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Quantifying the drivers and predictability of
seasonal changes in African fire
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Africa contains some of the most vulnerable ecosystems to fires. Successful seasonal pre-

diction of fire activity over these fire-prone regions remains a challenge and relies heavily on

in-depth understanding of various driving mechanisms underlying fire evolution. Here, we

assess the seasonal environmental drivers and predictability of African fire using the ana-

lytical framework of Stepwise Generalized Equilibrium Feedback Assessment (SGEFA) and

machine learning techniques (MLTs). The impacts of sea-surface temperature, soil moisture,

and leaf area index are quantified and found to dominate the fire seasonal variability by

regulating regional burning condition and fuel supply. Compared with previously-identified

atmospheric and socioeconomic predictors, these slowly evolving oceanic and terrestrial

predictors are further identified to determine the seasonal predictability of fire activity in

Africa. Our combined SGEFA-MLT approach achieves skillful prediction of African fire one

month in advance and can be generalized to provide seasonal estimates of regional and global

fire risk.
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F ires affect ecosystems and atmospheric composition, as well
as human infrastructure and safety1. In recent decades,
about 50% of fire-related carbon emissions and ~70% of

global burned areas occurred across African subtropical savannah
systems, both north and south of the equator2,3 (Supplementary
Fig. 1). African fires mediate the interannual variability in
atmospheric concentrations of CO2 and other greenhouse gases4.
In sub-Saharan Africa, biomass burning also plays a key role in
regional climate and the hydrological cycle through the emission
of dust and black carbon aerosols that affect the energy and water
cycles5. For example, an atmospheric model simulation showed
that biomass burning aerosols emitted from southern African
fires caused surface cooling and inhibited convective rainfall6. In
addition, fires threaten human societies in Africa by emitting
large amounts of atmospheric pollutants that are harmful to both
property and the population1. A deeper understanding of the
major environmental drivers behind African fire evolution would
aid in the capacity to accurately predict seasonal fire activity, thus
fostering better fire management practices in these vulnerable
ecoregions7.

Fire activity across Africa is highly variable and has been
previously attributed to changes in weather patterns, shifting
plant communities, and human activity3,5,8–11. Variation in the
extent of fire burned area is widely believed to be dependent on
vegetation composition and distribution1, as well as air and soil
controls on fuel drying12. Satellite observations have indicated a
decline in burned area across northern Africa since 1998 (ref. 13).
Contributions of demographic and socioeconomic changes, such
as population growth and cropland expansion, have been com-
parable to climatic and ecological factors in driving the observed
decline in African burned area3,13,14. Prior knowledge of natural
and anthropogenic drivers of Africa’s fires serves as a theoretical
basis for building predictive models of fire activity. However,
seasonal prediction of fire changes must address additional
challenges, given that relevant environmental and socioeconomic
states have limited predictability on the seasonal timescale15. For
example, seasonal climate forecasts used to predict fire activity
resulted in insignificant correlations between observed and pre-
dicted burned areas across the majority of Africa16.

Observed variations in regional climate and hydrology across
sub-Saharan Africa have been shown to be sensitive to global sea-
surface temperature (SST) variability and regional land surface
changes on the seasonal timescale17,18. Such oceanic and terres-
trial controls on African climate variability can potentially
enhance the ability to predict African fire at relevant timescales,
since the oceanic and terrestrial states generally exhibit longer
memory than does the atmosphere19. However, neither specific
oceanic and terrestrial drivers nor their individual contributions
to the seasonal predictability of African fire activity have been
sufficiently explored. Past studies of oceanic drivers of African fire
have focused mainly on the El Niño-Southern Oscillation
(ENSO), identifying spatio-temporally heterogeneous responses
in precipitation and the resulting fire activity3,20. Limited effort
has been devoted to addressing other oceanic drivers, such as
tropical Atlantic SSTs21, that significantly influence African
regional climate. Moreover, while different modes of variability in
SSTs presumably co-impact regional fire activity in Africa22, their
synergistic and independent roles lack systematic exploration in
either observations or model simulations. Vegetation indices,
such as leaf area index (LAI), may influence African fire through
multiple mechanisms. Expanded vegetation cover provides
additional fuel for burning, particularly in semi-arid landscapes1.
Enhanced vegetation growth, however, alters the energy, moist-
ure, and momentum fields, and causes wetter, cooler, and less
windy conditions in a portion of sub-Saharan Africa17,18,
potentially inhibiting the biomass burning. Increased soil

moisture content is believed to inhibit biomass burning23. While
wetter soils may further strengthen vegetation growth, intensi-
fying biomass burning through greater accumulation of above-
ground vegetation and litter fuels. Although the vegetation and
soil components are parameterized in the current generation of
fire models23, their linear and nonlinear impacts on fire activity
remain relatively simplified, especially on the seasonal timescale.

