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Abstract

Much research has examined the sensitivity of tropical terrestrial ecosystems to various environmental
drivers. The predictability of tropical vegetation greenness based on sea surface temperatures (SST's),
however, has not been well explored. This study employed fine spatial resolution remotely-sensed
Enhanced Vegetation Index (EVI) and SST indices from tropical ocean basins to investigate the
predictability of tropical vegetation greenness in response to SSTs and established empirical models
with optimal parameters for hindcast predictions. Three evaluation metrics were used to assess the
model performance, i.e., correlations between historical observed and predicted values, percentage of
correctly predicted signs of EVI anomalies, and percentage of correct signs for extreme EVI anomalies.
Our findings reveal that the pan-tropical EVI was tightly connected to the SSTs over tropical ocean
basins. The strongest impacts of SSTs on EVI were identified mainly over the arid or semi-arid tropical
regions. The spatially-averaged correlation between historical observed and predicted EVI time series
was 0.30 with its maximum value reaching up to 0.84. Vegetated areas across South America (25.76%),
Africa (33.13%), and Southeast Asia (39.94%) were diagnosed to be associated with significant SST-
EVI correlations (p < 0.01). In general, statistical models correctly predicted the sign of EVI
anomalies, with their predictability increasing from ~60% to nearly 100% when EVI was abnormal
(anomalies exceeding one standard deviation). These results provide a basis for the prediction of
changes in greenness of tropical terrestrial ecosystems at seasonal to intra-seasonal scales. Moreover,
the statistics-based observational relationships have the potential to facilitate the benchmarking of
Earth System Models regarding their ability to capture the responses of tropical vegetation growth to
long-term signals of oceanic forcings.
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1. Introduction

Tropical vegetation, a key component of the Earth terrestrial ecosystem, plays a pronounced role in land surface
budgets of energy, water, and mass, regulating regional and global environmental changes (e.g. Dickinson and
Henderson-Sellers 1988, Cramer et al 2004). Functioning as the most productive biome on Earth and large
carbon reservoirs, tropical forests also provide many ecosystem services ranging from improving air quality to
sustaining local cultures (Lawrence et al 2005, Delgado-Aguilar et al 2017). Given the vital role of tropical
ecosystems in the Earth system, improving the diagnostic and prediction skills of the dynamic variations in
tropical vegetation is critical, both scientifically and societally.

Prediction studies have long been applied to numerical weather forecasting (Kukkonen et al 2012). Only
until recently, such efforts have begun to emerge in ecosystem dynamics, including the predictions of phenology
(Cook et al 2005, Dannenberg et al 2018), crop yield (Hsieh et al 1999, Gonsamo et al 2016), and burned area
(Chen et al 2016). However, there have been few studies focused on assessing the predictability and conducting
the prediction of tropical vegetation growth.

The driving mechanisms of tropical biotic and abiotic processes are not clearly understood yet, especially on
seasonal to longer time scales (Dong et al 2012, Greve et al 2011). Growing attention has focused on identifying
the association and causation between climatic variables and tropical vegetation growth. For example, statistical
and complex machine learning techniques have been comprehensively utilized to assess the sensitivity of
tropical vegetation properties to regional and remote atmospheric conditions (e.g. Zhao et al 2018, Dannenberg
etal 2018, Papagiannopoulou et al 2017). These studies, however, have not addressed the predictability of
tropical vegetation growth, especially when using sea surface temperatures (SSTs).

SSTs trigger changes in atmospheric modes and determine spatiotemporal patterns of climatic factors such
as precipitation, which in turn modulate the variations of tropical terrestrial ecosystems (Wallace and
Gutzler 1981). For example, the tropical SST anomalies-induced warm phase of the El-Nifio Southern
Oscillation (ENSO), also known as El Nifio, causes reductions in precipitation over eastern Amazonia by altering
the Walker Circulation (Ropelewski and Halpert 1989). The strength of such El Nifio events has also been closely
related to the inter-annual occurrence of tropical droughts (Dai et al 1997, Lyon 2004, Lyon and Barnston 2005,
Guand Adler 2011). Consequently, these ocean-induced changes have long been recognized to affect tropical
ecosystem dynamics in many ways, such as carbon balance (Prentice and Lloyd 1998, Tian et al 1998), water use
efficiency (Yang et al 2016), tree mortality (McDowell et al 2018), and occurrence of wildfires (Nepstad et al 1999,
Alencar et al 2006, Page et al 2008).

