronmental predictors were produced as splines by GAM.

We next developed explicit analytical expressions by fitting

the splines obtained from GAM. Figure 3 shows that the

changes of SOC stocks with respect to many of the envi-

ronmental variables (n = 6) are essentially negligible after

considering the uncertainty. Hence, we identified only the

following six important environmental variables: potential

evapotranspiration, NDVI, soil drainage condition, precip-

itation of the wettest season, elevation, and net primary

productivity;

∙ Potential evapotranspiration (PET):{
𝑧 = PET−641

1,000

𝑌PET = exp
(
0.44 − 1.24𝑧 − 1.51𝑧2 + 0.05𝑧3

)
− 0.6

∙ Normalized difference vegetation index (NDVI):

𝑌NDVI =

{
0.078 +1.87(NDVI16−0.4)1.62ifNDVI16>0.4

0.078 − 4.36|NDVI16 − 0.4|2.44otherwise
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MISHRA ET AL. 1617

F I G U R E 2 (a) Variable importance after removing correlated variables. (b) Changes in the model accuracy in terms of the number of the input

variables of the random forest model. MSE is mean squared error, PET is potential evapotranspiration, NDVI is normalized difference vegetation

index, NLCD is national land cover database, P wettest is precipitation of the wettest season, VBFI is valley bottom flatness index, NPP is net

primary productivity, MRN is melton ruggedness number

∙ Soil drainage:

𝑌Soildrainage =

⎧⎪⎪⎨⎪⎪⎩

−0.38ifSoildrainage = 1
−0.05ifSoildrainage = 2
0.15ifSoildrainage = 3
0.50ifSoildrainage = 4
1.00ifSoildrainage = 5

∙ Elevation:{
𝑧 = Elevation

1,000
𝑌Elevation = 0.17 − exp

[
−1.34 − 0.75𝑧

(
1 + 0.1𝑧2

)]
∙ Precipitation:{

𝑧 = Precipitation
250

𝑌Precipitation = 0.38 − exp
(
−0.15 − 3.24𝑧1.5

)
∙ Net primary productivity (NPP):

𝑌NPP = 0.077 − 1.68 × 10−5NPP

The fitted curves accurately represented the splines from

GAM (Figure 4). The log-transformed SOC stocks from the

GAM approach were computed using the following equation:

ln (SOC) = 𝑌PET + 𝑌NDV𝐼 + 𝑌Soildrainage + 𝑌Elevation

+ 𝑌Precipitation + 𝑌NPP + 3.98

Here, ln(SOC) is log transformed SOC stocks, YPET is

the empirical relation of PET with SOC stocks, YNDVI is

the empirical relation of NDVI with SOC stocks, YSoildrainage

is the empirical relation of soil drainage with SOC stocks,

YElevation is the empirical relation of elevation with SOC

stocks, YPrecipitation is the empirical relation of precipitation

with SOC stocks, and YNPP is the empirical relation of net

primary productivity with SOC stocks. Among the environ-

mental factors selected in GAM model, all environmental

factors were continuous variables, except the soil drainage.

As the soil drainage is a discrete variable, the equation of soil

drainage is different than other reported equations.

Our results show that the analytical model we developed

using only six environmental predictors (Figure 5) showed

similar prediction accuracy as that obtained from the GAM
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1618 MISHRA ET AL.

F I G U R E 3 Variable-wise prediction of observed soil organic carbon (ln SOC, ln kg m−2) by the generalized additive model. The shade around

the solid line indicates 95% confidence interval. The minor ticks on the horizontal axis denote the values of data. PET is potential evapotranspiration,

NDVI is normalized difference vegetation index, NLCD is national land cover database, P wettest is precipitation of the wettest season, VBFI is

valley bottom flatness index, and NPP is net primary productivity

with 12 variables. Using only the first three environmen-

tal predictors (potential evapotranspiration, NDVI, and soil

drainage condition) together with the constant term (3.98), the

analytical model achieved an R2 of .48, indicating relatively

marginal importance of the remaining three environmental

factors (elevation, precipitation, and net primary productiv-

ity). Figures 5a and 5b show the comparison between the

GAM model with all the 12 environmental variables and

the analytical model with six environmental variables in

predicting SOC stocks.

4 DISCUSSION

Our study demonstrates use of ML to improve understanding

of nonlinear controls of environmental factors on SOC stocks.

