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Figure S1. Conceptual diagram of observations available for testing carbon-climate 
models. Ice core measurements of the atmospheric CO2 record provide constraints on the 
sum of ocean and land carbon fluxes when this information is combined with fossil fuel 
inventory time series. Isotope measurements from ice cores allow for similar constraints 
but including gross exchanges and reservoir turnover times. Contemporary atmospheric 
CO2 observations from flask networks (NOAA GMD) and satellites (e.g., the Orbiting 
Carbon Observatory) provide information about the seasonal dynamics of net ecosystem 
exchange and continental-scale fluxes on timescales of years to decades. Biomass 
inventories are sparse but crucial for constraining allocation, tree mortality, and the mass 
of carbon vulnerable to deforestation. Satellite observations of leaf area index and other 
ecosystem variables provide global coverage at a high temporal resolution for a period of 
almost three decades, although cross-platform calibrations introduce considerable 
uncertainty. Free-Air Carbon dioxide Enrichment (FACE) experiments have quantified 
elevated CO2 effects on ecosystem processes in temperate ecosystems, but less 
information exists for tropical forest and boreal biomes that account for most of terrestrial 
GPP and aboveground carbon storage. 
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Figure S2. Comparison of net primary production for a) CASA′ and b) CN models with 
class A observations from the Ecosystem Model Data Intercomparison Initiative (EMDI). 
The same comparison for class B observations is shown in c) and d). 
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Figure S3. Zonal mean net primary production from MODIS satellite-based estimates 
compared with the models. We used the MOD17A3 collection 4.5 product from MODIS 
for this comparison (Heinsch et al., 2003). We show the 200-2004 zonal mean and 
compare this model experiment 1.4 during the same period. 
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Figure S4. The zonal mean response of NPP to a step change in atmospheric CO2 

following the FACE experimental protocol. The model NPP response was averaged over 
the first 5 years after enrichment. 
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Figure S5. a) The global net land flux from experiment 1.4. This simulation includes 
climate variability and time-varying atmospheric CO2 and nitrogen deposition.  Climate 
for a 25-year span (1948-1972) was cycled until 1948, the beginning of the NCAR/NCEP 
reanalysis period.  b) The difference in flux between experiments 1.4 and the climate only 
simulation (experiment 1.3). This panel shows the fluxes caused solely from the 
atmospheric CO2 and nitrogen deposition forcing.  c) The land flux driven solely by 
climate (experiment 1.3) during 1973-2004. 
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Figure S6. Conceptual diagram showing how a climate ecosystem data-model 
intercomparison system (CEDMIS) might function in the context of existing data centers 
and model archiving capabilities. CEDMIS would extract information from archived data 
sets and models to generate intercomparison diagnostics, using a series of scoring, 
visualization, and data extraction software tools. A key goal would be make the 
intercomparison diagnostics into modules that could be reused in multiple model-
intercomparison projects (MIPs) in an open source format. This system could be used in a 
stand alone mode for individual model development or as the basis for community wide 
MIPs. Key data sources would include the Carbon Dioxide Information and Analysis 
Center (CDIAC), NASA’s Oak Ridge National Lab (ORNL) and Land Processes (LP) 
Distributed Active Archiving Centers (DAACs), NOAA’s Global Monitoring Division 
trace gas archives (including retrieved fluxes by means of atmospheric inversions such as 
TRANSCOM and CarbonTracker), and NSF’s Long Term Ecological Research (LTER). 
.  
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Description of Scoring System 
 
1. Leaf area index 
 
Data Source:  MOD15A2 collection 4 (Myneni et al., 2002) with additional adjustments 
to interpolate across periods of cloud contamination as described by Zhao et al. (2005). 
 
Scoring Metric:  
 
1A. Phase 

 
6

)(6 obsmodelT
M DIFF −−

=        (s1) 

 
where TDIFF (model – obs) is the difference (in months) between the month of maximum 
leaf area for the model and the month of maximum leaf area for the satellite observations 
at each grid cell. This quantity was averaged over all the grid cells within each biome to 
obtain a biome-level mean.  If the models and observations were to agree perfectly within 
a biome (there was no phase offset), then M would be 1.0. If all the model and 
observations were exactly 6 months out of phase, then the metric M would be 0.0.  
 
A global mean was created by averaging M across different biome types.   
 