Main challenges to extracting key oceanic and terrestrial dri-
vers of African regional fire activity include the following: (1)
impacts of fire on vegetation typically outweigh the feedbacks
from vegetation to fire, and (2) oceanic and land surface
anomalies are usually intercorrelated, so longer data records are
required for reliable statistical separation of their individual
influences. The Stepwise Generalized Equilibrium Feedback
Assessment (SGEFA), a lagged covariance statistical method, was
developed to simultaneously assess the impacts of oceanic and
terrestrial drivers on regional climate24 on the basis of differ-
entiated memory of forcing and response variables. The ability of
SGEFA to separate linear contributions of intercorrelated oceanic,
vegetation, and soil moisture forcings on seasonal timescale has
been rigorously demonstrated by dynamic experiments and
observational applications17,18,25,26. However, to build a more
comprehensive fire prediction model, machine learning techni-
ques (MLTs) are particularly useful because they provide unique
tools to investigate the nonlinear and complex effects of natural
and anthropogenic factors on fire activity12,22,23. MLTs have been
extensively used for seasonal forecasting and long-term projection
of geoscience variables, but require process-based guidance for
predictors selected from a high-dimensional data pool27. In
addition, to avoid possible overfitting using limited observational
records, MLTs need to be informed by pre-identified key envir-
onmental drivers of fire.

Motivated by gaps in our knowledge of ocean–land feedbacks
to African fire, this study aims to robustly characterize oceanic
and terrestrial drivers and their contribution to the predictability
of fire activity in Africa, with a focus on the seasonal timescale.
Here, SGEFA is applied to quantify dominant oceanic and ter-
restrial factors affecting seasonal variability of African fire. Gui-
ded by SGEFA, MLTs are subsequently used to develop a seasonal
fire prediction system across sub-Saharan Africa. Based on the
combined SGEFA-MLT analytical framework (Supplementary
Fig. 2 and see the Methods section), the present research
demonstrates that seasonal changes of African fire carbon emis-
sions and burned area fraction are primarily sensitive to varia-
tions in SST, LAI, and soil moisture, which are mechanistically
connected to the regional burning conditions and biomass fuel
supply. Benefiting from the inclusion of SGEFA-identified, slowly
evolving oceanic and terrestrial predictors, the MLT-based
approach effectively predicts African fire activity 1 month in
advance.

Results
Oceanic and terrestrial drivers of African fire variability.
According to SGEFA, fire activity across both the northern and
southern arid/semi-arid African ecoregions (Supplementary
Fig. 1) exhibits significant sensitivity to variability in SSTs, LAI,
and soil moisture during the dry fire-active season (Fig. 1).
Northern Africa’s fire is sensitive to variability in tropical ocean
SSTs, especially those from the tropical Atlantic Ocean during the
dry season (November to March) and the tropical Indian Ocean
during the wet season (April to September). During the boreal
winter, North Atlantic Ocean SSTs play a substantial role in
regulating the northern African fire carbon emissions (Fig. 1a).
SSTs from Southern Hemispheric oceans, especially the South
Atlantic Ocean, exert relatively strong control compared with the
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tropical and Northern Hemispheric oceans on southern African
regional fire during the fire-active season (May to November)
(Fig. 1b). The mechanisms underlying key oceanic drivers of
African fire variability, namely, ENSO and the Atlantic Niño
mode, are explored in detail in the next subsection. In terms of
terrestrial drivers of African fire, the observed effects from soil
moisture changes are more robust than LAI changes, especially
during the wet season in northern Africa (Fig. 1a). The
mechanistic controls of the terrestrial drivers of African fire
variability are explored in detail in the next subsection.

