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Abstract—A proliferation of data from vast networks of remote
sensing platforms (satellites, unmanned aircraft systems (UAS),
airborne etc.), observational facilities (meteorological, eddy co-
variance etc.), state-of-the-art sensors, and simulation models
offer unprecedented opportunities for scientific discovery. Unsu-
pervised classification is a widely applied data mining approach
to derive insights from such data. However, classification of very
large data sets is a complex computational problem that requires
efficient numerical algorithms and implementations on high per-
formance computing (HPC) platforms. Additionally, increasing
power, space, cooling and efficiency requirements has led to the
deployment of hybrid supercomputing platforms with complex
architectures and memory hierarchies like the Titan system at
Oak Ridge National Laboratory. The advent of such accelerated
computing architectures offers new challenges and opportunities
for big data analytics in general and specifically, large scale
cluster analysis in our case. Although there is an existing body
of work on parallel cluster analysis, those approaches do not
fully meet the needs imposed by the nature and size of our large
data sets. Moreover, they had scaling limitations and were mostly
limited to traditional distributed memory computing platforms.
We present a parallel Multivariate Spatio-Temporal Clustering
(MSTC) technique based on k-means cluster analysis that can
target hybrid supercomputers like Titan. We developed a hybrid
MPI, CUDA and OpenACC implementation that can utilize both
CPU and GPU resources on computational nodes. We describe
performance results on Titan that demonstrate the scalability
and efficacy of our approach in processing large ecological data
sets.

I. INTRODUCTION

Earth science data captures numerous nonlinear and com-

plex interactions among high dimensional set of variables rep-

resenting wide range of ecosystems processes. Classification

is one of the most widely used statistical methods in ecology

for development of ecoregions [1], classification of climate

zones [2], mapping of vegetation using remote sensing [3],

characterization of vegetation structure [4], and species distri-

bution modeling [5]. Quantitative methods for classification,

including multi-variate cluster analysis [6] and random forests

[7], are increasingly used to statistically explore and exploit

multi-variate relationships in such rich data sets.

Earth science data has seen a rapid increase in both com-

plexity and volume over the recent decade. These growing

volumes of data range from field and laboratory based studies

to environmental sensor network to ground, air and space

based remote sensing platforms. These data sets offer new

opportunities for scientific discovery. However, the volume

and complexity of the data has also rendered traditional

means of integration and analysis ineffective, necessitating the

application of new analysis methods and the development of

highly scalable software tools for synthesis, comparison, and

visualization [8].
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Large and complex Earth science data often cannot be

synthesized and analyzed using traditional methods or on

individual workstations. Data mining, machine learning, and

high performance visualization approaches are increasingly

filling this void and can often be deployed only on parallel

clusters or supercomputers. However, supercomputer archi-

tectures designed for compute-intensive simulations, usually

containing large numbers of cores with high speed intercon-

nects between nodes, are not typically optimal for large scale

analytics. Instead, such applications demand large and fast

on-node memory, high bandwidth input/output (I/O), and fast

access to large local disk volumes. Most domain scientists

are ill-equipped to develop analytics codes for these architec-

tures, while system vendors have largely focused on compute-

intensive applications, and must acquire representative analyt-

ics benchmarks and scientific expertise to design systems for

geospatial big data analytics.

A. Related Work

A number of studies in past have developed parallel cluster

analysis implementations targeting range of data sets and

computing platforms. [9] designed an implementation for clus-

tering algorithms for Beowulf-style parallel cluster built from

surplus computer. [10] designed implementation of cluster

analysis for mid-range distributed memory cluster using a

master-slave paradigm. A number of other works by [11]–

[14] have developed approaches for efficient implementations

of parallel cluster algorithms to analyze large data sets,

however most of them have focused on traditional CPU

based distributed memory supercomputers. New generations of

supercomputers, like Titan at Oak Ridge National Laboratory

and its planned successor, Summit are based on GPU-based

hybrid architectures. There exist several studies [15]–[17] that

have looked into accelerating k-means on the GPUs. However,

the dimensionality and size of our target datasets are relatively

larger in comparison and warrant specialized preprocessing

and normalization. Moreover, we are striving for a faster

time to solution by utilizing all the available computational

resources, CPUs and GPUs on a node in tandem. Hence, the

focus of this study was to improve and adapt our k-means

clustering algorithm on hybrid architectures for large earth sci-

ence data to provide a scalable parallel cluster analysis tool for

next generation supercomputing architectures in general and

U.S Department of Energy’s leadership class supercomputers

in particular.