1B and 1C. Maximum monthly and annual mean LAI 
 
For maximum monthly and annual mean LAI comparisons, we used equation s2 to obtain 
a scoring metric:  
 

ncells
omM i ii= +−= 11

omncells
ii∑

−

        (s2) 

where mi is the model LAI at the grid cell corresponding to the satellite observation (oi) 
and ncells is the number model grid cells in each biome. When mi and oi were both 0, we 
set the quantity inside the summation equal to 1 for that grid cell.   
 
A global mean was created by averaging M from s2 across different biome types.  We 
averaged all available MODIS observations during 2000-2004 to construct an annual 
mean cycle of monthly observations at each grid cell.  We sampled the models in the 
same way using output from experiment 1.4 during 2000-2004. 
 
Component scoring 
 
To obtain an overall model score for LAI, we multiplied the M for phase by 6 points, the 
M for maximum LAI by 5 points, and the M for mean LAI by 4 points. The timing of 
maximum LAI was believed to be the most robust aspect of the observations and thus 
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given the largest weighting, followed by maximum monthly LAI (likely to occur during 
snow-free periods and with smaller errors introduced by variations in soil reflectance), 
and then the annual mean. 
 
2. Net Primary Production  
 
2A. Site-level NPP Comparison 
 
Data Source: EMDI Net Primary Production dataset from the Oak Ridge National 
Laboratory (http://www.daac.ornl.gov/NPP/npp_home.html). The observations we used 
were in files EMDI_ClassA_NPP_81_R1.csv and EMDI_ClassB_NPP_933_v2.csv. 
 
Scoring Metric:  
 
For the NPP site-level comparison we used equation s2, where mi was the model NPP at 
the grid cell from experiment 1.4 corresponding to the observed NPP data point (oi), and 
nsites was equal to the total number of data points in either the class A (81) or class B 
(933) data set.  
 
We separately computed M for the Class A and Class B observations and averaged them 
together to obtain a single metric for each model. To compute the number of points for 
this metric, M was multiplied by the total number of points available for this 
measurement class (in this case, 2). 
 
2B. Site-level NPP Comparison Normalized by Precipitation 
 
Data Source: EMDI Net Primary Production dataset from the Oak Ridge National 
Laboratory (http://www.daac.ornl.gov/NPP/npp_home.html). These observations are in 
the file EMDI_ClassB_NPP_933_v2.csv. 
 
Metric:  We used equation s2 with NPP from both the model and the observations 
averaged in discrete (400 mm/yr) precipitation bins. For the model, we used annual PPT 
estimates during 1975-2000 from our climate data set described in the main text (Qian et 
al., 2006). For the observations, we used the annual PPT for each site provided in the 
EMDI dataset. We separately computed M for the Class A and Class B histograms and 
averaged them together to obtain a single metric for each model. 
 
2C. Satellite NPP observations – spatial correlation 
 
Data Source:  MODIS MOD 17 annual net primary production [Zhao et al., 2005]. 
 
Metric: We computed the Pearson’s correlation coefficient r between the observations 
and the model distribution using all land grid cells. Our scoring metric was the square of 
the correlation coefficient: 
 

2rM =          (s3) 
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In computing r2, for the model we used a map of annual mean NPP averaged over 2000-
2004 from experiment 1.4. For the observations, we used a map of mean annual NPP 
from MODIS for the same time period. 
The fractional absorbed photosynthetically active radiation (fAPAR) estimates obtained 
from MODIS satellite observations provide a partial test of the spatial pattern of NPP in 
the models.  We used a correlation coefficient as a scoring metric to recognize the 
outstanding ability of satellite observations to quantify spatial gradients in fAPAR across 
continents (e.g., variations introduced by mountain ranges and lakes and gradients from 
low to high precipitation). The conversion of fAPAR to NPP by means of a light use 
efficiency adds additional uncertainty and is more difficult to directly constrain using 
satellite observations.  This is why we excluded information on the specific magnitude of 
NPP variability for our scoring metric for the MODIS NPP observations. 
 
2D. Satellite NPP observations - latitudinal correlation 
 
Data Source:  MODIS MOD 17 annual net primary production [Zhao et al., 2005]. 
 
Metric: Similar to the scoring metric for section 2C, but here estimating r2 using a zonal 
mean vector from the observations and the model. This score metric evaluates the 
model’s ability to capture the latitudinal distribution of NPP, including relative 
differences between high latitude and tropical ecosystems. This metric was estimated 
using the same dataset and model output as described in section 2C. 
 