The SGEFA-based observational analysis identifies the spatially
heterogeneous influence of ENSO and relatively homogeneous
influence of the Atlantic Niño mode on African fire activity, with
the response magnitude of both oceanic drivers peaking in the
fire-active season (Fig. 2a, b, e, f, i, j and Supplementary Fig. 4).
Across a large portion of northern Africa, especially the northern
Sahel and West African monsoon regions, El Niño (inlet in
Fig. 2e) typically supports enhanced fire carbon emissions and
expanded burned area during the fire-active season in boreal
winter (Fig. 2a, e and Supplementary Fig. 4). The increased fire
activity in northern and western Sahel is largely associated with El
Niño-induced anomalous low-level warming and consequential
fuel drying (Supplementary Fig. 5a, e). Similar meteorological
responses to El Niño (Supplementary Fig. 5a, e) also support
enhanced fire emissions and expanded burned area across
southwestern Africa during the fire-active season in boreal
summer (Fig. 2e, i and Supplementary Fig. 4). The SST anomalies
associated with positive Atlantic Niño (inlet in Fig. 2f) are
responsible for positive fire anomalies across most of Africa
(Fig. 2b, f, j and Supplementary Fig. 4). Anomalously warm SSTs
over the tropical Atlantic Ocean, with greater warming to the
south of the Equator, support anomalous warming over southern
Africa and drying over northern Africa (Supplementary Fig. 5b,
f), thereby enhancing fire activity across the majority of Africa
during the fire-active season. The season-dependent response in
fire to oceanic drivers (Fig. 2a, b, i, j) partly leads to the spatial

heterogeneity of the seasonal maximum-magnitude responses
presented in Fig. 2e–f and Supplementary Fig. 4.

The SGEFA analysis uncovers generally negative responses in
African fire to positive anomalies in soil moisture and complex
responses to LAI changes, with greater response magnitudes to
soil moisture anomalies during the fire-active season (Fig. 2c, g, k,
d, h, l and Supplementary Fig. 4). Across most of Africa, wetter
soils inhibit biomass burning (Fig. 2d, h, l and Supplementary
Fig. 4) through surface low-level cooling and elevated amounts of
precipitation (Supplementary Fig. 5d, h). However, the influence
of LAI on fire activity in Africa is spatially heterogeneous (Fig. 2g
and Supplementary Fig. 4). Positive anomalies in LAI indicate a
higher amount of available fuel for biomass burning, leading to
enhanced fire activity over portions of the West African monsoon
region and grasslands in southern Africa (Fig. 2g and Supple-
mentary Fig. 4). Similarly, positive anomalies in LAI cause an
overall increase in North African regional average fire emission
and burned area fraction during the fire-active season in boreal
winter and spring (Fig. 2c and Supplementary Fig. 4). However,
surface cooling and decreased near-surface wind speed associated
with positive LAI anomalies (Supplementary Fig. 5c, k) provide
unfavorable meteorological conditions for biomass burning,
thereby inhibiting fire activity across the majority of southern
Africa during the fire-active season in boreal summer (Fig. 2g, k
and Supplementary Fig. 4).

Seasonal predictability of African fire. The predictability of fire
anomalies across both northern and southern African ecoregions
is substantially enhanced by including the slowly evolving oceanic
and terrestrial forces quantified by SGEFA (Fig. 3 and Supple-
mentary Fig. 7). Optimal fire predictability is represented by the
ensemble-mean-squared correlation coefficient (R2) between the
observed and predicted time series produced by the best MLT
using all predictors, and reflects the all-season average of fire
predictability. It decreases by a lead time from 0.60 (0.52–0.77
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across ensemble members) at 1 month in advance to 0.16
(0.07–0.18) at 6 months in advance. Fire carbon emission in
northern Africa can be accurately predicted at 1 month in
advance if only using the selected oceanic and terrestrial pre-
dictors, with an ensemble mean R2 of 0.51 (0.39–0.61), compared
with R2 of 0.38 (0.25–0.41) when using the atmospheric and
socioeconomic predictors identified by previous studies (Supple-
mentary Table 1). Furthermore, season-specific models that are
built and applied by season always perform better than the all-
season models, suggesting season-dependent environmental
controls on African fire activity, as confirmed previously. Based
on the current analytical framework, the northern Africa ecor-
egion generally exhibits higher predictability of its fire activity
than southern Africa, indicating a higher dependency of northern
African fire activity on the selected environmental and socio-
economic factors and/or a higher predictability with these factors.