II. DATA SETS AND EXPERIMENT SETUP

A. Data sets

Tools and methods developed in this study were applied and

tested for two earth science applications (Table I).

1) Vegetation structure of Great Smoky Mountains National
Park (GSMNP): Understanding of vegetation structure of forest

ecosystem is key for forest health management and maintain-

ing suitable habitats for bird and animal species. Airborne

multiple return Light Detection and Ranging (LiDAR) data

TABLE I
DESCRIPTION OF DATA SETS USED IN THE CURRENT STUDY

Description Dimensions Size
GSMNP LiDAR 3,186,679 × 74 900 MB

CMIP3 Climate States 123,471,198 × 17 7.9 GB

for GSMNP [18] provides high resolution view of the three-

dimensional structure of the forest ecosystem. Raw LiDAR

point clouds were processed to develop vertical canopy struc-

ture of the vegetation at 30 m × 30 m spatial resolution hor-

izontal grid and 1 m resolution [4]. A 1 m vertical resolution

was used to identify vegetation height from the ground surface

to a maximum height of 75 m. The number of LiDAR points

in each vertical 1 m bin (at each 30 m × 30 m cell in the

horizontal grid) was identified to construct a vertical density

profile for each map cell. Classification of LiDAR derived

vegetation structure is desired to understand the spatial pattern

and distribution of vegetation structure across the GSMNP.

2) Global Climate Regimes (GCR): Classification of climate

regimes has long been used to understand the global patterns

of climate, vegetation and terrestrial ecology. We want to

understand and analyze the climate regimes in contemporary

period and how they may change and shift in future un-

der various predicted climate change scenarios. We selected

a range of bioclimatic, edaphic and topographic variables

globally at 2 arcsecond (∼ 4 km) resolution to define the

climate regimes. Bioclimatic data for the contemporary period

were derived from BioClim data sets by [19]. To represent

future climate, two climate models from the Intergovernmental

Panel on Climate Change Third Assessment Report (CMIP3) –

Parallel Climate Model (PCM) developed by National Center

for Atmospheric Research and HadCM3 model developed

by Hadley Center, were used. Model data for two different

emissions scenarios, B1 (lower emissions) and A1FI (high

emissions) were used and bioclimatic variables were derived

(Table II) for two select future periods (2050, 2100) [20], [21].

B. Preprocessing

Large ecological data sets often suffer from data noise,

errors and missing values. All the data sets used in the study

were carefully checked, corrected and gap filled. Heterogeneity

among high dimensional data sets is typical of ecological and

earth science data sets. GSMNP data set was derived from

LiDAR point clouds and was homogeneous across all the

dimensions. However, the 17 dimensions of the GCR data each

represent a different physical quantity with different scales and

units. We standardized the data set along each dimension to

have a mean of zero and standard deviation of one, allowing

every dimension to be equally and fairly represented in the

clustering algorithm.

III. METHODOLOGY

In this section, we describe our baseline k-means algorithm

for clustering and an algorithmic scheme using triangle in-

equality for reducing the number of distance calculations.
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TABLE II
VARIABLES USED FOR DELINEATION OF GLOBAL CLIMATE REGIMES.