The SSTs also provide relatively longer memory than atmospheric teleconnections and associated changes of
specific climatic variables. These are induced mainly by a combination of causes including thermal inertia of the
upper ocean, large-scale atmospheric-ocean interactions, and memory of downstream soil moisture (Mei and
Wang 2011). Lags in the response of the terrestrial ecosystem to oceanic (namely SST) variations thus make it
possible to forecast vegetation changes several months in advance.

Given the substantial indirect influence of SST's on tropical vegetation growth and their leading role in
ocean-atmosphere-biosphere interactions, it is the aim of this study to explore the possibility of predicting
tropical vegetation greenness based on SST indices. We will investigate to what degree the monthly changes of
tropical vegetation greenness, as characterized by the Moderate Resolution Imaging Spectroradiometer
(MODIS) Enhanced Vegetation Index (EVI), can be predicted by SST indices from tropical ocean basins using
advanced statistical models.

2. Data and methodology

2.1.Data and data processing
The global monthly time series of MODIS Collection 5 EVI data at 0.05° spatial resolution from February 2000
to December 2013 was derived from Seddon et al (2016). The tropical area between 20 °S and 20 °N was
extracted for this study. Land grids with missing values over the entire time series were taken as non-vegetated
area and masked out in this analysis. For vegetated grids, we focused only on those with less than 10% missing
values (figure S1 is available online at stacks.iop.org/ERC/1,/031003 /mmedia) and filled these gaps using
climatological means to ensure each grid has the same sample size. We de-seasonalized the EVI data, i.e.,
removed the climatological seasonal cycle at each pixel to produce its monthly anomaly. Linear trends were then
removed from the time series to eliminate possible impacts from other factors that are not considered in this
study, for example, the CO, fertilization effect. The detrending treatment also increases the confidence in the
correlation analysis by eliminating spurious relationships (e.g. Zhu et al 2017, Gonsamo et al 2016).

We obtained the yearly land use classification map from the MODIS MCD12C1 product at 0.05° spatial
resolution from 2001 to 2012, in which land surfaces are classified into 17 categories including natural and
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human-managed land use types. Fourteen biome classes are present in the tropics, with only 9 of them covering
atleast 0.5% of the tropical vegetated land surfaces (figure S2). These 9 classes, evergreen broadleaf forest (EBF),
open shrub (OSh), woody savanna (WSvn), savanna (Svn), grassland (Gra), wetland (Wet), cropland (Crp),
cropland and natural vegetation mosaic (CrpNat), and barren or sparsely vegetated (SV), were thus retained in
the subsequent analysis. Since the evolution of biome types from 2001 to 2012 was relatively less pronounced, we
assumed that biome classifications have not changed through our study period and the map from 2001 was
adopted to aggregate the statistics in this study.

To account for oceanic status, we picked 14 SST indices over 3 tropical ocean basins, namely Nifiol + 2 (far
eastern equatorial), Nifi03.4 (central equatorial), Nifio3 (eastern equatorial), Nifio4 (west-central equatorial),
and Trans-Nifo Index (TNI) from the Pacific Ocean, tropical North Atlantic (TNA), tropical south Atlantic
(TSA), North Atlantic tropical (NAT), South Atlantic Tropical (SAT), and tropical Atlantic SST Index (TASI,
north-south equatorial SST gradient) from the Atlantic Ocean, and Dipole Mode Index (DMI, west-east
equatorial SST gradient), Southeastern Tropical Indian Ocean (SETIO), South Western Indian Ocean (SWIO),
and Western Tropical Indian Ocean (WTIO) from the Indian Ocean (figure S3). These indices are monthly SST
anomalies calculated relative to the base period of 1982—-2005 and averaged over various ocean regions or
gradients of two other SST indices. Time series of SST indices were downloaded from the National Oceanic and
Atmospheric Administration (NOAA) at http://stateoftheocean.osmec.noaa.gov/all/ and detrended the same
way as was EVIL.