The predictability of African fire anomalies and the contribu-
tion of oceanic and terrestrial predictors vary by season, especially
across the northern African ecoregion (Fig. 4 and Supplementary
Fig. 8). In northern Africa, the ensemble-mean overall predict-
ability (R2) of fire carbon emission varies from 0.78 in
March–May to 0.23 in August–October (ASO). Southern Africa
shows smaller inter-season variability in fire predictability,
varying from 0.51 in April–June to 0.22 in February–April
(FMA). Attributed to longer persistence time of the anomalies,
oceanic and terrestrial predictors demonstrate higher prediction
skills than the combined atmospheric and anthropogenic factors
in predicting fire carbon emission in both African ecoregions for
all seasons, with the highest annual-average importance scores
assigned to soil moisture (Supplementary Fig. 6). Moreover, using
only the oceanic and terrestrial drivers, the predictability of fire
carbon emission in northern Africa during the fire-active season
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is close to the overall predictability derived from all the
environmental and socioeconomic factors. However, in ASO,
northern Africa shows relatively weak fire predictability, likely
caused by reduced impacts of broad-scale atmospheric circulation
from key ocean-atmosphere teleconnection patterns28, including
ENSO and Atlantic Niño mode (Figs. 1a and 2a, b).

Discussion
This study applies the combined SGEFA-MLT analytical frame-
work that benefits from the capabilities of both methodologies.

Although MLTs have been widely applied for disentangling the
controls and building prediction models of regional and global
fire activity23,29,30, they have been criticized as being black boxes
and are seldom considered optimal for examining underlying
mechanisms and processes23. Furthermore, given the limited
availability of African fire records and the small training dataset
provided, the predictors chosen to be included in MLT models
need process-based guidance on the drivers of fire variability.
Therefore, the successful application of MLTs largely benefits
from the pre-identification of key oceanic and terrestrial drivers
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using SGEFA. On the other hand, due to the required long
memory of forcing variables, SGEFA is limited in assessing the
contribution of other atmospheric and anthropogenic regulators
to seasonal fire changes. MLTs, however, are adequate for
separating the contribution of various sources and thereby pro-
vide full rank of their importance (Supplementary Fig. 6). By
combining the SGEFA with MLTs, this study thus presents a
promising analytical framework for investigating both the driving
mechanisms and predictability of regional and even global fire
variability. Nevertheless, efficient application of the SGEFA-MLT
framework onto other fire-active regions would require careful
selection of oceanic, terrestrial, atmospheric, and socioeconomic
predictors that are specifically relevant to the focal region. For
example, the potential influences of Madden Julian Oscillation31

and broader-scale vegetation anomalies32 need to be fully asses-
sed when investigating the drivers and predictability of fire
variability in Australia.

The SGEFA analysis identifies spatially heterogeneous and
seasonally dependent influences of key oceanic and terrestrial
forces on African fire activity. The currently identified, spatially
heterogeneous ENSO signal on the African fire carbon emission
and burned area fraction is largely consistent with previous
conclusions based on regression and correlation3,20. Beyond
ENSO, this study further demonstrates the observed role of tro-
pical Atlantic Ocean SSTs on African fire activity, through the
influence of SSTs on the climate of Sahel and West African
monsoon regions as noted in previous studies33. Compared to
LAI, the observational analysis further demonstrates more robust
effects on fire from changes in soil moisture. This stronger role of
soil moisture on African fire activity is supported by previous
modeling and observational studies34. They concluded that the
Sahel ecoregion represents one of the global hotspots of soil
moisture–atmosphere coupling, with direct soil moisture feed-
backs outweighing the influence of vegetation18.

The current analytical framework will aid the development of
process-oriented fire simulation and prediction for offline or
online fire models, such as those participating in the Fire Mod-
eling Intercomparison Project (FireMIP)35. Previous studies have
demonstrated that the majority of FireMIP models were able to
capture the spatial mean characteristics of observed global fire,
but failed to reproduce the seasonal to interannual variations13,36.
Beyond the already identified incorrect response to land use and
land cover changes36, potential misrepresentation of season-
dependent, primary environmental drivers may induce unrealistic
simulation of regional fire variability. Therefore, the SGEFA-
based process quantification would provide a valuable analytical
framework for deriving relationship metrics for comprehensive
benchmarking of fire models.