Variable Description Units
Bioclimatic Variables
Precipitation during the hottest quarter mm
Precipitation during the coldest quarter mm
Precipitation during the driest quarter mm
Precipitation during the wettest quarter mm
Ratio of precipitation to potential evapotranspiration –
Temperature during the coldest quarter ◦C
Temperature during the hottest quarter ◦C
Day/night diurnal temperature difference ◦C
Sum of monthly Tavg where Tavg ≥ 5◦C ◦C
Integer number of consecutive months where Tavg ≥ 5◦C –
Edaphic Variables
Available water holding capacity of soil mm

Bulk density of soil g/cm3

Carbon content of soil g/cm2

Nitrogen content of soil g/cm2

Topographic Variables
Compound topographic index (relative wetness) –

Solar interception (kW/m2)
Elevation m

A. Baseline k-means algorithm

The k-means is iterative algorithm to group a data set (X1,

X2, . . . , Xn) with n records into desired k clusters. k-means

algorithm groups the data into desired number of groups while

equalizing the multi-dimensional variance across clusters. The

algorithm starts with a set of initial “seed” centroids (C1,

C2, . . . , Ck), and calculated the Euclidean distance of each

data record (Xi, 1 ≤ i ≤ n) to every “seed” centroid

(Cj , 1 ≤ j ≤ k), Data record is classified to the cluster

containing the closest existing centroid. After all data records

are classified, a new centroid is calculated as the mean vector

of all dimensions of each data record classified to that cluster.

As this cluster assignment and re-calculation of centroid is

iteratively repeated, the centroids move through the data space

to identify stable, and optimal values such no more than a

small proportion (we use < 0.05%) of data records change

their cluster assignments between iterations.

B. Accelerated k-means using triangle inequality

We also implemented a triangle inequality [22], [23] based

acceleration scheme that reduces the number of Euclidean

distance calculations. Triangular inequality states: for any three

points x, y, and z, d(x, z) ≤ d(x, y) + d(y, z). The algorithm

eliminates unnecessary point-to-centroid distance calculations

and comparisons based on the previous cluster assignment and

the new inter-centroid distances.

If the distance (d(Clast, Cnew)) between the last centroid

(Clast) and new candidate centroid (Cnew) and greater than

or equal to the distance (d(Xi, Clast)) between a data point

(Xi) and the last centroid (Clast), then calculation of distance

(d(Xi, Cnew)) between the data point (Xi) and the new

candidate centroid (Cnew) can be avoided. Triangle inequality

states that d(Clast, Cnew) ≤ d(Xi, Clast + d(Xi, Cnew).
If d(Clast, Cnew) ≥ 2d(Xi, Clast, we can conclude without

calculating d(Xi, Cnew), that d(Xi, Cnew) ≥ d(Xi, Clast).
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Fig. 1. The instruction mix for the baseline application while running on
16 processors using the GSMNP data set. The red bar corresponds to the
master process that primarily handles communication, explaining the lack of
any floating point operations. The green bar represents worker processes that
exclusively handle the computation, as reflected in floating point operations.

Thus, for the data point, Xi, the new centroid candidate

(Cnew) can be eliminated without computing the distance

d(Xi, Cnew).
The Euclidean distance computations can be further reduced

by sorting the inter-centroid distance (d(Clast, Cnew)). The

new candidate centroids (Cnew are evaluated as per sorted

distance order, and once the critical distance (2d(Xi, Clast)

is surpassed all subsequent candidate centroids can be safely

discarded without any distance calculations.

IV. BASELINE PERFORMANCE CHARACTERIZATION

We collected performance data with our baseline clustering

implementation using the LiDAR data set for the Great Smoky

Mountains National Park (GSMNP).

• We utilized the Oxbow toolkit and Performance Analytics

Data Store (PADS) [24] infrastructure for this application

characterization.

• This kind of data is invaluable to identify potential

opportunities for improvement and aid in adaptation to

emerging architectural features.

A. Computational Profiling

The computational profile of application execution is de-

scribed by the mix of executed micro-operations. Figure 1

shows the instruction mix of our clustering application.

• Obtained by decoding the x86 assembler instructions

and grouping them into coarser categories like memory,

control, floating point and integer arithmetic.

• Obtained using a tool based on Intel’s PIN [25], a

dynamic binary instrumentation tool.

• The data is useful to ascertain if there is potential

for improved performance. For instance, we identified

an opportunity for improved performance by better uti-

lization of floating point operations including single-

instruction-multiple-data (SIMD) operations which led to

the development of the distance calculation using BLAS

formulation as described in Section V-A.
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Fig. 2. Communication volume for baseline clustering algorithm using 16
MPI processes. The axes show the ranks of the sender and receiver process
respectively.

