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Spatial heterogeneity and environmental predictors 
of permafrost region soil organic carbon stocks
Umakant Mishra1*†, Gustaf Hugelius2, Eitan Shelef3, Yuanhe Yang4, Jens Strauss5, 
Alexey Lupachev6, Jennifer W. Harden7,8, Julie D. Jastrow1, Chien-Lu Ping9, William J. Riley10, 
Edward A. G. Schuur11, Roser Matamala1, Matthias Siewert12, Lucas E. Nave13, Charles D. Koven10, 
Matthias Fuchs5, Juri Palmtag14, Peter Kuhry2, Claire C. Treat5, Sebastian Zubrzycki15, 
Forrest M. Hoffman16,17, Bo Elberling18, Philip Camill19, Alexandra Veremeeva6, Andrew Orr1

Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but 
their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with 
environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region 
SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg 
C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope 
positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant 
topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are 
significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of 
permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling 
the response of permafrost affected soils to changing climate.

INTRODUCTION
Permafrost (where ground temperature is at or below 0°C for two or 
more consecutive years)–affected soils store large quantities of or-
ganic carbon because of cold temperatures and multiple pedogenic 
processes, such as peat accumulation, cryoturbation, and accumu-
lation of eolian, alluvial, colluvial, and lacustrine sediments (1–4). 
Perennially frozen conditions, water-saturated environments, and 
low temperatures have reduced decomposition rates and preserved 
soil organic carbon (SOC) stocks in these ecosystems over long time 
periods. High-latitude areas, where most permafrost-affected soils 
are located, are projected to experience climate extremes causing 
greater temperature increases compared to other parts of the world 
(5). Similarly, large decreases in permafrost areas (22 to 64%) are 
projected in the Tibetan permafrost region under future climate 
warming scenarios (6). Because of these anticipated temperature 
increases and permafrost degradation, increased mineralization of 
SOC in permafrost-affected soils could release substantial amounts 
of greenhouse gases to the atmosphere over long periods of time (7). 
Therefore, these soils are a key component of the global carbon cy-
cle and play an important role in moderating global climate. Large 
uncertainty exists regarding potential modes (e.g., CH4 or CO2) and 
release rate of greenhouse gases from warming permafrost-affected 
soils, as well as their feedback on climate (7, 8).

Earlier studies have assessed the SOC stocks of permafrost-affected 
soils by using a variety of approaches. Ping et al. (9) estimated that 
98 Pg C are stored in the top 1 m of soils in the North American Arctic 
region by upscaling soil profile observations with a circumpolar Arctic 
vegetation map. In the Northern Circumpolar Soil Carbon Database, 
Tarnocai et al. (10) linked soil profile data with regional maps of soil 
orders and estimated that 1024 Pg C exist to a depth of 3 m across the 
northern circumpolar permafrost region. Hugelius et al. (11) up-
dated the circumpolar SOC stock estimate to 1035 ± 150 Pg C (95% 
confidence interval) by incorporating data from additional pedons 
sampled to deeper depths. Their study reported substantial uncer-
tainty in permafrost region SOC stock estimates and identified more 
SOC observations and improved upscaling methodology as critical 
needs for reducing that uncertainty. All these studies used the dis-
crete model of spatial variation to represent the geographical distri-
bution of SOC stocks. This approach relies on identifying geographic 
polygons based on thematic maps of vegetation or soil type distribu-
tions, where SOC stocks are assumed homogenous in a given polygon 
but can differ among polygons (12). However, the spatial heteroge-
neity of soil properties can be better represented by models that incor-
porate multiple landscape and microclimatic variables to represent 
the spatial variation of soil properties. Recent advances in geo-
spatial science and environmental data collection have increased the 
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availability of high-resolution environmental datasets that can be 
related to soil-forming factors (13). These advances allow for more 
quantitative approaches to predicting the spatial heterogeneity of 
soil properties, including SOC stocks. These approaches can also 
quantify the relationships between soil properties and their envi-
ronmental controllers, information that is critical for projecting soil 
responses to climate change and other perturbations. Furthermore, 
these approaches can be used to estimate the spatial variation of pre-
diction uncertainties (14) and to identify and prioritize locations where 
additional observations are needed (15).

Several geospatial approaches have been used to evaluate the 
spatial heterogeneity of SOC stocks depending on the availability 
of SOC data and information regarding soil-forming factors (16). 
These approaches can be categorized into techniques that capitalize 
on (i) environmental correlation between SOC and environmental 
factors, (ii) spatial autocorrelation among SOC observations, and 
(iii) hybrid approaches that combine environmental correlation 
and spatial autocorrelation. More recently, machine learning–based 
spatial modeling techniques such as random forest (17), neural net-
works (18), and rule-based models (19) have sought to capture 
nonlinear relationships between SOC and environmental factors. 
Among the approaches used to predict the spatial heterogeneity of 
SOC stocks, multiple linear regressions and ordinary kriging are the 
most commonly used techniques, primarily due to their simplicity 
in interpretation and ease of use. However, the most accurate pre-
dictions have been achieved through the hybrid approaches that 
combine both environmental correlation and spatial autocorrela-
tion (16).

Permafrost-affected soils have large horizontal (hereafter “spatial”) 
and vertical (i.e., depth-distributed) heterogeneity of soil properties 
(3). Therefore, areal estimates of soil properties including SOC stocks 
could benefit from spatial modeling approaches. However, applica-
tion of these approaches in the permafrost region has been limited 
because of low sample density and limited availability of spatially 
resolved environmental data. Recently, digital soil-mapping tech-
niques using geospatial and remote sensing information have been 
applied at local to regional scales to account for and better represent 
the spatial heterogeneity of permafrost-affected soils (17, 20). These 
high-resolution mapping efforts have produced promising results 
with a variety of geospatial techniques.