We developed an approach to derive analytical expressions

for observationally derived environmental controls on SOC

stocks. In this approach, we first identified the dominant envi-

ronmental predictors of continental U.S. surface SOC stocks

using a RF approach. We then derived mathematical equations

that captured environmental controls on SOC stocks using a

GAM approach. The mathematical relations we derived pro-

duced comparable prediction accuracy consistent with the RF

approach, using only a subset of environmental predictors

used in the RF approach. Our approach of deriving analyt-

ical relationships between environmental factors and SOC

stocks can be used to evaluate ESM representations of envi-

ronmental controls on SOC stocks. However, we note that

our study quantified these relationships at a much finer res-

olution (100 m) than typically used in ESM land models for

global simulations (∼10–100 km). Therefore, a first step in

evaluating ESM land model SOC predictions using these

derived analytical relationships would be to run the models

at fine resolution using appropriate forcing, initial conditions,

and site characteristics. Such an analysis could point to defi-

ciencies in the models’ mechanistic representations so that

evaluation at ESM resolutions could focus on spatial scaling

methods.

Our analysis identified six environmental factors (potential

evapotranspiration, vegetation index, soil drainage condition,

precipitation, elevation, and net primary productivity) as

dominant predictors of continental U.S. surface SOC stocks

among the 31 environmental predictors we evaluated. Out of

these 6 environmental factors, potential evapotranspiration,

soil drainage condition, and NDVI were the most important

environmental predictors of SOC stocks. Elevation and net

primary productivity showed marginal importance in predict-

ing continental US surface SOC stocks, although these are key

environmental controls in current ESM land models.
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MISHRA ET AL. 1619

F I G U R E 4 Curve fittings of the splines from the generalized additive model. the solid lines are the expectation values from the generalized

additive model, and the circles are computed from the fitting curves. The shade around the solid line indicates 95% confidence interval

F I G U R E 5 Comparison of the model predictions between (a) GAM (generalized additive model) with 12 variables, and (b) analytical model

with six variables. SOC, soil organic carbon
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Various earlier studies also used different combination of

these environmental factors to predict SOC stocks at different

scales and in different environmental conditions (Gonçalves

et al., 2021; Lamichhane et al., 2019; Minasny et al., 2013;

Mishra et al., 2020, 2021). Garten et al. (2009) reported that

the control of soil moisture on bulk SOC and its fractions

were greater than the controls of elevated carbon dioxide and

temperature individually at a field scale. Consistent with this

finding, the dominant controls of potential evapotranspira-

tion, soil drainage condition, and precipitation demonstrate

the control of soil moisture on SOC stocks across the con-

tinental U.S. Our results show that SOC stocks decreased

exponentially with increases in potential evapotranspiration.

In our dataset, higher potential evapotranspiration values are

located in the southern United States (Supplemental Figure

S1), which has higher air temperatures and solar radiation in

comparison with other parts of the United States. Higher air

temperatures and longer duration of solar radiation cause drier

soil conditions, promoting SOC mineralization and lower total

SOC stocks (Das et al., 2019; Hungate et al., 2002; Sherrod

et al., 2005).

Our results show lower SOC stocks in excessively drained

soils (Number 1) and higher SOC stocks in poorly drained

soils (Number 5) across the continental United States.

Excessively drained soils are generally coarse-textured soils

with high saturated hydraulic conductivity. Similarly, poorly

drained soils are often fine-textured soils with more of their

pore space filled with water for longer periods of time. Our

results are consistent with findings of earlier studies, which

showed mean soil carbon concentration significantly dif-

fered across different soil drainage classes (Raymond et al.,

2013; Wickland et al., 2010). Poorly and very poorly drained

soils have lower soil respiration rates (Davis et al., 2010;

Webster et al., 2008) compared with well-drained soils

(Davidson et al., 1998; Savage & Davidson, 2001), resulting

in higher SOC preservation. Some studies suggest precipita-

tion has a strong positive correlation with SOC (Alvarez &

Lavado, 1998; Burke et al., 1989; Evans et al., 2011), whereas

other studies show precipitation has little to no influence on

SOC (Doetterl et al., 2015; Percival et al., 2000). Our results

show increased SOC stocks with increases in precipitation up

to 200 mm yr−1. Beyond 200 mm yr−1, the effect of precipi-

tation on SOC stocks was small. Considering precipitation as

a proxy for soil moisture content, control of precipitation on

SOC stocks is higher in drier areas of the continental United

States than in areas with higher precipitation.

Our results indicate that with increased vegetation index,

continental U.S. surface SOC stocks increased nonlinearly.

