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As the effects of anthropogenic climate change become more severe, several approaches for deliberate
climate intervention to reduce or stabilize Earth’s surface temperature have been proposed. Solar radia-
tion modification (SRM) is one potential approach to partially counteract anthropogenic warming by
reflecting a small proportion of the incoming solar radiation to increase Earth’s albedo. While climate
science research has focused on the predicted climate effects of SRM, almost no studies have investigated
the impacts that SRM would have on ecological systems. The impacts and risks posed by SRM would vary
by implementation scenario, anthropogenic climate effects, geographic region, and by ecosystem, com-
munity, population, and organism. Complex interactions among Earth’s climate system and living systems
would further affect SRM impacts and risks. We focus here on stratospheric aerosol intervention (SAl), a
well-studied and relatively feasible SRM scheme that is likely to have a large impact on Earth’s surface
temperature. We outline current gaps in knowledge about both helpful and harmful predicted effects of
SAl on ecological systems. Desired ecological outcomes might also inform development of future SAIl
implementation scenarios. In addition to filling these knowledge gaps, increased collaboration between
ecologists and climate scientists would identify a common set of SAIl research goals and improve the
communication about potential SAl impacts and risks with the public. Without this collaboration, forecasts
of SAl impacts will overlook potential effects on biodiversity and ecosystem services for humanity.
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Anthropogenic climate change* has enormous conse-  services result in system degradation and transforma-
quences for humans and nature. In particular, itis increas-  tion. These impacts are no longer merely warnings
ingly clear that the consequences of anthropogenic  about distant future changes. They are happening
climate change for ecological systems' and their ecosystem ~ now (e.g., refs. 1-4). Although climate scientists have
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*Here we use the term “anthropogenic climate change” to mean global warming and its impacts on all climate variables and their regional and
temporal patterns, but we do not mean the potential anthropogenic climate change that could be produced by climate intervention.

TWe use “ecological systems” broadly to mean biotic systems at any spatial scale, including ecosystem processes, and physiological functions and
interactions among organisms with their biotic and abiotic environments (e.g., plant interactions with soil microbiomes; predator—prey interactions
in terrestrial and aquatic communities; changing function, composition, area and location of biomes with climate change).
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long wamed of the urgency of climate change due to greenhouse gas
(GHG) emissions (5, 6), current action and pledges to limit inputs of
GHG are inadequate to prevent large and dangerous changes in the
climate system (7-9). Climate intervention or geoengineering® has
been proposed to reduce some of the negative effects of climate
change while efforts continue to reduce GHG emissions. One approach
to climate intervention, solar radiation modification (SRM), proposes to
reflect some of the incoming solar radiation to cool Earth's surface.

Although climate science research has resulted in greater
understanding of predicted climate effects should SRM be
implemented, little is known about how those changes would
affect ecological systems. Filling this critical knowledge gap is
essential to understanding how potential implementation could
alter the structure and functions of Earth’s biosphere, affecting
biodiversity, ecosystem processes, and people. Here, we: 1) raise
awareness of this knowledge gap; 2) highlight initial work on eco-
logical consequences of SRM; 3) identify potential ecological im-
pacts and risks from implementation scenarios of a prominent
SRM scheme, stratospheric aerosol intervention (SAl); and 4) ur-
gently advocate more research at the intersection of climate in-
tervention and ecology, including exploring ways that ecological
outcomes could steer SAl implementation scenarios.

The US National Academy of Sciences recommends that
research be conducted to explore the risks and possible benefits
of climate intervention, so that informed decisions can be made in
the future about potential implementation (10). Yet, the conse-
quences for ecological systems have barely begun to be investi-
gated (e.g., refs. 11 and 12). More fundamentally, ecologists have
not addressed the real possibility that climate intervention could
take place, and awareness of extensive SRM modeling is limited
within that community. At the same time, climate scientists have
largely not considered the potential impacts that anthropogenic cli-
mate change and climate intervention strategies may have on ecolog-
ical systems. Moreover, ecological outcomes of climate intervention
have not been a focus of either group as potential guiding factors in
decision making or designing intervention strategies.