Here, we present a new estimate of permafrost SOC stock on the 
basis of a continuous model of spatial variation by combining soil 
profile observations with spatially referenced data representing some 
of the major soil-forming factors (topographic attributes, land cover 
types, climate, and bedrock geology). We used a regression kriging 
approach to predict the spatial variability in SOC stocks at three depth 
intervals across the permafrost region soils of the Northern Hemi-
sphere (excluding mid-latitude mountain ranges). Our approach 
coupled the correlation between SOC stocks and environmental fac-
tors with the spatial autocorrelation in SOC observations to sepa-
rately estimate SOC stocks and their spatial uncertainties in 0- to 
1-m, 1- to 2-m, and 2- to 3-m depth intervals at 250-m spatial reso-
lution. We identified soil-forming factors that were significant con-
trollers of SOC stocks across the permafrost domain. Subsequently, 
we analyzed the spatial and vertical distributions of SOC stocks under 
different land cover types, topographic positions, permafrost types, 
and climatic conditions to provide the first high-resolution assess-
ment of SOC stocks in the Northern Hemisphere permafrost region 
and quantified their relations with environmental factors, which is 

critical to constrain the uncertainty that exists in predicting carbon 
climate feedbacks.

RESULTS
We estimated that Northern Hemisphere permafrost region soils 
contain   1014 −175  +194   Pg C (hereafter, uncertainties are reported as lower 
and upper prediction intervals at 95% confidence level) to a depth 
of 3 m. Of the total estimate,   1000 −170  +186   Pg C are in the northern cir-
cumpolar region and   14 −5  +8   Pg C are in the Tibetan permafrost region 
(Table 1). In the northern circumpolar region, the depth distribu-
tion of SOC stocks was 23, 51, 31.5, and 17.5% in the 0- to 0.3-m, 
0 to 1-m, 1 to 2-m, and 2 to 3-m depth intervals, respectively. In the 
Tibetan region, a greater proportion of predicted SOC stocks were 
found in the 0- to 1-m depth interval (64%), with 18% in both the 
1- to 2-m and 2- to 3-m depth intervals. The spatial heterogeneity 
in predicted SOC stocks (as indicated by the coefficient of varia-
tion) differed among depth intervals and regions (Table 1). The 
uncertainty in predicted SOC stock increased by 9% at 1- to 2-m 
and 19% at 2- to 3-m depth relative to the surface 0 to 1 m in the 
northern circumpolar region. By comparison, uncertainty in pre-
dicted SOC stocks was much higher at 1- to 2-m depth interval in 
the Tibetan permafrost region. The predicted spatial distributions 
of SOC stocks and associated uncertainty estimates for the North-
ern circumpolar and Tibetan permafrost regions are illustrated in 
Figs. 1 and 2.

Across both permafrost regions, we found an inverse relationship 
between the estimated magnitude and uncertainty of SOC stocks. The 
spatial distribution of uncertainty in SOC stocks varied at different 
depth intervals. For example, Southern Alaska and Eastern Canada 
had greater uncertainty at depth intervals of 0 to 1 and 2 to 3 m, but 
these regions had lower uncertainty in the 1- to 2-m depth intervals 
(Fig. 1). The fractional uncertainty in SOC stocks was overall much 
greater in the Tibetan permafrost region, especially below a depth of 
1 m (Fig. 2). However, because Tibetan SOC stocks were much lower 
than in the circumpolar region, the actual variation in predicted stocks 
was much less (Table 1). The spatial heterogeneity (coefficient of 
variation; Table 1) of predicted SOC stock estimates decreased with 
depth in the Tibetan permafrost region. In contrast, spatial hetero-
geneity increased with depth in the northern circumpolar perma-
frost region. The average error of prediction indicated as the root 
mean square error (RMSE) increased with depth in both permafrost 
regions. In northern circumpolar region, the RMSE increased about 
three times in deeper depth intervals in comparison to surface soils 
(Table 1). The RMSE increased two times in deeper depths in the 
Tibetan permafrost region soils. The ratio of performance to devia-
tion (RPD) value (>1.4) indicates moderate predictive ability of SOC 
stock estimates of 0- to 0.3-m and 0- to 1-m depth intervals in both 
permafrost regions. However, the predictive ability of predicted SOC 
stocks was lower (RPD, <1.4) in deeper depth intervals in both north-
ern circumpolar and Tibetan permafrost regions.

We analyzed the spatial distribution of predicted area average 
and predicted total SOC stocks across a transect of permafrost zones 
within the northern circumpolar region (Table 2). Overall, large spa-
tial heterogeneity in SOC stocks was predicted for all permafrost 
zones. The greatest spatial heterogeneity was found in the continu-
ous and isolated permafrost zones (90 and 91% average coefficient of 
variation to 3-m depth, respectively). The discontinuous and spo-
radic permafrost zones had somewhat lower spatial heterogeneity 
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(75 and 82% average coefficient of variation to 3-m depth, respec-
tively). In general, spatial heterogeneity increased with depth across 
different permafrost zones. However, under continuous permafrost 
zone, spatial heterogeneity was largest (108% coefficient of varia-
tion) within the 1- to 2-m depth interval. Of the 1000 Pg C predicted 
to be stored in the top 3 m of soils across the northern circumpolar 
region, about half (52%) occurred within the continuous permafrost 
zone. The remaining 477 Pg C were distributed similarly among the 
discontinuous, sporadic, and isolated permafrost zones (17, 15, and 
16%, respectively). Across permafrost zones, both average SOC stocks 
and predicted total SOC stocks were consistently greater at 0 to 1 m 
than in the other depth intervals. About half of the SOC stocks (51%) 
were predicted in the surface 0- to 1-m depth interval, whereas 1- to 
2-m and 2- to 3-m depth intervals across permafrost zones stored 32 
and 17% of the SOC stocks, respectively.