B. Communication Behavior

We used augmented version of the communication profiling

tool (mpiP) [26] to capture the volume of data transferred

between MPI ranks and visualized the results to understand

the communication topology (Figure 2). It is evident that we

are using a master-worker protocol because all communication

is point-to-point between the first process and rest of the

processes.

C. Memory Behavior

We instrumented the kernel of our application using PAPI

hardware counters for obtaining detailed memory performance

data. The kernel achieves a read bandwidth of 122 MB/s and

a write bandwidth of 58.9 MB/s. These results are for the

baseline application with no in-memory data rearrangement to

optimize memory performance.

V. OPTIMIZATIONS

This section elaborates on the recent additions for improving

performance by using a more efficient problem formulation

for computing distances between observations and centroids,

as well as threading support.

A. Distance Calculation: Using BLAS

Our clustering code has, for years, calculated observation–

centroid differences one at a time (necessary to employ the

“acceleration” technique previously described). Recently, one

of the authors realized that it is possible to achieve much

greater computational intensity in the observation–centroid

distance calculations by expressing the calculations in matrix

form. This enables the use of level-2 and level-3 BLAS

routines, for which highly cache-optimized implementations

that have also been tuned to make good use of SIMD in-

structions, etc., are available, and also facilitates the use of

compute accelerators like GPGPUs (general purpose graphical

processing units).

Internally, our clustering code stores observation vectors as

rows in a matrix, so we adopt that convention here. Let obs

be the observation matrix that contains n observations of m
dimensions, and cent be the centroid matrix that contains the

k desired centroids and their coordinates in m dimensions.

We wish to compute the n×k matrix of squared Euclidean

distance, dist, for which the i, jth entry

disti,j = ‖obsi,∗ − centi,∗‖2 (1)

contains the squared Euclidean distance between observation

i and centroid j. The key insight to reformulating the distance

calculation in matrix form is that, via binomial expansion,

disti,j = ‖obsi,∗‖2 + ‖centi,∗‖2 − 2 · obsi,∗ · centj,∗ (2)

and, therefore, we can express

dist = obs · 1T + 1 · centT − 2 · obs · centT (3)

where obs and cent are vectors of the sums of all squares of

the rows of obs and cent, respectively, and 1 is a vector of

all 1s.

Formulated as above, we utilize BLAS routines as follows

to calculate the matrix of squared Euclidean distances:

1) Calculate −2·obs·centT via xGEMM, the level-3 general

matrix-matrix multiplication subroutine that computes

C := alpha ∗ op(A) ∗ op(B) + beta ∗ C
Where alpha and beta are scalars, A,B, and C are

matrices and op optionally performs matrix transpose

or conjugate transpose.

2) After the xGEMM operation, use the level-2 BLAS

routine xGER, to add obs · 1T and 1 · centT via a

rank-one update, of the form

A := alpha ∗ x ∗ y′ +A

Here, alpha is a scalar, x, y are element vectors and A

is the input matrix.

Casting the distance calculation into the form of level 2

and (especially) level 3 BLAS operations facilitates the use of

highly computationally efficient implementations. Because we

use standardized BLAS interfaces, we are able to use vendor-

optimized BLAS libraries—such as Cray’s LibSci, Intel’s

MKL, and IBM’s ESSL—on their respective systems.

Our experiments using the above matrix formulation for the

distance calculations show that, as expected, it is dramatically

faster than the straightforward loop over vector distance cal-

culations when many distance comparisons must be made. We

give details in Section VIII. For architectures that employ a

high level of fine-grained parallelism with wide SIMD lanes,

increasing the computation intensity has an especially high

payoff in terms of improved performance. In a future paper,

we will discuss the performance of this implementation on

one such architecture, the second-generation Intel Xeon Phi

(“Knights Landing”) processor, where the matrix formulation

is especially advantageous and can beat the triangle inequality-

based “acceleration” technique in several situations, despite

performing many more distance calculations within a k-means

iteration.
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B. Application Phases
During the initial phase of the application, a large number

of pairwise distances between observations and centroids need

to be computed resulting in a relatively higher number of

changes in cluster assignments for the observations. This phase

is particularly suitable for distance matrix computation using

the BLAS formulation. Once the clusters stabilize, there are

fewer changes and the triangle inequality based acceleration

technique obviates the need for computing the full distance

matrix using the BLAS formulation. We have empirically

determined the transition points between these two application

phases for specific data sets and switch from the BLAS

formulation to the triangle inequality method. We intend to add

the capability to identify this phase transition during runtime

in the future.