2.2. Statistical models and evaluation metrics

The coupling strength between oceanic conditions and vegetation growth was first evaluated using linear
correlations between the SST indices and EVI anomalies, with the former leading the latter by a number of
months ranging from 0 to 11. Pearson correlations were calculated for each combination of SST indices and
number of leading months at a grid basis. The maximum absolute correlation coefficient from all combinations
was taken as a measure of the impacts of SSTs on vegetation growth. A Student’s-t test with a null-hypothesis of
zero correlation was used. We restricted our subsequent analysis to those pixels associated with significant

(p < 0.01) correlations. The SST index and its corresponding number of leading months associated with the
largest absolute correlation coefficient were chosen as the controlling SST index and number of leading months
of a certain grid cell.

Given the controlling SST index and its associated number of leading months for a certain grid, we built
three predictive models of EVI based on SSTs, namely a univariate linear model (denoted as SST1,y = ax+b),a
polynomial model (denoted as SST1p,y = ax® + bx-+c), and a multivariate linear model (denoted as SST2,

y = ax;+bx,+c) with the two predictors (SST indices) from two different ocean basins to avoid feature
redundancy. In SST1 and SST1p, the controlling SST index as described above was used to construct the models.
SST2 was built based on SST1, with the second SST index chosen as the one that minimizes the residual error by
adding this index to the SST1 model. Model coefficients (a, b, and c) were obtained from linear least squares
fitting.

We used three types of evaluation metrics. The first is anomaly predictability, defined as the correlation
between predicted and historical observed EVI anomalies, giving a value ranging from —1 to 1 with higher
positive values indicating higher accuracy of the model. It generally measures the similarity of predicted and true
values. The aforementioned Student’s-t test was also applied to the anomaly predictability. Direction
predictability, defined as the proportion of correctly predicted signs of EVI anomalies with values ranging from
0 ~ 100%, assessed whether the positive/negative sign of EVI anomalies could be correctly predicted. Finally,
we further relaxed our requirements by evaluating whether the positive /negative sign of EVI anomalies can be
correctly predicted in extreme conditions (referred to as direction predictability in extreme conditions).
Extreme value refers to the EVI anomalies at a pixel exceeding one standard deviation. Those pronounced
variations of plant growth are especially important for ecological and socioeconomic studies. It is thus important
for the statistical models to at least correctly detect the response direction of ecosystem in those extreme
conditions.

Each of the three models was run 100 times with unique random divisions of the time series into training
(70%) and test (30%) sets for fair evaluation, with the former used to train the model and the latter to evaluate its
performance. Models were evaluated based on the evaluation metrics described above, and the median value of
the 100 evaluation metrics was calculated over the test set at each grid cell and reported as the model
performance in the results. These aforementioned statistics were also aggregated for each biome type to
demonstrate the dependence of ocean influences and model performance on individual vegetation types.
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Figure 1. Spatial distributions of (a) the maximum absolute correlation coefficients between EVI and the controlling SST index,

(b) the controlling SST index, (c) the number of months with the controlling SST leading EVI responses, and (d) the anomaly
predictability with p < 0.05. Only those grid cells with significant correlations between SST index and EVI with p < 0.01 are shown.
Grid cells with more than 10% of their EVI time series missing are masked. The rainforest regions are highlighted by polygons in each
map. The right column shows the density distributions of (e) correlation coefficients for each region, (f) the same, but for each SST,
(g) the number of leading months for all three tropical continents, and (h) anomaly predictability. The line colors denote different
continents as indicated in (g). The vertical black lines in (e) and (h) indicate the thresholds beyond which values are significant with

p < 0.01 (solid line), 0.05 (dashed line), and 0.1 (dotted line).