Uncertainty in present characterization of environmental
contributions to African fire variability and predictability is pri-
marily caused by limitations in observational data availability. For
example, the low importance of lightning as a predictor of fire
emission (Supplementary Fig. 6) is likely attributed to the
dominant role of agricultural practice on fire ignition in Africa,
but it might also be an artifact of the lightning data quality and
temporal coverage. The current analytical framework led to the
finding that the contribution of socioeconomic predictors to the
predictability of African fire is limited to population density and
land cover change (Supplementary Fig. 6). However, insufficient
social and economic observations as well as limited temporal
resolution and untested data quality likely resulted in under-
estimation of human contributions to the African fire predict-
ability. This is particularly critical given the increasing role of the
effects of humans on fire behavior across Africa3,13. In addition,
the predictability of African fire activity is based on a limited
number of MLTs trained with relatively short datasets and small

sets of predictors, likely inducing uncertainty in the fire predict-
ability (e.g., vertical lines in Figs. 3 and 4). Furthermore, the
current prediction effort using MLTs is mainly focused on area-
averaged fire activities in broad African ecoregions (e.g., the
northern and southern arid/semi-arid areas denoted in Supple-
mentary Fig. 1). Such summaries potentially oversimplify the
drivers and predictability of fire variability across local land-
scapes. Overcoming these limitations to achieve SGEFA-MLT
application at fine scales would require longer observational data
records with higher spatio-temporal resolution, and increased
numbers of observable environmental variables.

In summary, we have developed and applied a combined
SGEFA-MLT analytical tool to quantify the seasonal drivers and
predictability of African fire variability. Based on SGEFA, the
seasonal variability of fire carbon emissions and burned area
fraction in both the northern and southern Africa ecoregions are
characterized as being primarily sensitive to changes in SST, LAI,
and soil moisture, which alter the regional burning conditions
and biomass fuel supply. The MLT-based seasonal predictability
of fire activity over two selected African ecoregions benefits
substantially from the inclusion of SGEFA-identified, slowly
evolving oceanic and terrestrial predictors. By using the SGEFA-
selected environmental variables and other atmospheric and
anthropogenic drivers identified in the literature, the seasonal
anomalies of African fire are successfully predicted 1 month in
advance, outperforming previous fire forecasts mainly based on
seasonal climate forecasts37. The regional diagnostic and predic-
tion framework provides an encouraging basis for building a
global fire early warning system.

Methods
SGEFA-based quantification of environmental controls. The multivariate sta-
tistical approach, SGEFA, assesses the response of a rapidly changing atmospheric
or ecological variable, such as fire carbon emission and burned area fraction
(Supplementary Fig. 3), to a set of slowly changing environmental forcings, such as
SST, soil moisture, or LAI17,18,24–26. At timescale, τ (currently assigned to
1 month), which exceeds the persistence time of the target fire variable, a fire
variable at time t, F(t), can be approximately decomposed into both the internal
noise, N(t), and the response to a set of slowly evolving variables, O(t), in the
forcing matrix, O, such that

F tð Þ ¼ RO tð Þ þ N tð Þ: ð1Þ
R represents the response vector, which quantifies the instantaneous influence

of slowly evolving oceanic and terrestrial forcings on a terrestrial flux. Multiplying
the transposed forcing matrix at an earlier time, OT(t− τ), on both sides of Eq. (1)
and application of the covariance yield the following equation in covariance, C:

CFOðtÞ ¼ RCOOðtÞ þ CNOðtÞ: ð2Þ
Because oceanic and terrestrial variability cannot be forced by, or drive,

subsequent ecological internal noise, CNO(τ) is theoretically equal to zero, allowing
the feedback response vector to be estimated as

R ¼ CFOðtÞC�1
OOðtÞ: ð3Þ

Because the present study focuses on the seasonal timescale, the seasonal cycle
and long-term linear trend are removed from the forcing and response variables
prior to applying SGEFA. The present analysis is conducted for the period from
1997 to 2016, corresponding to the coverage of the Global Fire Emissions Database
(GFED)4,38. The latest dataset, GFED4s, combines satellite information on burned
area and small fire fraction with observations of vegetation productivity and
meteorology to estimate gridded monthly burned area and fire emission. To
increase the effective sample size, seasonal feedbacks are examined by aggregating
data from three consecutive months at a time. To obtain more reliable estimates of
the feedback response vector, relatively unimportant forcings are dropped from the
forcing matrix to reduce the number of simultaneously considered forcings and
thus minimize sampling error. This is performed via the backward-selection
stepwise method39 that optimizes the Akaike information criterion40, an index that
quantifies the quality of the statistical model by estimating the goodness of fit and
penalizing based on the number of predictors.