Thus, many questions remain unanswered: If we could avoid a
“hothouse Earth” and instead achieve a “stabilized Earth” (7) by
deliberately manipulating Earth’s climate system while also working
to minimize GHG emissions, do the risks of climate intervention for
humans and ecological systems outweigh the possible benefits? Do
the risks and uncertainties of climate intervention outweigh those of
anthropogenic climate change? When compared with ongoing an-
thropogenic climate change, which ecological systems and regions
would be most helped or most harmed by climate intervention?
Rather than only temperature reduction targets, could approaches
to planetary climate intervention incorporate biodiversity and eco-
system outcomes as the targets, such as preserving the ecological
integrity of the Great Barrier Reef, the Amazon, and the Arctic, re-
ducing the decline of North Atlantic fisheries (13, 14), or reducing
forest fire risk in vulnerable systems in Australia and California (15,
16)? The answers to these critical questions are necessary to inform
future decisions about potential implementation.

Climate Intervention Approaches
There are two main proposed climate interventions to reduce
global average temperature: carbon dioxide removal (CDR) to

*The National Research Council (NRC, 2015) has recommended using “climate
intervention” because “geoengineering” implies a more controlled process
than is possible with the Earth-Atmosphere system.
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reduce atmospheric CO, concentrations, and SRM. Although
CDR is considered to be lower-risk, it is currently prohibitively
costly at scales large enough to reduce global average temper-
ature. The costs and technology of implementing SRM are more
attainable (17), but SRM also includes risks that are poorly un-
derstood, including uncertainties in international governance (10,
18, 19). The most researched SRM scheme, SAIl, would reduce
some of Earth’s incoming solar radiation by enhancing the re-
flective aerosol layer in the stratosphere (Fig. 1). This scheme is
inspired by the way that volcanic eruptions cool the global climate
and involves injecting gaseous precursors of reflective sulfate
aerosols into the stratosphere (20, 21). The models used for SAI
are often the same Earth system models (ESM) used to study
anthropogenic climate effects without SAI, or to study the effects
of volcanic eruptions on climate. For studying the effects of SAI,
however, models must additionally be able to represent complex
stratospheric aerosol processes.

Various other SRM approaches have also been proposed, in-
cluding marine cloud brightening, adding deflectors in space to
reflect solar energy, or altering Earth’s surface albedo (e.g.,
brightening urban roofs, crop, and other land-use changes) (19,
22), but these schemes alone are unlikely to be as effective as SAI
in temperature reduction at global scales (10). We focus on SAl as
the most feasible, most studied, and most likely SRM approach to
be implemented.

Implementation of SAI

The impacts and degree of climate change reduction would vary
by SAIl scenario, including SAI phases of initiation, continuation,
and termination of injecting sulfate aerosol precursors, as well as
the location, timing, and amount of the injections. Different SAI
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Fig. 1. Although some effects of SRM with SAI on the climate are
known from certain SAIl scenarios (indicated with + for likely
increases, — for decreases, A to indicate change), the effects of SAI
on ecological systems are largely unknown. Such biotic and abiotic
changes would vary across Earth and depend on the SAl scenario.
Stratospheric aerosols from SAl would reflect more sunlight—including
UV radiation—to space, reducing surface UV. SAl could also destroy
stratospheric ozone, increasing surface UV (Fig. 2A). The net effects
of SAl on UV and ozone depend on the amount and distribution

of aerosols in the stratosphere, the type of aerosols used, and how
the aerosols interact with the chemistry and radiation of the
atmosphere (e.g., refs. 23 and 141). Potential changes in ocean
temperature and ocean pH in different regions are illustrated below
(Fig. 3). Symbols courtesy of the Integration and Application
Network, University of Maryland Center for Environmental Science
(https://ian.umces.edu/symbols/).
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scenarios can be initiated or terminated gradually or at once,
further affecting the impacts. Scenarios can range from com-
pletely balancing the forcing from unchecked global warming,
resulting from failure of emission reductions (23), to “peak shav-
ing,” in which limited aerosol injections balance strong decar-
bonization in the second half of the 21st century (24), with the goal
of keeping global mean temperatures under 2 °C above
preindustrial temperatures (Fig. 2).

Although temperature reduction is the main objective, SAI
does not simply turn back the clock to the climate at some pre-
vious time. SAl could change many climate variables other than
temperature that are important for ecological systems. Many di-
rect impacts and unintended side-effects on Earth’s climate have
been explored across SAI scenarios (e.g., 28 potential risks are
listed in table 2 of ref. 17), but others remain to be discovered. SAl
could alter key ecological drivers, such as the ratio of diffuse to
direct radiation (25), UV radiation (26), the connection between
temperature and CO, (27), precipitation distribution, intensity and
seasonality (e.g., ref. 28), acid precipitation (but see ref. 29), and
air quality, including changes to surface ozone (30) (Fig. 1). In
addition, while particular global cooling metrics can be attained in
climate models, there would be regional perturbations to many
aspects of the climate system, including seasonal and diurnal
cycles of temperature, precipitation, humidity, and snow and ice
cover, and temperature and precipitation extremes (23, 31-34).
Studies of SAl scenarios using ESMs have investigated how the
location, timing, and amount of the aerosol precursor injections
affect numerous climate variables (e.g., refs. 23, 35, and 36),
while consequences for ecological systems have been minimally
investigated (Fig. 1).