3. Results

3.1. Controlling SST index

Of the tropical vegetated grid cells, 92.53%, 95.46%, and 94.69% of South America, Africa, and Southeast Asia,
respectively, showed significant (p < 0.01) correlations between a predictor SST index and subsequent EVI
anomalies (figures 1(a) and (e)). More specifically, most tropical forest regions were associated with significant
correlations, with the area percentages of 88.55% for the Amazon, 88.15% for the Congo, and 90.92% for
Southeast Asia. High absolute correlation coefficients were seen mainly over northeastern Brazil, eastern
tropical Africa, and northern Australia. These evident connections indicate the potential for SST indices to be
successfully applied in the prediction of the dynamics of tropical vegetation growth.

Vegetation growth over tropical South America was influenced mainly by SST from the Atlantic Ocean basin
(especially TSA), followed by those from the Indian and Pacific Ocean basins (figures 1(b) and (f), S4).
Northeastern Brazil, the region associated with strongest responses of vegetation growth to SST variations, was
almost entirely controlled by a unique index, the TSA, with alead time ranging roughly from 3 to 5 months
(figures 1(c) and (g), S5). The positive correlations indicate that an abnormally high temperatures in the tropical
South Atlantic favors vegetation growth. Over tropical Africa, DMI from the Indian Ocean and TSA from the
Atlantic Ocean exerted notable controls over vegetation growth. For eastern tropical Africa, Nifio4 dominated
the vegetation growth. Influences from DMI and Nifio4 were positive and short in lead time (0-2 months and
3-5 months, respectively). TSA was negatively correlated with EVI over the northeastern Horn of Africa, with
TSA leading EVIresponses by about 9—11 months. Tropical Pacific SSTs, specifically Nifio4 representing the
ENSO mode, played a primary role over tropical Southeast Asia and Australia. Over northern Australia, where
SSTs pronouncedly influenced vegetation dynamics, tropical Pacific indices (e.g., Nifio3.4, Nifio3, and Nifo4)
were negatively correlated with vegetation growth. Tropical Atlantic SSTs (TSA and TNA) also positively
controlled some portion of northern Australia. While the responses of vegetation to ENSO indices were short
(0-2 months in advance), the optimal forecasting time for TSA/TNA was 9—11 months in advance, probably due
to the long distance from the Atlantic Ocean. Actually, it has been shown that the TSA/TNA is partly driven by
and thus lags the Pacific Nino index by 3—6 months (Alexander et al 2002), which is consistent with our findings.
Thelonger response time of TSA (9 ~ 11 months) than that of Nifio4 (3 ~ 5 months) over eastern tropical
Africa could also be caused by this relationship between ENSO indices and tropical Atlantic SST indices.
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Figure 2. The statistics of (a) the maximum correlation, (b) percentage of area controlled by each SST index, (c) the number of leading
months, (d) anomaly predictability, i.e., the correlation coefficient between predicted and historical EVI anomalies, (e) direction
predictability (i.e., the percentage of correct predictions in the signs of EVI anomalies), and (f) direction predictability in extreme
events (i.e., correctly predicted signs of EVI anomalies when the anomalies exceeding the standard deviation) over different biomes.
Abbreviations of biome types are given in Methods. For each biome classification, statistics for each SST index are shown, with the
colors representing the ocean basin that a specific SST index belongs to. In (a), (c), (d), (e), and (f), the dotted curve represents the
mean value, and the shading area indicates the mean value + standard deviation. The broken lines in (a) and (d) denote the threshold
in the correlation coefficient beyond which the value is significant with p < 0.01.
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Figure 3. Density distribution of (a) direction predictability (i.e., the percentage of correctly predicted signs of EVI anomalies) and
(b) direction predictability in extreme conditions (i.e., correctly predicted signs of EVI anomalies with the anomalies exceeding a
standard deviation) over the three tropical continents.