Different environmental factors predicted the magnitude and spa-
tial heterogeneity of SOC stocks in different permafrost regions and 
depth intervals. Environmental factors predicted 5 to 57% variation 
of permafrost region SOC stocks depending on the permafrost re-
gion and depth interval. In general, the number of significant environ-
mental factors decreased with depth (table S1). The highest variation 
(57%) in SOC stock was explained in surface (0 to 0.3 m) soils, and 
the lowest variation (5%) in SOC stock was explained at 2- to 3-m 
depth interval, both in the Tibetan permafrost region. Among dif-
ferent topographic attributes, elevation and soil wetness index were 
consistently significant controllers of SOC stocks in both the circum-
polar and Tibetan permafrost regions. Like other environmental 
factors, a larger number of topographic attributes were significant 
predictors of surface SOC stocks, and the number of significant topo-
graphic predictors decreased with depth. Surface air temperature was 
a significant control of permafrost SOC stocks in the northern cir-
cumpolar region. However, precipitation was a significant control 
in the Tibetan region. Bedrock geology type was a significant predic-
tor of SOC stocks in the circumpolar region but not in the Tibetan 
region. Among all the environmental factors that we used, precipi-
tation alone explained 47 and 24% of the variation in SOC stocks 
at 0- to 0.3-m and 0- to 1-m depth interval of the Tibetan perma-
frost region. In the northern circumpolar region, slope angle was a 

dominant environmental predictor of SOC stocks and explained 23% 
of the variation in SOC stocks of 1- to 2-m depth interval. Tempera-
ture alone explained 2 to 15% of the variation in SOC stocks of the 
northern circumpolar region (table S1).

Topographic attributes had a large influence on the spatial dis-
tribution of permafrost region SOC stocks. The magnitudes of SOC 
stocks in different topographic settings were not consistent across the 
permafrost regions. In the 0- to 3-m depth interval of the northern 
circumpolar region (Fig. 3A), flat areas (5.2 million km2) had the 
highest and hilltop positions (1.4 million km2) had the lowest SOC 
stocks. The largest uncertainties in 0- to 3-m depth interval SOC 
stocks were found in toe-slope (3.2 million km2) and hilltop positions 
(49%) in the circumpolar region. Flat areas were least uncertain (36%) 
and mid-slope (3.8 million km2) positions had intermediate uncertainty 
(44%). In the 0- to 3-m depth interval of the Tibetan permafrost re-
gion (Fig. 3B), toe-slope positions (0.5 million km2) stored the largest 
and flat areas (0.34 million km2) stored the lowest SOC stocks. The 
largest uncertainty (104%) in Tibetan region SOC stocks was found 
in flat areas. Toe-slope and mid-slope (0.51 million km2) positions 
had the least uncertainty (83 and 85%, respectively), while hilltop 
positions (0.27 million km2) had intermediate uncertainty (87%).

Our results suggest that land cover types were important environ-
mental controllers of SOC stocks. In the circumpolar permafrost 
region (fig. S1A), tundra and needleleaf mixed forest land cover types 
stored the largest SOC stocks (  381 −76  +65   and   332 −79  +62   Pg C, respectively). 
Mosaics of different land cover type accounted for the next largest 
SOC stocks. The mosaic of grassland and shrubland stored   80 −21  +15   Pg C, 
the mosaic of forest and shrubland stored   65 −20  +14   Pg C, and the mosaic 
of broadleaved and needleleaf forest stored   36 −11  +8    Pg C. Sizeable SOC 
stocks were also associated with grasslands (  35 −13  +7    Pg C), the flooded 
shrub or herbaceous land cover type (  25 −3  +2   Pg C), and needleleaf 
evergreen forest (  7.5 −4  +3   Pg C). Area-average SOC stock was highest 
in shrub wetlands and lowest in the needleleaf evergreen forest. We 
found the largest uncertainty in SOC stocks (96%) under the needle-
leaf evergreen forest land cover type and the lowest uncertainty un-
der the flooded shrub or herbaceous land cover type (21%). Among 
other land cover types, the uncertainty in SOC stocks ranged between 
37 and 58%. In the Tibetan permafrost region (fig. S1B), grasslands 

Table 1. Average SOC stocks, prediction error, and total predicted SOC stocks for different depth intervals and permafrost regions. Values in 
parentheses are the 95% confidence interval of predictions. RMSE, root mean square error. 

Northern circumpolar permafrost region  
(17.7 × 106 km2) Tibetan permafrost region (1.1 x 106 km2)

Depth 
interval (m)

Sample 
number

Average 
SOC stock 
(kg m−2)

RMSE  
(kg m−2)

Coefficient 
of variation 

(%)

Total SOC 
stock  
(Pg C)

Sample 
number

Average 
SOC stock 
(kg m−2)

RMSE  
(kg m−2)

Coefficient 
of variation 

(%)

Total SOC 
stock  
(Pg C)

0–0.3 2530 13 (10–25) 6.5 37 232 
(183–447) 173 6 (3.5–9) 3 105 7 (4–10)

0–1 2530 29 
(24.5–33.5) 13.5 48 510 

(432–589) 114 8 (6–9.5) 5.5 119 9.2 (7–11)

1–2 875 15 (12–18) 18 86 315 
(256–377) 114 2 (0.3–5) 6 65 2.5 (0.4–6)

2–3 538 8 (6–10) 17.5 100 175 
(142–220) 114 2 (1–3.5) 6 42 2.7 (1–4.3)

Total 1000 
(830–1186) 14.4 (9–22)
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had the largest SOC stocks (  5.0 −2.6  +3.7   Pg C). Needleleaf forest and the 
mosaic of natural vegetation stored   2.0 −0.39  +0.42   and   2.2 −1.0  +1.3   Pg C, respec-
tively. Among the land cover types covering more than 1% land area, 
the mosaic of grasslands and shrublands stored the lowest SOC stocks 
(  0.30 −0.09  +0.15   Pg C). The average SOC stock was highest in the mixed 
forest land cover type and lowest in the grassland. The highest un-
certainty (127%) in SOC stocks occurred under grassland land cover 
and the lowest occurred under mixed forests (~28%). Other land 
cover types had intermediate uncertainties ranging from 42 to 104%.