Possible ecological consequences of SAl implementation are
wide ranging, from species’ decline and relocation to population
stabilizations and even increases, changes to ecosystem pro-
cesses, and the emergence of novel ecological communities and
ecosystems in response to novel climates (3, 37-39). These con-
sequences must be evaluated in relation to those of anthropo-
genic climate change. Because SAI has physical effects (e.g.,
surface shortwave radiation reduction, cooling) that are unique
and distinct from those caused by GHGs (e.g., warming, ocean
acidification [OA], photosynthesis enhancement), the ecological
impacts would also likely be distinctive (Fig. 1). SAl would affect
some of the same ecological processes that are responding to
anthropogenic climate change, but the nature of the responses is
likely to differ. Organism physiology and morphology, genetic
diversity, phenology, ecosystem processes and biogeochemistry
(e.g., alterations to productivity, the water cycle, nutrient dynamics),
ecosystem feedbacks to climate, population dynamics, biotic in-
teractions, species’ range shifts, and community (re)assembly are all
likely to be impacted. SAl implementation, and geoengineering
more broadly, involves many complex decisions; however, we
lack sufficient information about potential ecological responses to
SAl to inform these decisions.

Different SAl Scenarios Would Have Contrasting Effects on
Ecological Systems. The impacts of SAl on particular ecological
systems would depend on both the severity of anthropogenic
climate change and which SAIl scenario is applied (40). To illus-
trate, we consider a range of potential climate and ecological
outcomes resulting from two contrasting SAI scenarios (Fig. 2).
Continued high GHG emissions with consequent large tempera-
ture increases pose great risks for many ecological systems (6),
including changes to global average and extreme temperatures
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Fig. 2. Potential temperature change over time for two different SAI
scenarios. (A) In a future with no climate change mitigation and with
SAl deployment, high emissions result in rising temperatures (red
line). Increasing amounts of SAl would have to be deployed to reduce
temperature (blue arrows) to a specific temperature target (blue
line). The risk of sudden SAIl termination also increases (red arrow). (B)
In a future with climate change mitigation and SAIl “peak shaving,”
temperature changes are first reduced by a combination of emission
reduction (black line) and CDR (CO, removal, gray line), then further
reduced by SAI (blue arrows). The red shaded areas below the two
curves indicate the potential overall risk for ecological systems from
increased temperature and SAl deployment; carbon emissions alone
would not create the same degree of risk reduction as shown in B. We
note that SAl is not akin to a global thermostat that would only
control global temperatures to remediate GHG-induced warming.
GHGs add energy to the system at the surface and throughout the
atmosphere, whereas reducing sunlight with SAl only changes the
energy balance at Earth’s surface. Furthermore, GHGs operate 24 h
a day and all year long, whereas reducing sunlight primarily has a
direct impact during the daytime and more so in summer than winter.
Data from refs. 142 and 143.

and precipitation, seasonality, storm behavior, and regional vari-
ation in these responses. A large SAl deployment is expected to
have larger side effects and risks than a smaller amount of SAl,
especially for regional precipitation patterns and ozone loss
(Fig. 2). In a high-emissions, high-input SAl scenario (Fig. 2A), SAI
might be able to partially balance climate forcing by lowering
average global temperatures (23), but it would come with large
costs, including stratospheric polar ozone destruction and con-
sequent increases in surface UV (26, 41), sulfate deposition (29,
42), and substantial changes to global and regional hydrological
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cycles (regional drought, flooding, and large changes to tropical
monsoons) (33, 43). In this scenario, SAl would not be able to
counter all consequences of the climate forcing from GHGs (32); in
addition, the nonradiative but ecologically damaging intensifica-
tion of OA would not be mitigated by SAI (Fig. 3).

In another SAl scenario (Fig. 2B), emissions reduction resulting
in climate change mitigation with a more moderate “peak shaving
scenario” (e.g., scenario SSP5-34-OS) (24), strong decarbon-
ization would be combined with SAI to bring global tempera-
ture down to some target (e.g., 1.5 or 2 °C above preindustrial
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temperatures) (3). The combination of climate change mitigation
and SAl in a peak shaving scenario might reduce risks and po-
tential for harm to organisms and ecosystem processes (44)
(Fig. 2B). On the other hand, this scenario might be insufficient in
some regions to reduce serious ecological losses. For example,
this scenario may not reduce Arctic permafrost thaw, resulting in
vegetation change and biodiversity loss, as well as feedbacks to
the climate system through methane release.