The three specified regions with a strong influence from SST's on vegetation dynamics are covered mainly by
open shrub, woody savanna, savanna, and sparse vegetation (figure S2). The controlling ocean modes varied
with biome types but the Nifio4, TSA, and DMI were identified as the dominant controlling SST indices
(figure 2). No clear controlling indices that overwhelm the rest were seen for other biome types, especially for the
cropland, which is a human-managed land use type and thus relatively less responsive to climate conditions. We
also did not see a clear dominant controlling ocean mode over the evergreen broadleaf forests either. Such
differences in the EVI response to oceanic drivers imply that vegetation adaptation strategies and controlling
mechanism of climates vary with biome types.

3.2. How well can vegetation dynamics be predicted?

Due to the best performance of SST2 among all three statistical models (figures S6, S7, and table S1), we use its
results in this section to assess the statistical model’s ability to predict vegetation changes. Over the pan tropics,
EVI anomalies can be partially predicted by SST (figure 1(d)). Not surprisingly, the highest predictability was
determined over the three regions with highest correlations with SSTs as shown in figure 1(a), namely
northeastern Brazil, eastern tropical Africa, and northern Australia. The mean anomaly predictability was 0.30
when averaged across the entire tropical vegetated area, with its maximum value reaching up to 0.84. The
anomaly predictability is the correlation between historical observed and predicted EVI anomalies, and thus
high values, i.e., close to 1, indicate high accuracy of the model. 25.76%, 33.13%, and 39.94% of vegetated areas
across South America, Africa, and Southeast Asia, respectively, were associated with significant predictability
withp < 0.01. When considering only tropical rainforests, this area proportion dropped substantially to
14.03% for the Amazon, 11.83% for the Congo, and 20.23% for Southeast Asia. The proportion of correctly
predicted signs of EVI anomalies (direction predictability) was also examined, and its probability density
function (PDF) was distributed to about 60% with a range of about 50%-80% as shown in figure 3(a). The value
reached up to about 80% in some places over these three regions that are most responsive to SSTs. We further
evaluated whether the model can correctly predict the sign of EVI anomalies when they are abnormally extreme
(direction predictability in extreme events), i.e., beyond one standard deviation. PDF of this predictability metric
in figure 3(b) peaked at 100%, indicating the high ability of the model to correctly predict the signs for those
extremely abnormal EVI values. Though the number of grid cells with extreme EVI occurrences was small (only
2.15% of vegetated grid cells), high predictability above 90% was seen over large proportions of these grid cells
primarily over part of eastern tropical Africa (68.25% over South America, 77.34% over Africa, and 66.17% over
Southeast Asia). The percentages for the three rainforests were 59.21% (Amazon), 59.80% (Congo), and 61.45%
(Southeast Asia). These high percentages indicate that even simple statistical models can correctly predict the
direction in vegetation response to extreme events several months in advance, which is the bottom line of
developing forecast models.

Predictability (in terms of all three-predictability metrics) was higher over open shrub, savanna, grassland,
and sparsely vegetated area (figures 2(d)—(f)) than other biome types. Rainforests were associated with the lowest
predictability (the EBF) compared with all other 8 biome types that cover at least 0.5% of vegetated area over the
tropics. For example, the anomaly predictability was not significant for almost all controlling SST indices except
Nifno3.4 and Nino4 (with the highest values passed beyond the significant threshold).
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4. Discussion

The widely reported strong influence of SST's on vegetation dynamics over the tropics (e.g. Lyon 2004) indicates
a potential predictive skill, which is the focus of this research. Northeastern Brazil, eastern tropical Africa, and
north Australia were found to be associated with high predictability of vegetation greenness using SST's. These
three regions are all located in arid or semi-arid climate zones with strong seasonal cycles in precipitation and
rainy season(s) of 3—6 months (e.g. Drosdowsky 1993, Nicholls et al 1997, Uvo et al 1998, Yang et al 2015), and
are covered mainly by sparse vegetation spanning from open shrublands to savanna.