C. Vectorization and OpenMP
We have added SIMD compiler directives for vectorization

where applicable. Although the clustering code already em-

ployed full distributed-memory parallelism via MPI, we added

threading support and used dynamic thread scheduling for

the triangle inequality acceleration component, which enables

better use of all available hardware threads on architectures

such as the second-generation Intel Xeon Phi processor. Due to

the requisite updates and branching involved, we incorporated

a critical region to ensure correctness.

VI. TARGETING GPUS

This section details our application porting work to the

GPUs using cuBLAS and OpenACC kernels.

A. cuBLAS
We utilized NVIDIA’s cuBLAS [27] library on the GPUs.

Our application uses row-major ordering for the major data

structures as it is written in the C programming language.

Hence, we had to modify our arguments to the cuBLAS

subroutines as it assumes the Fortran column-major ordering

for matrices.
We developed a standalone kernel and conducted a detailed

performance analysis after incorporating the cuBLAS calls.

Table III shows the performance profile for the GPU kernel

using the GCR dataset.

TABLE III
PERFORMANCE PROFILE OF OUR CUBLAS GPU KERNEL

Time(%) Avg. Time Calls Name
97.20 9.89 s 1 [CUDA memcpy DtoH]

1.41 71.8 ms 2 void ger kernel
0.77 78.18 ms 1 sgemm sm heavy nn ldg
0.37 6.22 ms 6 [CUDA memcpy HtoD]
0.26 26.43 ms 1 sgemm sm35 ldg nn 64x16x128x8x32
0.00 33.69 us 1 sgemm sm35 ldg nn 128x16x64x16x16

We identified the copying back of the pairwise distance

matrix from the GPU back to the host CPU as the major

performance bottleneck. We decided to perform the requisite

post-processing of the distance matrix on the GPU itself to

avoid copying the matrix back to host. This effort is described

in detail in the next section.

B. OpenACC additions

We implemented a couple of OpenACC kernels to post-

process dist, the pairwise squared distance matrix of obser-

vations and centroids on the GPU itself. This is required to

update the cluster assignments for the observations in addition

to bookkeeping tasks to keep track of farthest observation in

each cluster. This process entails operations such as finding the

minimum value and index for each row and maximum value

and index for each column.

C. Verification

We performed unit testing at every step to ensure the accu-

racy of the new kernels. It is infeasible to achieve bit-for-bit

reproducibility due to variations in floating point arithmetic in

BLAS libraries, etc. However, we have verified the final cluster

assignments in a quantitative manner (numerical comparison)

and qualitatively by generating maps of the final clustering

results.

VII. COMPUTATIONAL PLATFORM

We conducted our experiments on Titan [28], a Cray

supercomputer installed at Oak Ridge National Laboratory

(ORNL). Titan is a hybrid-architecture Cray XK7 system

with a theoretical peak performance exceeding 27 petaflops.

It comprises of 18,688 compute nodes, wherein each node

contains 16-core AMD Opteron CPUs and NVIDIA Kepler

K20X GPUs for a total of 299,008 CPU cores and 18,688

GPUs. Each node has 32 GB memory that amounts to 2

GB/CPU core. Additionally, there is 6 GB of memory available

on the GPU. It has a total system memory of 710 terabytes, and

utilizes Cray’s high-performance Gemini interconnect. Titan

has a 25× 16× 24 3D torus network where 2 compute nodes

share a network interface. As of November 2016, it is the third

fastest supercomputer in the world according to the TOP500

list [29].