There is particular concern about extremely rapid climate
change when initiating SAI or after sudden termination of SAI

2060’s with SAI
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Fig. 3. SAl alone would not reduce OA, which strongly impacts marine ecosystems. 1) Historical time series of CO, and OA at station ALOHA
(figure from https://www.pmel.noaa.gov/co2/file/Hawaii+Carbon+Dioxide+Time-Series). Anthropogenic carbon emissions (red line) have
been absorbed by the ocean (green line), reducing pH and creating more acidic conditions that harm calcifying marine organisms at the base of
the marine food web (blue line). 2) Shells of calcifying marine plankton (pteropods) are negatively affected by OA (figure from ref. 144). 3)
Stratospheric aerosol intervention applied to a “peak shaving” future climate scenario as in Fig. 2B reduces sea surface temperature
anomalies (ASST) (A and C) but would not ameliorate OA (ApH) (B and D). Scenario shown is SSP5-3.4-OS (see ref. 24 for simulation details)

2060s mean relative to preindustrial.
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(SI Appendix, Fig. S1). While it is highly unlikely that scientists
would advocate suddenly terminating SAI (particularly if GHG
emissions continue to increase), national or international political
and economic instability could conceivably result in sudden ter-
mination. The implications of such a risk must be understood as
part of evaluating implementation of SAl. The potential risks of
sudden termination include large changes in temperature and
precipitation velocities (increase or decrease, rate, and geo-
graphic direction of change) (45, 46), with severe consequences
for ecological systems (47, 48).

We need substantially more research to learn where climate
intervention would ameliorate ongoing climate change impacts
on biodiversity and ecosystem services in terrestrial, freshwater,
and marine systems, and where it could cause greater risks. This
research is critical to determine how SAl impacts would differ from
the impacts of anthropogenic climate change, and to address
ecological and ecosystem service targets that could inform SAl
scenarios. How do the impacts of different SAl scenarios compare
from local to global ecological systems? Should we be designing
SAl for a different target rather than average global temperature:
for example, reducing wildfire by reducing hot and dry conditions
in targeted vulnerable regions, preserving biome and ecoregion
extents, preserving cold winter temperatures in temperate and
polar regions, or maximizing ecosystem carbon sequestration?
How would the targets be determined? Some of these can be
addressed now with interdisciplinary research, whereas others
require method development and new data. To help prioritize
research needs, we focus next on the mechanisms by which
ecological systems might be impacted by SAl scenarios, and then
on examples of possible effects on ecological systems.

The Climate Effects of GHG Emissions and SAI Differ

A fundamental challenge when anticipating SAl impacts on eco-
logical systems is that SAl creates a pathway for cooling the cli-
mate that is mechanistically distinct from the warming pathway
created by GHGs (S Appendix, Fig. S1). While GHGs cause global
warming by absorbing and retaining energy that has already en-
tered the Earth system, SAl would reduce the amount of solar
energy that enters Earth’s system in the first place. The conse-
quences of these differences for natural systems are poorly un-
derstood. For example, some SAI deployment scenarios may not
completely reverse some of the most ecologically consequential
effects of GHGs, such as winter and nighttime warming, which
accelerate soil respiration and carbon transfer from soil to the
atmosphere without a balancing increase in photosynthesis (49),
and the loss of extreme cold temperatures (32) that limit the range
of organisms (including pests, such as the hemlock wooly adelgid
and the tiger mosquito). Species’ responses are likely to vary
based on differences in thermal physiology, body size, and life
history, and on their interactions with other species (50-54). Fu-
ture research should evaluate how ecological systems will be af-
fected by the imperfect correction of global warming and
subsequent novel patterns of temperature, precipitation, and
other climate variables.