Climatic factors such as mean annual temperature (MAT) and 
mean annual precipitation (MAP) were differently related to SOC 

stocks in the two permafrost regions. In the northern circumpolar 
region, predicted SOC stocks at 0- to 3-m depth were nonlinearly 
related to temperature (Fig. 4A). The lowest SOC stocks were as-
sociated with the −29° to −25°C and −25° to −20°C MAT ranges 
(combined into the <−15°C MAT range; Fig. 4A). Predicted SOC 
stocks increased as MAT increased from −29° to −5°C and then de-
creased as the MAT increased from −5° to 10°C. The largest SOC 
stocks were associated with the −10° to −5°C MAT range. The lowest 
SOC stocks were found in areas with MAT between −29° and −25°C. The 
area-average SOC stocks increased with temperature up to –5°C and 
then decreased at higher temperatures. The largest uncertainty in 

Fig. 1. Predicted spatial distribution of the SOC stocks of the northern circumpolar permafrost region. SOC stocks of the 0- to 0.3-m (A), 0- to 1-m (B), 1- to 2-m (C), and 
2- to 3-m (D) depth intervals with their associated uncertainty estimates for 0 to 0.3 m (E), 0 to 1 m (F), 1 to 2 m (G), and 2 to 3 m (H). (I and J) SOC stocks for the 0- to 3-m 
depth interval and their spatial uncertainty estimate, respectively. Areas in black show water surface or perennial ice, urban, and barren land with consolidated materials.
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average SOC stocks (146%) was found for areas with MAT in the 5° to 
10°C range. Predicted SOC stocks increased as precipitation increased 
from MAP of 52 to 400 mm year−1 but decreased as MAP increased 
from 400 to >1000 mm year−1 (Fig. 4B). The largest SOC stocks were 
found in areas receiving MAPs of 200 to 400 mm year−1 and 400 to 
600 mm year−1, respectively. Area-average SOC stocks decreased lin-
early as MAP increased, while uncertainties in SOC stocks increased 

with MAP. In the Tibetan permafrost region, predicted SOC stocks 
also exhibited nonlinear relationships with both MAT and MAP, 
although the maxima were associated with warmer MAT and wetter 
MAP ranges than in the northern circumpolar region. The largest 
Tibetan region SOC stocks were found in areas with −5° to 0°C MAT 
range (Fig. 4C) and in areas with 200- to 400-mm MAP (Fig. 4D). 
Area-average SOC stocks increased as both MAT and MAP increased, 

Fig. 2. Predicted spatial distribution of the SOC stocks of the Tibetan permafrost region. SOC stocks of the 0- to 0.3-m (A), 0- to 1-m (B), 1- to 2-m (C), and 2- to 3-m 
(D) depth intervals with their associated spatial uncertainty estimates for 0- to 0.3-m (E), 0- to 1-m (F), 1- to 2-m (G), and 2- to 3-m (H) depth intervals. (I and J) SOC stocks 
in the 0- to 3-m depth interval and their spatial uncertainty estimate, respectively. Areas in black show water surface or perennial ice, urban, and barren land with consol-
idated materials.
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although stocks stabilized above MAP of 800 mm year−1. In con-
trast, the magnitude of uncertainty in SOC stocks decreased with 
increases in MAT and MAP. Lowest prediction uncertainties (~26%) 

were found for SOC stocks in areas with >800-mm MAP and 
>10°C MAT.

DISCUSSION
We generated spatially explicit estimates of SOC stocks at 250-m 
resolution for permafrost-affected soils of the Northern Hemisphere 
by combining the northern circumpolar region with the Tibetan 
permafrost region. Using a new database, we quantified the spatial 
distribution of uncertainties in permafrost region SOC stocks and 
identified geographic regions with higher and lower uncertainties. 
We identified land cover types, topographic positions, and climatic 
zones where the predicted SOC stocks and associated uncertainties 
are highest and lowest. We identified high-resolution, significant 
environmental predictors of SOC stocks of different permafrost re-
gions and depth intervals. Using a detailed topographic analysis, we 
also predicted the spatial distribution of SOC stocks in different 
landscape positions across the Northern Hemisphere permafrost 
region soils.

Existing global SOC studies underestimate permafrost region SOC 
stocks mainly due to insufficient inclusion of permafrost region soil 
samples in the global SOC estimates (10, 11). We compared our 
estimates with two northern circumpolar estimates (10, 11) and one 
Tibetan region SOC stock estimate (21). These earlier studies used 
different approaches for upscaling SOC stock estimates. Nonetheless, 
our total SOC stock estimate (0- to 3-m depth interval) for the 
northern circumpolar region is similar to earlier studies [3 and 2% 
lower than the estimates of Hugelius et al. (11) and Tarnocai et al. 
(10), respectively]. Similarly, our Tibetan permafrost region SOC 
stock estimate is 6% lower than the Ding et al. (21) estimate. In con-
trast, our estimates showed larger spatial heterogeneity and uncer-
tainty ranges in comparison to those reported by earlier studies. 

Fig. 3. Heterogeneous topographic controls on permafrost region soil organic 
carbon stocks. Total SOC stocks and average SOC stocks across different topo-
graphic positions in the northern circumpolar (A) and Tibetan (B) permafrost regions. 
Bars are total predicted SOC stocks and circles are average SOC stocks in the 0–3 m 
depth interval. Error bars indicate the 95% confidence interval of the predictions.