Component scoring 
 
To obtain an overall model score for NPP, we multiplied the M for the site-level 
comparison by 2 points, the M for the NPP comparison normalized by PPT by 4 points, 
and the M values for the two satellite comparisons each by 2 points.  We assigned a 
higher weight to the NPP comparison normalized by PPT because this comparison may 
be less sensitive to sub-grid scale climate variability than the other types of comparisons.  
 
3. Annual Cycle of Atmospheric CO2
 
Data source: The observations of the seasonal cycle from Globalview have a .seas 
extension and can be found at the following site: 
ftp.cmdl.noaa.gov/ccg/co2/GLOBALVIEW/gv/ 
 
Metric:  Model performance is evaluated separately in each of three latitudinal zones. 
The three regions are: 90°N - 60°N, 30°N - 60°N, and EQ - 30°N. Within each zone, 
model grid cells are extracted for each surface station in the Globalview station list. A 
monthly mean seasonal cycle is constructed by equally weighting all station locations 
within each latitude band. The same is done for the observations.  
 
We then compute two comparison metrics within each zone, one for the phase and the 
other for the amplitude.  For the phase, we calculate the square of the Pearson’s 
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correlation coefficient (r2) using the 12 monthly mean values from the observations and 
the model.  For the amplitude metric, we report the ratio of monthly mean of the model 
amplitude (Am) relative to the observations (Ao). This is represented by: 

 11 −−=
O

M

A
AM         (s4) 

Where M is the amplitude metric, Am is the monthly peak to trough amplitude of the 
model, and Ao is the monthly peak to trough amplitude of the observations.  
 
Component scoring 
 
These two metrics were combined as (M + r2)/2.0 where M is from s4 and then in a final 
step this value was multiplied by the number of scoring points assigned to each latitude 
zone.  We assigned a higher number of possible points to the 90°N - 60°N and 30°N - 
60°N zones (6 points each) than to the EQ - 30°N zone (3 points) for the following 
reasons.  First, the amplitude of the seasonal cycle is larger in mid and high latitudes, 
making it easier to detrend the observations in order to construct a robust mean annual 
cycle. Second, the relative contribution to the mean annual cycle from ocean fluxes and 
fossil fuel emissions become increasingly important for stations near the equator, making 
it more challenging to make a direct comparison between the model simulations and the 
observations.  It should be noted that for all of latitude bands described above, most of 
the signal comes from temperate and boreal ecosystems.  The annual cycle of CO2 does 
not provide a substantial constraint on the seasonal cycle of fluxes from tropical 
ecosystems. 
 
4. Energy and CO2 Fluxes from Ameriflux 
 
Data source:  We used L4 observations from Ameriflux that are located at: 
ftp://cdiac.ornl.gov/pub/ameriflux/data/Level4/ 
 
Scoring Metric:  
 
We sampled the models during each year that the observations were available to build a 
multi-year set of mean monthly fluxes through 2004. We then created an annual mean 
cycle of fluxes from periods when the observations were available. We estimated model-
data agreement using equation s2 at each site using the annual cycle of monthly means. 
Each flux tower site was weighted evenly weighted in constructing our overall score. We 
separately constructed scores for net ecosystem exchange (NEE), sensible heat, latent 
heat, and gross primary production (GPP) fluxes.  
 
Component scoring 
 
To obtain an overall model score for energy and CO2 fluxes section, we multiplied the M 
for the sensible heat and latent heat fluxes by 9 points, and the M for GPP and NEE by 6 
points. GPP was weighted by a smaller amount than the energy fluxes because of the 
increased uncertainty associated with separating NEE into GPP and ecosystem respiration 

 11



components using models of ecosystem respiration. NEE is easier to directly measure, 
however, this flux is highly sensitive to the disturbance history of a site. This makes NEE 
difficult to directly compare with output from a model grid cell that, in our analysis, did 
not capture a site’s disturbance history (i.e., this comparison has a high scaling 
mismatch). 
 
5. Transient Fluxes 
 
5A. Aboveground live biomass in the Amazon Basin 
 
Data Source:  
 
Saatchi, S.S., R.A. Houghton, D. Alves, B. Nelson. 2009. LBA-ECO LC-15 Amazon 
Basin Aboveground Live Biomass Distribution Map: 1990-2000. Data set. Available on-
line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active 
Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/908.  
 