Another difference in the way GHG and SAl alter climate is that
SAl decouples increases in GHG concentrations in the atmo-
sphere from increases in temperature. About half of the extra CO,
humans have added to the atmosphere has been absorbed by the
land and ocean, primarily through uptake by ecological systems
(55). Globally, land and ocean sinks have thus far grown with
emissions due to increased plant and plankton growth, stimulated
by rising atmospheric CO, and temperatures, but constrained by
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light, water, and nutrient availability, increased respiration, and
other factors (56). Cooler temperatures could reduce photosyn-
thetic carbon uptake if warming leads to higher productivity; or
cooler temperatures could increase uptake if heat stress on forests
is reduced. While elevated CO; can increase photosynthesis and
productivity (57, 58), other factors can dampen or eliminate this
effect, including nutrient limitation (59) and drought (60). Even if
CO, fertilization increases carbon uptake without increasing
mineral nutrient demand, it could cause changes in the tissue
stoichiometry of primary producers (61) that could be detrimental
to herbivores (62, 63). Moreover, rising partial pressure of CO,
(pCO,) can also acidify freshwater systems, affecting aquatic
species and food webs (64). Interactions between temperature,
precipitation, and CO, levels in the atmosphere also affect the
ability of ecosystems to absorb other GHGs (methane, nitrous
oxide) in complex ways that are difficult to predict under SAI
(65, 66).

The disconnect between temperature and CO, that could be
induced by SAl would also have substantial effects on the hy-
drologic cycle. While the global average reduction in precipitation
would very likely be small even for a large deployment of SAI [less
than 2% compared to present conditions (43)], changes could be
up to 10% in particular regions and seasons (33). A combination of
elevated atmospheric CO, and SAl-induced cooling might syn-
ergistically reduce biological water use. Elevated CO, increases
plant water use efficiency, mainly due to reduced stomatal con-
ductance (2; but see ref. 67), while cooling reduces the vapor
pressure deficit (VPD) that drives water out of stomata. Together,
these factors could reduce transpiration, leaving more water in the
soil and in streams draining terrestrial ecosystems (68). Conse-
quent changes to runoff and streamflow could affect aquatic
habitats, interactions between terrestrial and aquatic ecosystems,
and biogeochemical processes that regulate nutrient export from
watersheds (69).

How SAI Might Affect Ecological Systems

Ecosystem Productivity and Feedbacks to Climate. Cooling
due to SAI could reduce nutrient cycling and ecosystem primary
production, accelerating the accumulation of CO; in the atmo-
sphere and the oceans (Fig. 3; see also further discussion below).
Warming accelerates rates of nutrient (e.g., nitrogen, phosphorus)
cycling that facilitate terrestrial carbon uptake. However, cooling
from SAIl could also reduce water stress and atmospheric VPD,
leading to increased primary production. This effect would re-
verse the recent trend for global net primary productivity to pla-
teau or even decline due to increased average VPD (70). Thus, it is
uncertain whether SAl itself would accelerate or decelerate the
CO; increase in the atmosphere as a feedback mechanism, or
increase or decrease primary productivity. If SAl increased surface
UV, this would further affect nutrient cycling and primary pro-
duction. UV is more effective than visible light in causing photo-
inhibition, defined as light stress-induced damage or down-
regulation of the photosynthetic apparatus (71, 72). Even
though SAI would reduce the total and visible radiation reaching
the Earth's surface, possible SAl-caused increases in surface UV
might worsen damage to primary producers, causing a decline in
plant productivity. This could counteract other light-mediated
effects of SAl on productivity, including the diffuse fertilization
effect. In addition to influencing bottom-up effects in food webs,
increased surface UV could reduce survival and growth of many
marine and freshwater organisms across trophic levels (71). On the
timescales of seasons and beyond, SAIl could cause plant

PNAS | 5 of 11
https://doi.org/10.1073/pnas. 1921854118


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921854118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921854118/-/DCSupplemental
https://doi.org/10.1073/pnas.1921854118

Downloaded by guest on April 5, 2021

communities to shift in phenology (e.g., ref. 73), structure, func-
tional traits, and geographic range, resulting in further indirect
effects on terrestrial carbon uptake (74).

Potential Responses to Different SAl Scenarios Across Biomes.
Ecological responses to SAl implementation will differ within and
among species, populations, ecological communities, dimensions
of diversity, ecosystems, and geographic regions, both because
these regions differ ecologically and because different SAl sce-
narios generate heterogeneous regional effects. As entire food
webs are already reshuffling in response to climate change (75), it
seems likely that if SAl were implemented, these ecological sys-
tems would reshuffle into other novel states at varying rates (38,
39). Regions and taxa that may be especially sensitive to SAl
implementation could become foci for research. For example,
many top consumers, keystone species, and producers are sen-
sitive to climate change, and are likely to create outsized impacts
on ecological communities through their trophic position (76, 77).
Focal regions could include those already experiencing rapid
warming, like the polar regions, and regions that would experi-
ence especially strong impacts from the disconnect between
temperature and CO,, like forests and the oceans. Below we
discuss potential ecological impacts of SAIl scenarios within
different biomes.