Fig. 4. Heterogeneous climatic controls on permafrost region soil organic carbon stocks. Total SOC stocks and average SOC stocks across different ranges of mean 
annual temperature and mean annual precipitation in the northern circumpolar (A, B) and Tibetan (C, D) permafrost regions. Bars are total predicted SOC stocks and cir-
cles are average SOC stocks in the 0–3 m depth interval. Error bars indicate the 95% confidence interval of the predictions. Note: The < –15°C temperature bin includes 
analyzed temperature ranges of –29° to –25°C and –25° to –20°C, which were associated with SOC stocks too small to illustrate individually.
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Differences between our estimates and the previous northern cir-
cumpolar studies allude to the importance of increased sample size 
and of associations between SOC and geospatial soil-forming fac-
tors. For example, we were able to use 42, 69, and 53% more samples 
at the 0- to 1-m, 1- to 2-m, and 2- to 3-m depth intervals, respective-
ly, than were available to Hugelius et al. (11) (table S2). Although 
Tarnocai et al. (10) and Hugelius et al. (11) used a similar spatial 
prediction approach (thematic upscaling), Hugelius et al. (11) in-
corporated more samples and a different geographic subdivision 
than Tarnocai et al. (10). Although the differences in total 0- to 3-m 
SOC stock estimates are relatively small compared to these former 
circumpolar estimates, large differences were found in the SOC stock 
estimates and their spatial patterns for different depth intervals. In 
the 0- to 1-m depth interval, our estimate is 3 and 8% greater than 
those of Tarnocai et al. (10) and Hugelius et al. (11), respectively. 
However, our estimates are 11 and 15% lower at depth intervals of 
1 to 2 m at 2 to 3 m, respectively, compared to those reported by 
Hugelius et al. (11). This divergence of predicted depth distributions 
may have important consequences for the vulnerability of perma-
frost SOC to top-down warming if SOC stocks are more superficially 
distributed (7,8). Our analysis also contrasts from these prior cir-
cumpolar studies in critical methodological ways. Whereas both 
prior studies used a thematic upscaling approach in which the aver-
age value of observed SOC stocks was used as the predicted value 
for specific thematic classes, such as soil types (11), our geospatial 
approach uses both the (i) correlation between SOC stock observa-
tions and environmental data representing soil-forming factors and 
(ii) spatial autocorrelation in SOC observations to predict SOC 
stocks. The small difference between our Tibetan permafrost region 
SOC stock estimate (14 Pg C) and the estimate of Ding et al. (21) 
(15 Pg C) was due to the different spatial prediction approaches used. 
The machine learning approach used by Ding et al. (21) uses non-
linear relationships between SOC stocks and environmental factors 
to predict spatial heterogeneity of SOC stocks.

Climatic factors including temperature and precipitation regulate 
SOC stocks, particularly in soils of cold temperature regimes or 
subject to prolonged saturation. In the permafrost region, consist-
ently low temperatures drive pedogenic processes such as cryotur-
bation and reduce rates of biological activity associated with organic 
C decomposition, hence preserving large stocks of SOC. Precipita-
tion affects SOC in permafrost soils through direct effects on soil 
moisture content and its interactions with topography and vegeta-
tion, which influence redox potential and the quantity and qualities 
of organic matter inputs, respectively. We found temperature to be 
a significant environmental controller of SOC stocks in the northern 
circumpolar region, consistent with findings of earlier studies (10, 22) 
that reported higher SOC stocks in areas with lower temperatures. 
Our predictions of lower SOC stocks in the areas of the high arctic 
region with lowest MAT and MAP (polar desert) are consistent 
with the results of Hugelius et al. (11) who also reported lower SOC 
stocks in the high arctic regions. These areas have thin sedimentary 
parent materials with very limited soil development and vegetation 
growth due to harsh environmental conditions. In this region, SOC 
stock does not increase with increase in precipitation (Fig. 4B) and 
related vegetation growth, and as a result, the net primary produc-
tivity is not a predictor of SOC stocks. Instead, the large quantities 
of SOC in the northern circumpolar permafrost region result from 
cold temperatures, peat formation, cryoturbation, and accumulation 
of eolian and alluvial sediments (1–4). In the Tibetan permafrost 

region, however, precipitation was a significant controller, and we 
found no significant correlation of SOC stocks with MAT. Our find-
ings are consistent with the findings of Yang et al. (23), who reported 
soil moisture as the dominant environmental factor regulating the 
spatial distribution of Tibetan permafrost region SOC stocks. Simi-
larly, consistent with our observation, Wu et al. (24) observed no 
significant correlation between SOC stocks and MAT in the Tibetan 
permafrost region.

Vegetation type determines net carbon input into the soil system, 
quality and vulnerability of soil organic matter, and influence C and 
nutrient turnover and distribution. Predicted large SOC stocks under 
tundra vegetation are consistent with earlier estimates of perma-
frost region SOC stocks. Tundra vegetation areas have been reported 
to store high SOC stocks due to cryoturbation and extensive peat-
land formation (2, 9). During cryoturbation, surface SOC is sub-
ducted into the deeper soil until it reaches the top of the permafrost 
table where it is protected from mineralization due to cold tempera-
tures (2, 10). The needleleaf forest land cover type in our dataset 
represents land areas with black spruce (North America), spruce 
(Europe), or larch (Asia) forest. This land cover type represents thicker 
surface organic horizons that have higher carbon concentrations (less 
labile C and more acidic soils) and also thermally insulate the soil, 
reducing active-layer thickness and preserving the permafrost layers 
(24, 25). However, the needleleaf vegetation was not a separate land 
cover category in the dataset that we used, but it was distributed under 
three different land cover categories (fig. S1A). As a result, the needle- 
leaved evergreen land cover type shows comparatively lower SOC 
stocks. In the Tibetan permafrost region, grasslands stored the larg-
est amount of SOC stocks, due primarily to high biomass C inputs 
in grasslands compared to other land cover types, and lower soil de-
composition rates due to lower temperatures in the alpine regions 
where most Tibetan grasslands are located (26). Our results are con-
sistent with the findings of earlier studies of the Tibetan permafrost 
region, which also reported higher SOC stocks under grasslands (23, 24).