The software environment for the reported experiments is as

follows: Cray PGI programming environment (version 5.2.82)

which uses PGI 16.10.0 compilers and Cray’s MPICH im-

plementation (version 7.5.2). We utilized Intel’s MKL (Math

Kernel Library) for BLAS matrix operations on the host

CPU. We used cuBLAS and CUDA toolkit (version 7.5.18-

1.0502.10743.2.1) for GPU programming.

VIII. COMPUTATIONAL PERFORMANCE

We performed several experiments on Titan using the large

GCR data set and different problem configurations. The perfor-

mance gains from our optimization efforts are demonstrated in

figure 3. In this scenario, we are comparing the performance

of the baseline application with the optimized version while

using the large GCR data set to find 8,000 clusters till a

specified convergence target is reached. We used a target of 5%
or fewer changes in cluster memberships between iterations

as the termination criteria for the performance experiments.

We use a better threshold (0.5%) for higher fidelity scientific

experiments. Note that the optimized version yields a speedup

of 2.7× over the baseline version. The application spends
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Fig. 3. Parallel Spatio-Temporal Clustering : Performance comparison of the
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a majority of time in the first phase (Phase1), and the

substantial improvement stems from accelerating Phase1
using GPUs.

A. Impact of k

The desired number of clusters (k) has significant influence

on application execution time. We conducted several exper-

iments to quantify this impact as shown in figure 4. The

performance benefits of the optimized version become more

prominent as k increases due to the increased computational

intensity of the application.

B. Dynamic Load Balancing

We have a centralized master process that allocates work

dynamically to both CPU and GPU workers. At every itera-

tion, the master process distributes initial chunks to available

workers and assigns next chunk upon completion. We can vary

the number of chunks of work, or aliquots, per iteration using

a parameter naliquot for effective load balancing between

non-homogeneous workers . The impact of this parameter on
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at higher node counts due to insufficient computational workload per process.

performance is shown in figure 5 using a single node of Titan

for the problem of finding 1,000 clusters for the GCR data set.

Although there is low degree of variability, we can observe that

a chunk size of 240 seems optimal for this particular problem

configuration.

C. Scaling

The strong scaling performance of our parallel clustering

implementation is shown in figure 6 for the 8,000 cluster

scenario. For this problem configuration, the application scales

well to sixteen nodes for a total of 256 CPU cores + 16 GPUs.

It must be noted that there is insufficient computation for the

8,000 cluster problem to amortize the communication and data

distribution overheads at larger node counts.

D. Limitations and Future Work

Our current approach uses a centralized master process to

coordinate and keep track of worker processes. If used with a

sufficiently small chunk (aliquot) size, this provides dynamic

load balancing, which is especially useful when employing the

triangle inequality-based acceleration technique, as the number
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of required distance comparisons will vary between chunks.

The centralized master-worker paradigm has inherent scalabil-

ity limits, however, and introduces a large amount of overhead

when many processes are used; furthermore, for certain large

data sets or problem configurations with higher number of

desired clusters, the memory requirements for storing the

cluster assignment table and intermediate data structures will

exceed the available memory on a node, which limits what

we can analyze on Titan. For these reasons, we plan to add

support for a decentralized approach (which we have explored

using a different version of the clustering implementation

[11]). Furthermore, we are interested in using non-volatile

memory (NVM)—which promises very large amounts of byte-

addressible memory—to store the cluster assignment table and

other applicable data structures.

One of our key optimizations has been the use of level-2

and level-3 BLAS routines using the matrix formulation of

the distance calculations. We currently combine this with the

triangle inequality-based acceleration in a crude manner by

simply specifying an iteration count at which to switch from

using the former approach to the latter. Developing a heuristic

to automatically select when this transition should occur is

one possible improvement. It may be feasible to do something

more sophisticated and combine the two approaches, perform-

ing all distance calculations in initial iterations via the matrix

approach, and then, as cluster memberships stabilize, using the

matrix formulation for calculations using only a subset of the

centroids.