Terrestrial Biomes. The connection between terrestrial organ-
isms and climate ranges from instantaneous plant physiological
processes that regulate the exchange of mass and energy be-
tween land surface and atmosphere, to decadal community as-
sembly and reassembly that structure broad-scale biogeography,
and to longer-term evolutionary changes. With climate change
mitigation and a moderate SAl deployment in a peak shaving
scenario (Fig. 2B), SAl-induced change in light level (i.e., total
radiation and diffuse/direct light ratio), UV, temperature, and VPD
(SI Appendix, Fig. S1) could all exert direct impacts on plant
physiology (e.g., photosynthesis and respiration) through either
direct abiotic controls (78) or through indirect effects on the
function of photosynthetic machinery through damage, repair, or
acclimation (72, 79, 80). In contrast, without climate change mit-
igation and with a large SAl deployment (Fig. 2A), there is a risk for
large and rapid climate changes with potentially disastrous and
irreversible impacts on terrestrial ecological systems. The relevant
question is whether SAl would reduce the impacts caused by
anthropogenic climate change or send ecological systems in new
and uncharted territory.

One telling example of potential SAl impacts comes from the
comparable vegetative response to volcanic aerosols from the
1991 Mount Pinatubo eruption. Harvard Forest, a deciduous for-
est in the northeastern United States, showed noontime photo-
synthetic rates enhanced by 23% in 1992 primarily because
volcanic aerosols increased diffuse light relative to direct light and
reduced air temperature and VPD (81). This enhancement of
photosynthesis is known as the diffuse light fertilization effect and
is found in many biomes across the world (82, 83). Nevertheless,
light scattering also causes slightly less light to reach the Earth’s
surface, which can partly or fully offset the benefits of light diffu-
sion depending on its severity. For example, it is expected that
SAl would neither increase nor reduce crop yields relative to the
moderate climate forcing projected by RCP 4.5 (84). Besides dif-
fuse light, terrestrial biomes also respond to many other climate
variables (e.g., temperature, VPD, and UV). The dominant climatic
controls differ across global biomes (85), including biomes that
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vary in their tolerance to future warming (86). Such biome-specific
responses need to be carefully considered when designing and
evaluating SAI scenarios if they are to benefit rather than harm
(most) terrestrial biomes.

At longer timescales, SAl-induced climate change could also
restructure the vegetation distribution and associated fauna over
large areas. For example, in the tropics, the distribution and
biogeography of the three dominant vegetation types—tropical
evergreen forests, deciduous/semideciduous forests, and savanna—is
generally explained by water supply and demand theory (87).
Tropical evergreen forests dominate hydroclimate zones of high
water supply and low water demand, while tropical deciduous/
semideciduous forests and savanna, by contrast, dominate the
hydroclimate zones of low water supply and high water demand.
This theory applies to both anthropogenic climate change (88, 89)
and to SAl-induced climate effects. Specifically, the future
SAl-induced changes in rainfall amount and seasonal distribution
are expected to alter the water supply of these tropical forests,
while the changes in other meteorological variables (e.g., wind
speed, temperature, VPD, diffuse and direct light ratio, CO,) are
expected to alter the water demand component through changes
in either evaporation in the land surface or plant transpiration. The
changes in both water supply and demand will ultimately alter the
biogeography of the tropics. Since tropical forests cycle more car-
bon and water than any other biome (90), SAl-induced change
in vegetative biogeography, depending on the implementation
scenario, could generate significant impacts on large-scale
biogeochemical cycles, with direct feedbacks to regional- and
global-scale climate variability and change (91).

Recent anthropogenic climate change has caused complex
shifts in phenology, reduced sea ice extent, and led to cascading
effects across food webs in the Arctic (92, 93). In a warming world,
continued rise of atmospheric CO, may alter the relative abun-
dances of different plant functional groups (e.g., favoring woody
vs. nonwoody plants) (94; but see ref. 95), affecting ecosystem
function even further as CO, emissions increase. Warming ex-
periments in the Arctic show that higher temperatures can change
the tundra vegetation composition to shrub-dominant (96-98); by
2100, shrubs are expected to expand by 20% (99) to 52% (100).
These changes in composition could cause regional temperature
increases via decreased albedo and increased evapotranspiration
(99, 100), essentially causing a positive feedback between shrub
expansion and warming. If a scenario including climate change
mitigation and SAIl peak shaving were to occur to reduce tem-
perature, SAl may ameliorate the risk that tundra will transition to a
shrub-dominated state. Alternatively, SAl may not reduce tem-
perature enough to prevent the transition to a shrub-dominated
state, but enough to reduce the productivity and CO, absorption
of this new state. But this effect could itself be partly offset by an
increase in diffuse light, which could improve the photosynthetic
efficiency of shrubs and other plants with complex canopies (101).
An unchecked rise in CO, could also continue to favor shrubs,
and so climate change mitigation combined with SAI would be
necessary.