Topographic landscape attributes are important factors controlling 
soil carbon storage in both arctic and boreal landscapes because 
they influence not only the soil erosional and depositional processes 
but also soil texture and thickness through temperature (i.e., eleva-
tion), precipitation type, solar radiation (i.e., aspect), and surface and 
subsurface hydrology. Topography also regulates soil moisture move-
ment in landscapes and formation of wetlands (27). Among topo-
graphic attributes, elevation and soil wetness index were consistently 
significant predictors of permafrost SOC stocks in both study regions. 
Soil wetness index, which is a proxy for land surface drainage and 
accumulation, has been reported to be an important controller of 
permafrost SOC stocks (14, 25). Other topographic attributes such 
as slope, aspect, and stream power index were significant control-
lers in the northern circumpolar region but not in the Tibetan re-
gion. Our findings of higher uncertainty ranges in predicted SOC 
stocks of the toe-slope landscape position are consistent with the 
findings of earlier studies. For example, using a robust topographic 
analysis, Shelef et al. (27) reported a lower number of permafrost 
SOC observations and greater uncertainty in toe-slope positions in 
the northern circumpolar region. However, the reported uncertain-
ty also accounts for that caused by deep soil deposits (>3 m). In the 
Tibetan region, we found the highest uncertainty (104%) in flat areas.

We harmonized and updated the existing estimate of SOC stocks 
of permafrost-affected soils using a larger number of SOC profile 
observations and secondary information of soil-forming factors. 
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Although we were able to increase the number of SOC profile ob-
servations substantially through international collaborations, our 
estimates are still constrained by limited sample density, lack of spe-
cific soil information such as parent material age and organic soil 
accumulation rates, and relatively high uncertainty (95% confidence 
interval). Our estimates do not include SOC stocks from deeper soil 
layers, such as those found in deep peat, yedoma (polygenetic loess-
like deposits), deltaic (alluvial deposits), and hill-toe soil deposits 
below 3-m depth (28). Therefore, the reported SOC quantities like-
ly underestimate the total SOC stocks of permafrost-affected soils. 
We envision that more SOC profile observations will become avail-
able in the future because of the increased attention that permafrost 
and cold region soils are receiving from multiple research agencies 
and investigators. We expect that better international collaboration, 
within the International Soil Carbon Network (29) or the Interna-
tional Permafrost Association Permafrost and Carbon Budgets 
Interest Group, for example, will further improve estimates of per-
mafrost SOC stocks. Moreover, peatland SOC stocks were not scaled 
separately, as the land cover map that we used was prepared for 
global applications and the stocks do not represent a separate land 
cover type for peatlands. Future effort to conduct separate analyses 
for peat and no-peat lands could decrease the uncertainties in SOC 
stock estimates such as demonstrated by Siewert (17), who used 
nonlinear approaches in predicting SOC stocks in peat-dominated 
permafrost landscape.

This study builds upon and updates a database of observed SOC 
profiles to generate high-resolution (250 m) estimates of SOC stocks 
for permafrost region soils of the Northern Hemisphere. We used 
the updated estimate and its spatial uncertainties to analyze the 
control of environmental factors on predicted SOC stocks. Our re-
sults suggest   1014 −175  +194   Pg C in the 0- to 3-m depth interval in Northern 
Hemisphere permafrost-affected soils. Our SOC stock estimates 
captured large spatial heterogeneity (coefficient of variation: 37 to 
119% among subregions) and showed greater uncertainty ranges in 
comparison to earlier estimates. We found that soil wetness index 
and elevation are the dominant topographic controllers of SOC stocks 
of permafrost-affected soils. Mean annual surface air temperature 
was a significant controller of SOC stocks in the circumpolar re-
gion, whereas MAP was a significant controller in the Tibetan re-
gion. In the circumpolar region, the greatest uncertainty in predicted 
SOC stocks (49%) was in hill toe-slope positions. In the Tibetan 
region, however, the uncertainty was highest (104%) in flat areas. 
Our spatially explicit estimates of SOC stocks will be crucial for ini-
tializing and benchmarking the representation of SOC stocks in re-
gional and global land surface models for quantifying the permafrost 
carbon feedback. Moreover, our data help in prioritizing sampling 
strategies that aim to reduce uncertainty in permafrost SOC stocks.

MATERIALS AND METHODS
SOC profile observations and their distribution across 
environmental factors
We compiled and updated the existing SOC data for permafrost- 
affected soils from various sources. In addition to the SOC data used 
by previous studies (11, 15, 17, 21, 30, 31), we collected additional 
georeferenced SOC profile observations from individual investiga-
tors working in Canada, Russia, South Korea, and Sweden. We strat-
ified all the SOC profile observations by depth intervals into 0 to 
1 m (2530 profiles), 1 to 2 m (875 profiles), and 2 to 3 m (538 profiles) 

to calculate SOC stocks (kg m−2) at each depth interval for the 
northern circumpolar region. Similarly, we acquired 173 soil profile 
observations with depth intervals ranging from 0 to 3 m for the 
Tibetan permafrost region. The spatial distribution of SOC profile 
observations across both study areas is shown in fig. S2.

Although the sample density is not yet comparable with that of 
other regions, the collected pedons are broadly representative of the 
diverse environmental conditions associated with permafrost- 
affected soils. In the northern circumpolar region, the SOC profile 
observations represented 13 different land cover types. The largest 
number of samples were from the needleleaf forest land cover type 
(34.3%), followed by sparse vegetation (25.5%) (described as tundra 
vegetation in permafrost literature), and mosaic forest shrubland 
vegetation (10.5%). The smallest number of samples were from broad-
leaf deciduous forest (0.12%), followed by broadleaf evergreen forest 
(0.17%), and shrublands (0.21%). Soil observations covered 11 of 
14 bedrock geology types in the circumpolar region. The largest 
numbers of samples were from siliciclastic sedimentary rocks (34.5%), 
mixed sedimentary rocks (25.3%), and unconsolidated sediments 
(8.7%). The smallest numbers of samples were from basic plutonic 
rocks (0.25%), intermediate plutonic rocks (0.3%), and acid volca-
nic rocks (1%). In the Tibetan region, soil observations were taken 
from seven different land cover types. The largest numbers of sam-
ples were from the mosaic of natural vegetation (32.4%), followed 
by bare unconsolidated areas (23.7%), grasslands (19%), and crop-
lands (11%). The smallest numbers of samples were from sparse 
vegetation (0.6%) and irrigated croplands (4%). Samples spanned 
eight bedrock geology types; the largest number of samples were 
from mixed sedimentary rocks (36%), followed by siliciclastic sedi-
mentary rocks (21.4%), and unconsolidated sediments (19%). The 
smallest numbers of samples were from acid volcanic rocks (2.3%) 
and acid plutonic rocks (2.9%).