Anomalies in SST's drive the changes in atmospheric circulations and consequently modify the
spatiotemporal distributions of climate variables (e.g., air temperature, cloud fraction, and precipitation), which
then regulate vegetation functioning through plant physiological processes. For example, Philippon et al (2014)
showed that ENSO’s impacts on Normalized Difference Vegetation Index (NDVT) over eastern tropical Africa
occur mainly through its effect on rainfall. Those three regions are recognized as substantially influenced by SST's
and have also been found to be associated with strong coupling between SSTs and local precipitation change in
previous studies, suggesting that the climate variable linking ocean status and vegetation responses is primarily
precipitation.

Over northeastern Brazil, we found that vegetation growth was almost entirely controlled by tropical South
Atlantic SSTs, with higher ocean temperature favoring vegetation growth. The tropical Atlantic meridional SST
gradient haslong been recognized as a potential influence on the precipitation anomalies over northeastern
Brazil (or the Nordeste). For example, Uvo et al (1998) revealed strong positive correlations between south
tropical Atlantic SST anomalies and rainy-season precipitation over northeastern Brazil on a monthly time scale
in February and especially in April and May. Though the correlation of the contemporary SST anomalies and
precipitation is weak in March, SSTs still have a pronounced positive impact on the rainy season precipitation
due to their persistent impact that lasts 2—3 months. The region of the south tropical Atlantic basin previously
found to exert the impacts is almost identical to the box where the TSA index is defined and calculated (Enfield
etal 1999). Giannini et al (2004) further showed that a warmer than normal TSA or colder than normal TNA
during the boreal spring (March-May) drives the Atlantic Inter-Tropical Convergence Zone (ITCZ) southward,
favoring an early start of the rainy season and a higher accumulated precipitation during the rainy season in the
Brazilian Nordeste. The longer response time for vegetation found in our study (3—5 months) compared with
2-3 months found for precipitation by Uvo et al (1998) may result from additional factors including soil
moisture memory (Notaro 2008) and plant resilience (Potts et al 2006).

Over eastern tropical Africa, SSTs from all three ocean basins were found to control some area in our study,
with DMI and Nifio4 imposing positive controls and TSA imposing negative controls. Among the three indices,
DMI from the Indian Ocean controlled the largest area of this region. The Indian Ocean SST has been identified
as the main driver of precipitation variability over eastern tropical Africa (Goddard and Graham 1999).
Specifically, Black et al (2003) indicated that extreme September-October-November precipitation over this
region was associated with periods of persistently high DMI, i.e., an anomalous high west-east SST gradient over
the tropical Indian Ocean. The variability of seasonal rainfall over eastern tropical Africa is also affected by ENSO
(e.g. Giannini et al 2008). Parhi et al (2016) demonstrated that El Nifio (quantified by positive values of Nifno3.4
in their study) was associated with an increase in the number of wet days and consequently an increase in
seasonal mean precipitation. Our findings that tropical Pacific SST's impose a positive control on eastern tropical
African vegetation growth are in line with other studies. Specifically, a positive control of Nifi03.4 on the
interannual variability in NDVI has been reported (Zhao et al 2018). Similar findings were also shown between
ENSO and gross primary production (GPP) on seasonal time scales (Zhu et al 2017). Although the direct
relationships between Atlantic SST and precipitation variability over the eastern tropical Africa have not been
reported in the literature, to the best of our knowledge these two might be connected through the impacts of
TSA on Indian monsoon variability (Kucharski et al 2008) and the subsequent influences of Indian ocean SST on
precipitation over TEA (Wang et al 2017).