SAl may diminish the extremes of seasonality, especially at
high latitudes (32), leading to warming winters and cooler sum-
mers. Overall cooling due to SAl may slow phenological shifts and
shrub expansion, but legacy effects from current changes are
likely to influence any future costs or benefits to Arctic ecological
communities. For example, in parts of the Arctic, large herbivores
(caribou or muskox) may moderate the effects of warming tem-
peratures on plant functional groups by consuming shrubs and
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favoring forb production (102). However, in Greenland, the earlier
onset of spring associated with climate change has led to a mis-
match between peak vegetation forage and caribou migration
times to calving grounds, resulting in a decline in caribou fitness
and an increase in calf mortality (103). Even if SAl delayed spring
onset and shortened the thaw season, these species interactions
are unlikely to fully return to previous states because rising CO,
will continue to alter primary production.

In one extreme SAl scenario, extreme climate events decrease,
reversing the trend under anthropogenic climate change (104).
Precipitation extremes and storm events are currently increasing
erosion both inland and on coastlines, and temperature extremes,
heatwaves, and droughts have led to increased mortality, and
shifts in species distributions and phenology (105). Would some
SAl scenarios mitigate any of these effects?

Marine Biomes. If SAl were to be implemented, even with re-
ductions of emissions, ocean temperatures would cool much less
rapidly than air temperatures in terrestrial systems, due to lags
caused by the high specific heat of water. Sea level rise would
continue to threaten mangrove and other coastal ecological sys-
tems. SAl implementation would also fail to ameliorate the effects
of anthropogenically increased atmospheric CO, on OA (Fig. 3)
(106, 107). Yet, the relative benefits and risks of SAl on marine
biomes are largely unknown because the combined impacts of
warming, acidification, and deoxygenation on phytoplankton—
the base of the marine food web—are poorly constrained (e.g.,
ref. 108). Critically, ESMs do not simulate the impacts of acidifi-
cation or UV changes on primary production (but see ref. 109).
Most SAl modeling studies have not simulated ocean biogeo-
chemistry [e.g., GeoMIP (110), but see refs. 24, 111, 112)]; none
have assessed the benefits and risks of SAI to higher trophic levels,
which are expected to decline under anthropogenic climate change
(14). Furthermore, the relative impacts of OA, changes in storm in-
tensity, and extreme temperatures need to be better understood,
especially for coral communities that are expected to be particularly
vulnerable to these climate changes (107, 113-115). Coral reefs are
marine biodiversity hotspots and supply ecosystem services esti-
mated to be worth US$36 billion per year globally (116). Thus, a
priority for SAl scenario evaluation is ESM development relevant to
marine ecosystem services, along with studies of future scenarios
with and without SAI for marine biomes.

There is a growing understanding of how the changes in
temperature, precipitation, sea ice, land ice, and sea level
resulting from ongoing and predicted climate changes are af-
fecting marine and coastal organisms and ecosystems. The po-
tential for SAl to mitigate these impacts is unclear and will depend
on the scenario and the ecological system. For example, with
continued lengthening thaw season and diminishing sea ice in the
Avrctic, polar bear distributions may shift away from prey depen-
dent on sea ice such as ringed seal pups, and toward prey on solid
ground, such as snow geese eggs (117), a shift that could reduce
polar bear body condition and survival and increase competition
with land-based brown bears (118). In Antarctica, receding gla-
ciers have enabled more breeding habitat and increased abun-
dances of Adélie penguins in some areas (119), whereas
continued sea ice decline is detrimental to emperor penguin
breeding habitat and populations (120). Multiple SAl scenarios
predict diminished seasonality in high latitudes, with warmer
winters and cooler summers, resulting in sea ice decreasing dur-
ing winter and increasing during summer (32). SAl scenarios that
include sudden termination would cause rapid sea ice decline
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(121). It is possible that some SAI scenarios could preserve land
ice and lower surface temperatures, eventually mitigating future
sea level rise (24, 122, 123).