Spatial heterogeneity in environmental factors 
of the permafrost region
To represent topography across both permafrost regions, we used a 
digital elevation model (DEM) with 250-m spatial resolution obtained 
from the U.S. Geological Survey (32). Elevations ranged from sea 
level to 6130 m in the northern circumpolar region and from 82 to 
8639 m in the Tibetan region. The DEM was used to calculate 16 
topographic attributes [elevation, slope, aspect, curvature (vertical, 
horizontal, and mean), flow length, flow direction, flow accumula-
tion, specific catchment area, soil wetness index, sediment transport 
index, stream power index, terrain characterization index, slope 
aspect index, and relative relief], which were evaluated for their util-
ity in predicting the spatial heterogeneity of SOC stocks. Among 
these 16 topographic attributes, elevation, aspect, soil wetness in-
dex, stream power index, and flow accumulation were significant 
predictors of SOC stocks at different depth intervals and for dif-
ferent geographic areas. Average annual (1960–1990) precipitation 
and temperature data at 1-km spatial resolution were obtained from 
the global climate data of Hijmans et  al. (33). In the northern 
circumpolar region, average annual precipitation ranged from 
52 mm in the Russian Arctic Desert to 2956 mm in southeast Green-
land. Average annual temperatures were lowest in northern Canada 
and Greenland (−29° to −20°C) and highest in southern Canada 
(3° to 10°C). In the Tibetan region, average annual precipitation 
and precipitation ranged from 17 to 4070 mm and −19° to 24°C, 
respectively.
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Global land cover data at 250-m spatial resolution were obtained 
from the European Space Agency (34). Of the total land area in the 
northern circumpolar region, needleleaf mixed forest covered 31%, 
sparse vegetation (described as tundra vegetation in permafrost lit-
erature) covered 27%, permanent snow and ice covered 11%, and 
shrub land covered 7%. In the Tibetan region, bare areas and grass-
lands covered roughly equal land area, 31.6 and 31%, respectively, 
followed by mosaic vegetation (11.2%), croplands (6%), and mosaic 
of cropland and vegetation (4.3%). The bedrock geology data were 
obtained from the global lithological map produced by Hartmann 
and Moosdorf (35). In the northern circumpolar region, the largest 
proportions of land area had mixed sedimentary rocks (24.7%), fol-
lowed by siliciclastic sedimentary rocks (19%), metamorphic rocks 
(12.4%), and ice and glaciers (12.1%). The smallest proportions of 
land area were underlain by evaporates (0.05%), pyroclastics (0.37%), 
and acid volcanic rocks (0.73%). In the Tibetan region, the largest 
proportions of land area had mixed sedimentary rocks (27.4%), fol-
lowed by siliciclastic sedimentary rocks (22%), unconsolidated sed-
imentary rocks (13%), and acid plutonic rocks (10%). The smallest 
proportions of land area were under basic plutonic rocks (0.4%), 
intermediate plutonic rocks (0.5%), and ice and glaciers (0.75%). 
For this study, we resampled all the environmental data into a com-
mon spatial resolution of 250 m. All analyses were performed in the 
Albers Equal Area Conic projection. Continuous environmental vari-
ables were resampled using bilinear interpolation, and categorical 
variables were resampled using the nearest-neighbor resampling 
technique by using the resample function of ArcGIS (ArcGIS ver-
sion 10.4, Environmental Systems Research Institute Inc., Redlands, 
CA, USA).

Spatial prediction and uncertainty quantification 
of SOC stocks
Using a stratified regression-kriging approach (36, 37), we made 
spatial predictions of SOC stocks for three separate regions: (i) the 
North American and Atlantic permafrost region (Alaska, Canada, 
Greenland, Iceland, and Svalbard), (ii) the Eurasian permafrost re-
gion (Scandinavia, Russia, Kazakhstan, and Mongolia), and (iii) the 
Tibetan permafrost region. In this approach, stepwise multiple lin-
ear regression was applied separately to each depth interval within 
each region to select significant environmental predictors of SOC 
stocks. Selected models for each region and depth interval were test-
ed for multicollinearity of selected independent variables, unequal 
error variance, normality, and randomness of the residuals. Satis-
factory models were then applied to the 250-m spatial resolution 
environmental datasets to generate spatially explicit predictions of 
SOC stocks. Residuals were calculated at the model calibration sites 
and tested for spatial autocorrelation. Spatially autocorrelated re-
siduals were interpolated using ordinary kriging at 250-m spatial 
resolution and added to the regression predictions to generate 
regression-kriging predictions of SOC stocks. The adopted spatial 
modeling approach can be summarized by the following equation

   C  RK  ( u  i  ,  v  i   ) =  C  R  ( u  i  ,  v  i   ) +  ε  OK  ( u  i  ,  v  i  )  

where CRK(ui, vi) are the predicted SOC stocks using regression 
kriging, CR(ui, vi) are the predicted SOC stocks using multiple linear 
regression, OK(ui, vi) are the interpolated values of the spatially auto-
correlated residuals at 250-m regular grid cells across the study area 
using ordinary kriging, and ui, vi are the geographical coordinates.