Over northern Australia, our results indicate that tropical Pacific SST (Nifno3.4, Nifo3, Nifio4) negatively
correlates and tropical Atlantic SST (TSA and TNA) positively correlates with vegetation anomalies (both
significant with p < 0.01). The negative controls of ENSO on vegetation greenness over this region are
consistent with other studies (e.g. Zhao et al 2018). Kirono et al (2010) demonstrated that the seasonal
precipitation in northern Australia was best predicted by Nifio4 during austral spring and autumn. They also
indicated that the summer rainfall over northern Australia can be predicted by Nifio4 and the Southern
Oscillation Index (SOI). Precipitation over eastern Australia is also well known for its strong response to ENSO
mode with the positive phase associated with decreasing precipitation (e.g. Catto et al 2012). Studies have also
reported the impacts of Atlantic Ocean SST on Australia rainfall. For example, Lin and Li (2012) identified a
positive correlation between tropical Atlantic SST anomalies and rainfall in the northwestern Australia. Though
most of the regions in these studies are out of the spatial scope of our research due to the limited spatial coverage
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in the tropics within 20°S-20°N, these studies provide further insights into ocean influences on northern
Australian rainfall.

Vegetation growth over these three semi-arid regions has been indicated as primarily positively controlled by
water availability on seasonal (Seddon et al 2016, Papagiannopoulou et al 2017, Green et al 2017) and interannual
(Gonsamo et al 2016, Zhao et al 2018) time scales despite differences in statistical methods and temporal ranges
of these past studies. As revealed by a rainfall exclusion experiment, not only the rainfall amount but its
frequency and timing strongly influence the structure and functioning of semi-arid ecosystems (Miranda et al
2011). Specifically, Barbosa et al (2006) showed that the seasonal variations of NDVI over northeastern Brazil
were largely influenced by the seasonal dry and wet periods. They found that greening and browning periods of
about 7-8 years coincided with prolonged extreme wet and drought periods, respectively. Over eastern tropical
Africa, Hawinkel et al (2016) indicated that the interannual variability in precipitation explained most of the
variability in plant growth, particularly over those areas covered by herbaceous plants, with topography and soil
playing alimited role. Seddon et al (2016) proposed an explanation for the high plant sensitivity to water
availability over northeastern Brazil that indicated the high phenotypic plasticity of leaf senescence and green-up
resulted in large amplitudes in the EVI response to drought variability. Green et al (2017) further suggested that
the higher fraction of C4 plants in these wet-dry transitional area (Still et al 2003) can explain the higher
sensitivity to water limitation since C4 plants also have higher water use efficiency than C3 plants
(Ghannoum 2008).

Our results show that oceanic signals substantially contributed to the seasonal and intra-seasonal ecosystem
dynamics in the semi-arid regions, and thus can be used to predict ecosystem dynamics in advance. Semi-arid
ecosystems have been reported to play a dominant role in the inter-annual variability and trends in global carbon
cycle (e.g. Ahlstrom et al 2015, Poulter et al 2014). This study thus serves as a step forward in our future
predictions of global carbon cycles in response to environmental change (Luo et al 2015). In addition, evidence
has shown that ecosystem functioning is influenced by variations in hydrological conditions even without
changes in mean annual precipitation (e.g. Knapp et al 2002). Our focus on precipitation variability originating
from SST variability on seasonal to intra-seasonal time scales thus provides further insights into potential
impacts from ongoing anthropogenic climate change.