IX. APPLICATIONS

A. Vegetation structure of Great Smoky Mountains National
Park

LiDAR based vertical density profiles of vegetation in

GSMNP were classified among 30 clusters to identify dis-

tinct vegetation structure type within the park. Choice of

30 clusters in our study was based on [4]. Figure 7 show

the 30 representative vertical structures (cluster centroids)

identified by the cluster algorithm. For example, cluster 1

represent tall forests with mean height of 30− 40 m but with

low understory vegetation, while cluster 2 represent forests

with slightly lower mean height of 25 − 30 m, but with a

dense understory vegetation under 10 m. Clusters 13, 14, 20

represent low height grasslands and heath balds that are small

in area but distinct landscape type within the GSMNP. While

most of the past LiDAR based studies of forest ecosystems

focus primarily on the maximum canopy height derived from

the point clouds, our clustering based analysis identifies and

highlights the immense diversity in vertical structure of the

vegetation (Figure 7) of different height, density and stature

across the park.

Figure 8 show the spatial distribution of the 30 vegetation

clusters across the national park. Structural complexity of the

vegetation in GSMNP across the gradients of topography,

precipitation and moisture availability and climate expressed

through diversity in vegetation species composition is visual-

ized in the Figure 8. High elevation regions of the park are

Fig. 7. Representative vegetation structure profiles identified by k-means
cluster algorithm (k=30) across GSMNP. Each vegetation profile show a
normalized density distribution of the vegetation bioss in the vertical canopy.
Also shown for each cluster is the fraction of total land area within the park
which it occupies.

dominated by the short height vegetation canopies with dense

understory. Vegetation at these high elevations are subjected

to harsher climate conditions and are thus dominated by

relatively shorter tree canopies with dense understory shrubs

like Rhododendron and Mountain Laurels. Tall canopy vege-

tation are prominent in mid to low elevation mountain coves,

especially on northern aspect mesic slopes that provides high

moisture and radiation environment to support tall vegetation

species in the park. Analysis of the entire vertical canopy,

unlike the maximum height in most previous studies, reveals

spatial patterns of vegetation structure that are influenced by

microclimatic conditions leading to a great range of diversity

not just across different vegetation types and species but also

within same species and forest types. These patterns provides

insights in the range of climate conditions a given species

grow in and adapt to and is indicative of vegetation health

and diversity.

B. Global climate regimes

Tremendous amount of heterogeneity in terms of climate,

vegetation, soil properties and nutrients and topography exist

in the terrestrial land ecosystem across the globe. At the same

time similarities in environmental conditions exist at regional

scales and at times across regions that may be geographically
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Fig. 8. Spatial distribution of 30 vegetation structure classes/clusters (Fig-
ure 7) across the Great Smoky Mountains National. Boundaries of the GSMNP
are shown by black lines on the map. The black line across the middle of the
park following the ridge line of mountains is the state line with Tennessee in
north and North Carolina to south of it. Color scheme is the map corresponds
to the color scheme for cluster in Figure 7.

disconnected and distant. Goal of global climate regimes is to

characterize the environmental conditions descried by multi-

dimensional data sets (Table II) in a set of cohesive data

defined regions and help quantify the large scale patterns of

climate and environment.

Level of divisions (k) in k-means clustering provides res-

olution in multi-dimensional data space, that can be tuned

depending on the specific resolution. Figure 9 show map

of 1000 climate regimes identified by k-means clustering

using multi-dimensional data sets (Table II). Clustering is able

to identify biomes all across the globe, like, Appalachian

mountains in eastern United States, agricultural regions in

United States mid-west, Alaskan boreal forests, dry and wet

tropical forests in Amazon etc. However, while clustering can

characterize the heterogeneities in the complex data sets well,

visualization of the results for analysis purposes pose a unique

challenge. Colored using random colors, Figure 9 is difficult

to interpret. Generating 1000 distinctly identifiable colors for

visualization is a difficult problem, bound by the limitations

of human eye to perceive colors.