Advancing Research on Ecological Consequences of SAI
Despite the development of SRM schemes and SAl scenarios for
modifying Earth’s climate, little is known about how these sce-
narios would impact the health, composition, function, and critical
services of ecological systems. Whereas there is abundant litera-
ture on the current and predicted ecological impacts of climate
change (e.g., reviewed in ref. 3), only a handful of papers have
addressed the ecological impacts and risks of SRM. Russell et al.
(11) introduced questions about the effects of climate interven-
tions more broadly on ecological systems, noting the potential
benefits of cooling, the failure of SAI to limit OA from CO, ab-
sorption, the potential for effects of increased diffuse relative to
direct light on productivity, and emphasizing how little is known
and the need for additional research. McCormack et al. (12)
reviewed many of the predicted climate changes and associated
ecological consequences across a broad range of climate inter-
vention schemes, and summarized key knowledge gaps regarding
their potential ecological impacts. Trisos et al. (45) modeled cli-
mate velocities that would impact ecological systems for a single
SAl scenario and its termination. Dagon and Schrag (46) con-
trasted SAl and anthropogenic climate change effects on global
vegetation productivity, changes in seasonality, and climate
change velocity using a single scenario, and noted that other
scenarios might produce different results.

Although these studies have advanced understanding, they
have not directly addressed the fundamentally different ways in
which SAl versus GHGs alter the climate and therefore in how they
alter ecological systems. Climate scientists working on SRM must
begin to recognize the complexity of ecological effects and re-
sponses. Save for a few studies, ecologists have largely been un-
aware of the extensive climate science of SRM and SAI. We urgently
advocate that ecologists join with their climate science colleagues to
evaluate the ecological consequences of climate intervention. An
interdisciplinary approach is essential for understanding the benefits
and risks of SAI to ecological systems, so that any decisions about
whether and how to initiate, continue, or terminate SAl are informed
by their potential ecological consequences, but also by the conse-
quences of not implementing SAl as GHGs continue to rise.

There are many opportunities for ecology to inform SAI sce-
narios. Impact assessment research could include experiments
that evaluate how cooling and increased CO, affect ecological
systems, and evaluations of the types of data and models required
to assess ecological impacts of climate intervention scenarios
versus no climate intervention (11). In addition, long-term and
spatially distributed observations of species and ecosystem pro-
cesses (e.g., the US Long Term Ecological Research and National
Ecological Observatory Network programs), and insights from the
geologic record (e.g., Neotoma paleoecology database), could
be synthesized to understand how current and past climate
change and extinction events alter biodiversity and ecosystem
functions, as has been a focus of climate change ecology research.
The extensive literature on climate change effects on ecology
from model projections (e.g., refs. 14, 48, and 124-131), experi-
ments (e.g., refs. 132-134), theory (e.g., refs. 135 and 136), and
synthesis (e.g., refs. 2, 3, and 137) can help guide this research and
expectations for SAl impacts on ecological systems.

Currently, SAl scenarios focus only on energy balance tar-
gets (36, 138), yet biodiversity and ecosystem function targets,
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including United Nations Sustainable Development Goal targets
(139) could additionally inform SAl scenarios. For example, es-
sential biodiversity variables—globally standardized state vari-
ables that capture critical scales and dimensions of biodiversity
and which are sensitive to change (140)—could be used to es-
tablish biodiversity targets and influence SAl scenario develop-
ment. Biodiversity hotspots—areas with the highest risk of losses
where endemic diversity is also greatest—are already essential
areas for conservation and could become focal areas to assess
targets. Thus, the connection between SAIl and ecology is more
than just impact assessment but an essential part of a social de-
liberation about what SAl implementation aims, or should aim, to
achieve. An essential component of this deliberation will be
analysis of uncertainty. An assessment of just how well we can
predict both SAI effects on climate and the complex ecological
responses that flow from these effects will be required as society
makes decisions about using climate intervention to mitigate the
effects of GHG-induced climate change (18).

It is essential that the knowledge gaps posed above be
addressed now, because policy changes are unpredictable, and it
is critical to have robust predictions available to inform decisions.

Coordination with existing efforts, including climate modeling
efforts and ecological synthesis centers, observation networks, and
atmospheric research centers would leverage existing investments in
large-scale natural science and foster interdisciplinary work and more
rapid advances. Interational research synergies and collaborations
among ecologists and climate scientists will be especially important,
because the entire Earth is at stake in this enterprise.

Data Availability. Data used to generate Fig. 3 are freely available
from the links provided from The Community Earth System Model
(CESM) (http://www.cesm.ucar.edu/) under https://doi.org/10.5065/
D67HTHOV and https://doi.org/10.26024/t49k-1016.
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