In contrast to the sparse vegetation located in the semi-arid regions, the lowest predictability of the statistical
models was identified over the tropical rainforests, implying non-climatic factors might exert the first-order
control of plant growth variability. There is an ongoing debate regarding the driving factors underlying the
rainforest growth. Zhao et al (2018) demonstrated significantly positive correlations between NDVI and
Photosynthetically Active Radiation (PAR) over the Amazon and Southeast Asia rainforests on interannual time
scales. Using Granger Causality technique, Green et al (2017) found that seasonal variations in PAR were
responsible for the solar-induced fluorescence (SIF) dynamics over only a very small area in the Amazon with
most areas uncontrolled by either PAR or precipitation. Other studies, however, showed no clear climatic
control on vegetation variability over the tropical rainforests at seasonal (Papagiannopoulou et al 2017) or
interannual (Gonsamo ef al 2016) time scales. The dense tropical forests are relatively resilient to climatic
variability, which is to a certain extent facilitated by many mechanisms, including their deep roots system that
can buffer the drought impacts (Christina et al 2017). In addition, Wu et al (2016) found that leaf development
and demography was the primary driver of photosynthetic seasonality in tropical evergreen forests while the
seasonality of climate variables played a negligible role. Other factors that may determine the variabilities of
tropical forests include wildfires (Van Der Werf et al 2008), availability of soil nutrient (Fisher et al 2012), and
deforestation (Hansen et al 2013). The possible major role of these non-climatic factors could explain the lowest
predictability of rainforest growth using SST's as seen in our study. However, our findings that vegetation growth
of tropical rainforests is poorly predicted using SST's do not necessarily apply to other aspects of ecosystem
functioning. In contrast, Chen et al (2016) demonstrated that SSTs were good predictors of burned areas over
various tropical rainforest regions, including southwestern, eastern, and southeastern Amazon and almost the
entire Southeast Asia rainforest. More efforts are thus needed to explore the possibility of predicting growth
variation in tropical rainforests.

Behavior of oceanic modes is not completely independent, and interactions among them have been
previously reported. For example, Uvo et al (1998) found that the tropical Pacific SST anomaly pattern was well
correlated with that of the northern tropical Atlantic, with the temporal correlation coefficient reaching up to
0.8. They also demonstrated that tropical Pacific SST anomalies in winter trigger tropical Indian SST anomalies
in spring. Dannenberg et al (2018) revealed that the inclusion of interaction of teleconnections on vegetation
phenology improved model accuracy over North American land surfaces. One limitation of our study may thus
stem from our lack of consideration of the interactive impacts of different ocean modes on vegetation growth.
The resulting potential uncertainties might be the overestimation or underestimation of effects and
predictability from the additive sum of a combination of multiple SST indices. Specifically, in our SST2 model,
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i.e. alinear model with contributions from two additive terms (SST indices), the actual total effects of the two
SST indices might be greater or lesser than the sum of them depending on the coefficient of the interaction term.

The selection of model forms, for example, the model complexity, is also expected to highly influence our
predictability abilities and may introduce uncertainties. We built three statistical models and compared their
performance in figure S6. Based on the median predictability from 100 runs of all three models, SST2 was
significantly more accurate than SST1 and SST1p, and SST 1p was significantly more accurate than SST1. A
Student’s-t test between each combination of two models (table S1) confirms that more complex models are
always more significantly accurate than the less complex ones, in terms of the median predictability. Further
comparisons in the three continents show similar order of the models’ accuracy (figure S7). These comparisons
indicate that more complex models bring in higher predictability in vegetation responses.

5. Conclusions

Three tropical regions, namely northeastern Brazil, eastern tropical Africa, and northern Australia, that are
located in arid or semi-arid climate zones and covered mainly by sparse vegetation including open shrub, were
found to be associated with evident influences of SST's on vegetation growth and consequently high ecological
predictability on seasonal to intra-seasonal time scales. Over the tropical rainforests, however, the weakest
oceanic influences and thus lowest predictability were identified. The developed statistical models partially
predicted the EVI dynamics based on selected SST indices over the pan tropics with limitations owing to the
impacts from factors other than climate and model simplicity. As a future direction, more sophisticated
statistical models will be tested. We will also evaluate the reliability of the statistics-based model for extracting
key oceanic impacts on tropical terrestrial ecosystem production using dynamic experiments with an Earth
system model, for example those from the High Resolution Model Intercomparison Project driven by observed
SSTs (Haarsma et al 2016). We will include vegetation data that is more physiologically related to plant
photosynthesis, including the observation-based GPP (e.g., Zhao et al 2005, Jung et al 2009) and SIF (Joiner et al
2011). Furthermore, dimension reduction techniques (Gonsamo et al 2016) will be applied to quantify the
leading modes of SSTs and precipitation and their relationships with vegetation greenness, thus to reduce
dimensionality.
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