We found large increases in SOC stocks as annual average

NDVI values increased from −0.2 to 0.2, but the relation-

ship between SOC and NDVI flattened at higher NDVI values

(>0.2 to 1). This relationship could be due to nonlinear rela-

tionships between chlorophyll concentration of green biomass

and the calculated NDVI values (Yoder & Waring, 1994).

Vegetation properties have been documented as strong pre-

dictors of SOC stocks (Guo et al., 2016; Jobbágy & Jackson,

2000; Li et al., 2010) and widely used in statistical and

process-based models to predict SOC stocks (Gautam et al.,

2020; Mishra et al., 2021).

Pedological knowledge about the study area should be used

while selecting and using environmental variables in ML

approaches (Wadoux, Samuel-Rosa, et al., 2020). A num-

ber of earlier studies have documented that ML selected

environmental predictors were related with soil forming pro-

cesses and factors in various environments. For example,

Brungard et al. (2015) reported that the environmental covari-

ates selected by ML provided information about the soil

erosion and deposition processes in semiarid environments

of the United States, which controlled soil type distribution

across the study area landscapes. Hengl et al. (2017) used ML

to select environmental covariates which represented factors

of soil formation at global scale: climate, relief, living organ-

isms, water dynamics, and parent material. Shi et al. (2018)

reported that ML based feature selection methods provided a

useful way to understand the relationships between soil prop-

erties and environmental variables and map soil properties

accurately. Therefore, environmental factors selected by ML

are not necessarily spurious but often result from processes

that regulate the soil formation, and factors that determine the

soil properties distribution across landscapes.

Our results are based on the investigation of the 31 envi-

ronmental covariates that we used in this study. Though these

environmental variables represent major soil forming factors,

the empirical relationships between environmental factors

and SOC stocks that we reported might change in presence

of other environmental variables, which are currently not

included in this study. Further, these environmental variables

were collected from various sources with different spatial res-

olutions and accuracies. Our analysis has not included the

effect of these uncertainties. Previous scaling studies of SOC

stocks (Adhikari et al., 2020; Mishra & Riley, 2015) showed

importance of different environmental factors on SOC stocks

across different spatial scales. These findings suggest that the

nonlinear mathematical algorithms we developed in this study

may only be used to infer environmental controls on SOC

stocks at the same spatial scale (100 m). Further, interactions

between environmental factors in controlling the variability of

SOC stocks need to be further investigated.

It is important to note the limitations of current ML

approaches. First, the environmental covariates we used were

a mixture of continuous and discrete variables. Whereas the

discrete variables were converted to numeric variables by

an integer encoding, such integer encoding may not cor-

rectly reflect the underlying structure of the environmental

variable, which makes their importance ranked low in RF

and eventually removed in the feature selection process. It
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is an open question how to build an accurate ML model for

such multimodal data. Second, when the data exhibits mul-

ticollinearity, it is difficult to select the true environmental

factor that controls the dependent variable. Machine learning

models may select any proxy that is highly correlated with the

dependent variable. Hence, it is important to carefully review

and include scientific understanding in the feature selection

process. Lastly, in this study, we focused on identifying non-

linear structures between observed environmental controllers

and SOC stocks. It is important to note that, however, the

correlation does not imply causation. It is an area of active

research to identify a casual structure from the observations.

5 CONCLUSIONS

Appropriate representation of environmental controllers on

SOC stocks in land models is required to project realistic

rates of SOC change in response to land use and climate

changes, and to understand feedbacks between the land and

atmosphere. The nonlinear expressions we derived quantify

controls of individual environmental factors on SOC stocks

in the presence of other environmental factors. These obser-

vationally derived analytical expressions can be used for

(a) benchmarking land model representations of environmen-

tal controls on SOC stocks, and (b) digital soil mapping.

Our analysis showed potential evapotranspiration, NDVI,

soil drainage condition, precipitation, elevation, and net pri-

mary productivity as important environmental controllers of

continental U.S. surface SOC stocks. Out of these six environ-

mental factors, potential evapotranspiration, NDVI, and soil

drainage condition explained about 50% of the variability in

observed SOC stocks (whereas the other three environmen-

tal variables explained another 6% of the variability). Our

derived analytical expressions produced comparable predic-

tion accuracy to the GAM and RF using only a subset of

environmental factors. Future studies should investigate the

functional forms of the relationships we derived to describe

environmental controllers on SOC stocks, evaluate and com-

pare with land model emergent relationships, and use these

comparisons to improve mechanistic representations in land

models.
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