Available at:  
http://daac.ornl.gov/LBA/guides/LC15_AGLB.html 
 
Metric: 
 
We used equation s2 to estimate M where ncells was equal to the number of model grid 
cells within the spatial domain of the LC-15 dataset.  We used model output from 
experiment 1.4 during year 2000 in this comparison.  For CASA the wood pool was 
multiplied by 0.7 to get to the aboveground carbon component.  For CN, aboveground 
live (sapwood) and aboveground dead (heartwood) tree pools (both in live trees) were 
combined for this comparison.  
 
5B. Sensitivity of net primary production to elevated CO2
 
Data Source:  
 
The observations for the four FACE experiments we used are summarized by: Norby et 
al. (2005). Forest response to elevated CO2 is conserved across a broad range of 
productivity. PNAS. 102: 18052–18056. 
 
Model results and the observed site means from Norby et al. (2005) we used can be 
found in a Table at: http://www.climatemodeling.org/c-lamp/results/face/ 
 
Metric: 
 
We used equation s2 to estimate M where ncells was equal to 4 – the number of FACE 
experimental sites. At each site we estimated the mean NPP increase (in %) for the first 5 
years of the FACE experiment. These were the oi’s in equation s2. We then compared 
this to the NPP increase in % from the model sampled at grid cells corresponding to these 
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4 sites. These were the mi’s in s2. To estimate the NPP increases in the model, we used 
the difference between model experiments 1.6 and 1.5. 
 
5C. Interannual variability of terrestrial fluxes 
 
Data Source:  Baker et al. (2006) with updates through 2004 provided by D. Baker 
(personal communication) using the same TRANSCOM methodology. 
 
Metric: 
 
Following a similar approach to the model-data comparison for the annual cycle of CO2, 
we developed one metric for phase and a second for the magnitude of the flux variability 
and weighted the information from the two metrics evenly. For the phase, we calculated 
the square of the Pearson’s correlation coefficient (r2) using the annual global total 
terrestrial flux time series from the observations and from the model during 1988-2004 (n 
= 17).   
 
For the magnitude metric, we relied upon equation s4, using the standard deviation of the 
model (Am) and the standard deviation of the observations (Ao) computed over the 17 
year period of the observations. 
 
A long-term mean was removed from the observations and the model prior to our 
analysis to allow for a direct comparison of the interannual variability. This was done 
since the model simulations did not include land use change – which would influence the 
magnitude of the net land carbon flux. 
 
5D. Fire emissions 
 
Data Source:  Global Fire Emissions Database version 2 (GFEDv2) from Van der Werf 
et al. (2006). These data are online at: http://ess1.ess.uci.edu/%7Ejranders/data/GFED2/ 
 
Metric:  
 
Following a similar approach to the model-data comparison for the annual cycle of CO2, 
we developed one metric for phase and a second for the magnitude of the flux variability 
and weighted the information from the two metrics evenly. For the phase, we calculated 
the square of the Pearson’s correlation coefficient (r2) using the monthly global total fire 
emissions time series from the observations and from the model during 1997-2004 (n =96 
months).   
 
For the magnitude metric, we relied upon equation s4, using the mean emissions from the 
model (Am) and the mean emissions from the observations (Ao) computed over the 8 year 
period of the observations. 
 
Since CASA′ did not have a fire emissions module, its score in this comparison section 
was zero. 
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Component scoring 
 
We assigned 10 points to the Amazon aboveground biomass comparison because the 
amount of tropical forest carbon in wood influences 1) the temperature sensitivity of 
terrestrial ecosystem fluxes, 2) the magnitude of carbon losses associated with land use 
change, and 3) the potential of this biome to accumulate carbon in response to elevated 
levels of CO2.  The FACE comparisons were assigned the same number of subscore 
points because the sensitivity of NPP to elevated levels of CO2 plays a central role in 
setting the strength of the climate-carbon feedback within a model.  
 
The TRANSCOM interannual variability and fire emissions comparisons were assigned a 
subscore of 5 points each. Their lower subscore in this section reflects a subjective 
assessment by the authors that both these data products have substantial uncertainties that 
arise, in part, from their use of models in transforming the raw observations into fluxes. 
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