We quantitatively generated color schemes (similarity col-
ors) for the map that embeds the environmental conditions in

the color used for the maps, making their interpretation easy

and intuitive. We performed a Principal Component Analysis

(PCA) on the final centroids identified for the 1000 clusters by

the k-means algorithm. The first three principal components

(PCs) explain 62% of the total variance in the data. First

principal component (PC1) represents 30% of the variance

and was dominated by precipitation related variables and

evapotranspiration. Second principal component (PC2) was

dominated by temperature variables and length of growing

season and explained 20% of total variance. Third principal

component (PC3) primarily represented solar radiation, topog-

raphy and soil nutrient variables and explained 12% of the

total variance. Values of first three principal components were

used to generate RGB color schemes for the map. PC1 was

assigned to Green channel, PC2 to Blue and PC3 was assigned

to the Red channel to generate the similarity colors. Figure 10

shows the same map as Figure 9 but using similarity colors.

While Figure 9 highlights the boundaries between climate

regimes well, Figure 10 uses a continuous color scheme

that highlights the dominant environmental conditions (based

on PCs) that characterizes the regime. Northern hemisphere

temperate and high latitudes are dominated by temperature

variables. Effect of precipitation and soils are visible in eastern

United States, and topographic complexities of Sierra Nevada

and Rocky Mountains in western United States are depicted

by complexity of colors on the map. Precipitation and soil

conditions are increasingly dominant in tropical region in both

hemispheres and latitudinal similarities across the continents

in tropical region are prominent.

Analysis of future climate regimes using two climate models

and two different climate scenarios show key shifts expected in

the large scale climate regimes globally under climate change

scenarios. Due to space limitations, we present results only

for HadCM3 climate model under A1FI scenario in 2100

(Figure 11). A northward shift in regimes can be observed,

especially in northern hemisphere temperate zones under in

future warming climate. The changes in the climate regimes

are especially prominent in tropical regions due to expected

shift in precipitation patterns and warmer climate.

X. CONCLUSION

In this paper, we presented a parallel multivariate spatio-

temporal clustering algorithm and its application to processing

big data sets in ecology. Through a detailed performance

characterization of our application, we identified the need to

increase the computational intensity to achieve better perfor-

mance on advanced architectures. Towards that end, we imple-

mented a high performance BLAS formulation to accelerate

Euclidean distance calculations that formed the dominant com-

ponent of our baseline application. We have made substantial

efforts to improve the performance of the baseline algorithm

by utilizing all the computational resources available on hybrid

supercomputers. Using a combination of MPI, CUDA and

OpenACC, we demonstrated up to 2.7X speedup in certain

problem configurations with the optimized implementation on

the Titan supercomputer at Oak Ridge National Laboratory.

We applied our technique and demonstrated efficacy in ad-

dressing two of Earth science problems, namely (a) Great

Smoky Mountains National Park: identification of vegetation

structure and (b) Globlal Climate Regimes: understanding the

global patterns of climate, vegetation and terrestrial ecology.

Our future plans include (a) design of a decentralized

version to overcome scalability limitations with large pro-

cess counts and memory limitations with large data sets,

(b) experimenting with non-volatile memory technologies for

storing cluster assignments and intermediate data structures,

(c) better integration of matrix and triangle inequality-based

formulations of the distance calculations, and (d) techniques

for effective utilization of fat hybrid nodes like those present in

the next generation supercomputer, Summit, which will have

multiple GPUs per node.
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Fig. 9. 1000 Global climate regimes generated by the k-means clustering algorithm for contemporary time period. Randomly generated colors were assigned
to each cluster to highlight the extent and boundaries among the climate regimes.

Evapotranspiration

     Precipitation, 

Temperature & Growing 
       Season Length

and Soil nutrients

Elevation, radiation

Fig. 10. 1000 Global climate regimes generated by the k-means clustering algorithm (same as Figure 9) for contemporary time period. Similarity color scheme
was used where Red color channel highlights effect of topography and soil properties, Green channel highlight precipitation variables and evapotranspiration,
and Blue channel demonstrate the effect of temperature variables and growing season length.
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Fig. 11. 1000 Global climate regimes generated by the k-means clustering algorithm for predicted future 2100 by HadCM3 climate model under A1FI
emissions scenario. Similarity color scheme was used where Red color channel highlights effect of topography and soil properties, Green channel highlight
precipitation variables and evapotranspiration, and Blue channel demonstrate the effect of temperature variables and growing season length.
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