In this study, the forcing matrix initially contains 16 oceanic forcings and two
terrestrial forcings. The oceanic forcings consist of the principal component time
series from the leading two empirical orthogonal functions (EOFs) of SSTs from
eight basins, namely, the tropical Pacific (20 °S–20 °N, 120 °E–60 °W), tropical
Atlantic (20 °S–20 °N, 70 °W–20 °E), tropical Indian (20 °S–20 °N, 35 °E–105 °E),
North Pacific (20 °N–60 °N, 120 °E–100 °W), North Atlantic (20 °N–60 °N,
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90 °W–10 °W), South Pacific (60 °S–20 °S, 150 °E–70 °W), South Atlantic (60 °
S–20 °S, 70 °W–20 °E), and South Indian (60 °S–20 °S, 20 °E–120 °E) Oceans (as
displayed in Yu et al.17, Supplementary Fig. 7). The terrestrial forcings for each
target region include the time series of the area-averaged local LAI and surface-
layer (0–10 cm) soil moisture. The SGEFA forcing matrix is computed using SSTs
from the Hadley Center Sea Ice and Sea-Surface Temperature dataset, LAI from three
satellite-based datasets, and surface-layer soil moisture from two observation- and
reanalysis-based datasets, as outlined in Supplementary Table 1. The stepwise
selection and subsequent feedback response vector estimation are performed for each
fixed 3-month season (January–March, FMA, … December–February). The Monte
Carlo bootstrap method, with 1000 random iterations of the time series of fire activity,
is applied to assess the statistical significance of the SGEFA feedback triggered by a
specific SST, soil moisture, or LAI forcing, checking for 90% confidence level (p < 0.1).

MLT-based prediction system of African fire. MLTs have been used for iden-
tifying empirical regulators of fire activity. For example, the random forest (RF)
method has been applied to diagnose the emergent relationships between global
burned area and environmental and anthropogenic factors in both observations
and dynamic global vegetation models12. Although MLTs lack the capability of
quantifying environmental controls on fire variability23, they provide powerful
tools for building prediction systems and assessing the predictability as they
account for nonlinear and interactive roles among predictors27, which is particu-
larly essential for fire prediction12,22,23.

For this study, the MLT-based prediction system uses antecedent atmospheric
and socioeconomic factors, as identified in previous studies12,41,42, as well as the
SGEFA-employed ocean and land surface variables. All predictors are listed in
Supplementary Table 1 with their data sources, temporal coverages, and spatial
resolutions. The oceanic and terrestrial predictors consist of the 16 oceanic and two
terrestrial forcings used in the present SGEFA analysis. The atmospheric predictors
include the occurrence of lightning and low-level atmospheric temperature,
moisture, and wind speed. The socioeconomic predictors include population
density and land use and land cover change. Based on data availability, the
environmental predictors range from one to three months in advance of the
prediction time, while the socioeconomic predictors consider only the more recent
statistics typically reported at the end of the antecedent year.

In order to minimize the prediction uncertainty associated with the machine
learning algorithms selected, this study examines five MLTs, including RF, support
vector machine, artificial neural network, least absolute shrinkage and selection
operator, and gradient boosting machine. These five algorithms differ substantially
in their function. The combination of these algorithms is thus believed to better
capture the complex interrelation between the forcings and response variable than
any single algorithm. The 20-year data are randomly split into a 15-year training
dataset and a 5-year testing dataset. The prediction model is fitted for each MLT
using the training dataset, with parameters optimized for the minimum root-mean-
square error via 10-fold cross-validation. The performance of the prediction model
for all MLTs is evaluated using the correlation coefficient (R2) between the
observed and predicted time series of fire emission or burned area fraction, while
reporting the highest R2 among all the currently used MLTs as the predictability of
fire activity. The whole model fitting and evaluation procedure is repeated for 100
random iterations of data splitting, constituting a 100-member prediction model
ensemble and checking for the uncertainty of the predictability associated with
interannual variability of fire activity.

The assessed models include season-specific models, in which the MLTs are
built and applied by season, and the all-season models, in which data from all
seasons are used in the training and testing of the MLTs. For the all-season model,
we perform an additional test of the robustness of MLT-based prediction. In the
additional test, we randomly split the 20-year data (240 months) into a 180-month
training dataset and 60-month testing dataset, regardless of year and season, and
perform the same model fitting and validation analysis. The resulting performance
of all-season models fitted from the 180-month training dataset with unbalanced
sampling from each season is generally worse than the performance of models
fitted from the 180-month training dataset with balanced sampling from each
season. This additional test further confirms that environmental controls on
African fire activity are seasonally dependent.

Data availability
The datasets utilized in this study are derived from published sources, cited in the
Supplementary Table 1. The data that support the plots within this paper and other
findings of this study are available from the corresponding authors upon request.

Code availability
The code to carry out the current analyses is available from the corresponding author
upon request.
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