In northern circumpolar region, of 2530 total samples, only 
875 samples reached down to 1.5- to 2-m depth interval, and only 
538 samples reached down to 2.5- to 3-m depth interval. Therefore, 
we used 2530, 875, and 538 samples to estimate the SOC stocks of 
0- to 1-m, 1- to 2-m, and 2- to 3-m depth intervals in the northern 
circumpolar region. In Tibetan permafrost region, we used 173 sam-
ples for 0- to 0.3-m depth interval and 114 samples to estimate SOC 
stocks of the remaining three depth intervals (Table 1). To define 
the permafrost region extent in both of our study areas, we used 
previously published permafrost region maps of northern circum-
polar (38) and Tibetan (39) region. In our analysis, while estimating 
SOC stocks, we excluded the land area covered by water surface or 
perennial ice, urban, and barren land with consolidated materials 
by using the land cover data (34).

Three major sources of uncertainty exist in our estimates: (i) un-
certainty emerging from SOC observations because the SOC obser-
vations come from several sources that used a variety of analytical 
techniques to determine the organic carbon content of soils, (ii) 
uncertainty from environmental factors, as the environmental data 
representing soil-forming factors come with their own uncertainties, 
and (iii) uncertainty from spatial model structures. Several approach-
es can be used to account for these uncertainties and estimate the 
spatial distribution of prediction intervals across a study area (40). 
These three sources of uncertainties are represented in the model 
residuals (the difference between the observed and the modeled 
SOC stock values). Therefore, the residuals between the modeled 
outputs and corresponding observed values at model calibration sites 
were used to generate 95% prediction intervals (14, 40). We calcu-
lated prediction SEs at each 250-m grid cell across the study area 
from the kriging variance of the model residuals using the “leave-
one-out” cross-validation approach of the Geostatistical Analyst func-
tion of ArcGIS 10.6. Because the residuals were normally distributed, 
we generated confidence interval maps by multiplying the SE maps 
by a Z value (1.96) that corresponds to a 95% probability. The re-
sulting confidence interval maps of SOC stocks were then added 
and subtracted from the regression-kriging predictions to estimate 
the 95% prediction interval of SOC stocks for each depth interval. 
The adopted uncertainty quantification approach can be summa-
rized in the equations below

   PL i  
L  =  Pr  i   − 1.96 * PSE  

   PL i  
U  =  Pr  i   + 1.96 * PSE  

where   PL i  
L   and   PL i  

U   are the lower and upper prediction limits of SOC 
stocks for the selected depth interval at the i-th observation, respec-
tively, Pri is the model prediction of SOC stocks at the i-th observa-
tion, 1.96 is the Z value at 95% probability, and PSE is the prediction 
SE of the residuals.

We used a K-fold validation approach to calculate validation in-
dices such as RMSE and RPD (ratio of the SD of the observed SOC 
stock values to the RMSE of the predictions) of predicted SOC maps. 
The RMSE shows the average error of prediction, and the RPD 
demonstrates the predictive ability of generated SOC maps. The 
lower RMSE and higher RPD values shows more accurate SOC 
stock predictions. In this approach, we divided the soil samples into 
four different spatially balanced calibration and validation datasets 
(70/30, 75/25, 85/15, and 90/10) using the “create subset” function 
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of ArcGIS (ArcGIS version 10, Environmental Systems Research 
Institute Inc., Redlands, CA, USA). We used the calibration datasets 
to predict the SOC stocks, and the predicted SOC stock values were 
extracted at the validation data sites, and the RMSE and the RPD 
were calculated for each data split. We reported the average RMSE 
and RPD values for each depth interval in the revised manuscript.

Environmental predictors of SOC stocks
To evaluate the influence of hillslope positions on SOC stocks, we 
divided the landscape into four primary topographic units: hilltops, 
mid-slope, toe-slope, and flat areas, through a multistep topograph-
ic analysis of the DEM. We first removed the high-frequency noise 
from the DEM by filtering the DEM with a Gaussian filter of 5 × 5 pix-
els with an SD of 1 pixel. We then computed the topographic curva-
ture with a Laplacian operator, filled sinks in the DEM, and computed 
upstream drainage area for each pixel. Fluvial channels were de-
fined as pixels with a drainage area that exceeds 4 km2, a relatively 
high drainage area that accounts for the long hillslopes that charac-
terize high-altitude areas (27). We computed the height above the 
nearest river by interpolating between channels using the nearest- 
neighbor interpolation technique and subtracting the interpolated 
surface from the DEM. The representative hillslope relief at each 
location was attained by computing the local relief of the elevation 
above the nearest river over a radius of 2000 m such that the local 
relief is computed over a length scale that is longer than a typical 
hillslope (0.5 to 2 km2) (27), and hilly terrain was defined as areas 
with a local relief of >40 m (i.e., <2% regional slope). We then used 
the local relief, topographic curvature, and height above the nearest 
drainage to partition the landscape to hilltops [locations of convex 
topography (curvature, <0) in the upper portion of hillslopes (i.e., 
where elevation above the nearest river is higher than half of the 
local relief)] and hill-toes [locations of concave topography (curva-
ture, >0) at the lower portion of hillslopes (i.e., where elevation above 
the nearest river is lower than half of the local relief)]. To address 
the transition between these categories, we also defined mid-slope 
positions as areas that do not comply with the aforementioned con-
straints (e.g., areas where elevation is higher than half of the local 
relief but curvature is positive or vice versa). Floodplains and valleys 
were defined as areas where the height above the nearest river is <10 m.

To evaluate the importance of potential environmental control-
lers on SOC distributions, we compared the predicted SOC stocks 
under different topographic positions, land cover types, and climat-
ic zone. We calculated several descriptive statistics for SOC stocks 
and their lower and upper prediction intervals at the 0- to 3-m depth 
interval under each topographic position, land cover type, and cli-
matic zone.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/9/eaaz5236/DC1

View/request a protocol for this paper from Bio-protocol.
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