
UNIVERSITY OF CALIFORNIA,
IRVINE

Quantification and Reduction of Uncertainties Associated with Carbon Cycle–Climate
System Feedbacks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Earth System Science

by

Forrest McCoy Hoffman

Dissertation Committee:
Professor James T. Randerson, Chair

Professor Michael L. Goulden
Professor Jefferson Keith Moore

2015



Chapter 2 c© 2014 Forrest McCoy Hoffman and Co-Authors
Chapter 3 c© 2013 Forrest McCoy Hoffman and Co-Authors

All other materials c© 2015 Forrest McCoy Hoffman



DEDICATION

This work is dedicated first and foremost to Joan, Nate, and Bjørn for their unbounded
love, perpetual inspiration, fortifying allegiance, and beneficent sacrifice;

and second to those people, places, characters, and things that have engendered my
curiosity and love of science, including Benjamin Franklin, the Atari 800, Carl E. Sagan,

Mauna Kea, Sir Karl R. Popper, Thomas S. Kuhn, Mauna Loa, Unix, Spock, C,
Richard P. Feynman, Commander Data, and Linux.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xxiii

1 Introduction 1
1.1 Feedback Analysis Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Quantifying Feedbacks and Reducing Biases . . . . . . . . . . . . . . . . . . 5

2 Causes and Implications of Persistent Atmospheric Carbon Dioxide
Biases in Earth System Models 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Model descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Model output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Comparing CMIP5 ESMs with long-term carbon cycle observations . 16
2.2.4 A framework for constraining future trends . . . . . . . . . . . . . . . 18
2.2.5 Calculating climate implications of CO2 biases . . . . . . . . . . . . . 21
2.2.6 Quantifying uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Contemporary biases . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Causes of the contemporary bias . . . . . . . . . . . . . . . . . . . . 26
2.3.3 Implications of contemporary atmospheric CO2 biases in CMIP5 models 32
2.3.4 Persistence of biases into the future . . . . . . . . . . . . . . . . . . . 32
2.3.5 Implications of a persistent atmospheric CO2 bias . . . . . . . . . . . 41

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.1 Why do carbon cycle biases persist on decadal timescales? . . . . . . 48
2.4.2 What is the value of improving carbon cycle processes to match con-

temporary CO2? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

iii



2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Representativeness-Based Sampling Network Design for the State of
Alaska 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Quantitative Delineation of Ecoregions . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Ecoregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Multivariate Spatiotemporal Clustering (MSTC) . . . . . . . . . . . . 60
3.2.3 Input Data Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.4 Alaska Ecoregions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Mapping Sensitive Environments . . . . . . . . . . . . . . . . . . . . . . . . 71
3.4 Site Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5 Quantifying Representativeness . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.1 Site Representativeness . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.2 Network Representativeness . . . . . . . . . . . . . . . . . . . . . . . 84

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Climate and Atmospheric Composition Drivers of Terrestrial and Marine
Carbon Cycle Changes from 1850 to 2300 88

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.2.3 Carbon cycle feedback metrics . . . . . . . . . . . . . . . . . . . . . . 101
4.2.4 Nonlinearity metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.1 Temperature and carbon storage changes . . . . . . . . . . . . . . . . 105
4.3.2 Climate–carbon cycle feedback parameters . . . . . . . . . . . . . . . 110
4.3.3 Driving mechanisms of nonlinear ocean and land responses . . . . . . 118

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.1 Comparison of climate–carbon cycle feedback parameters with prior

studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4.2 Reducing effects of nonlinearity on feedback gains . . . . . . . . . . . 131
4.4.3 Nonlinearity in terrestrial uptake responses . . . . . . . . . . . . . . . 132
4.4.4 Symbiosis of experiments and modeling . . . . . . . . . . . . . . . . . 134

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Conclusions 138
5.1 Computational Climate Research . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bibliography 143

iv



LIST OF FIGURES

Page

2.1 Observational estimates of carbon emissions and accumulation (1850–2010) . 19
2.2 Atmospheric carbon dioxide (CO2) projections from Earth system models

(1850–2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Historical ocean and land carbon accumulation compared with observational

constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Comparison of ESM carbon accumulation with observational estimates from

Sabine et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Comparison of ESM carbon accumulation with observational estimates from

Khatiwala et al. (2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Land versus ocean carbon accumulation (1850–2010) . . . . . . . . . . . . . 30
2.7 Atmospheric CO2 projections from Earth system models (2006–2100) . . . . 34
2.8 Ocean and land carbon accumulation (1850–2100) compared to estimates from

Khatiwala et al. (2013) (1850–2010) . . . . . . . . . . . . . . . . . . . . . . . 35
2.9 Future vs. contemporary atmospheric CO2 mole fraction for 2060 and 2100 . 37
2.10 Future vs. contemporary anthropogenic atmospheric carbon accumulation

constraints for 2060 and 2100 . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.11 The coefficients of determination for the multi-model bias structure . . . . . 39
2.12 The contemporary CO2 tuned model (CCTM) atmospheric CO2 trajectory . 40
2.13 The probability density of CO2 mole fraction predictions for the CCTM for

2060 and 2100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.14 The probability density of atmospheric carbon accumulation predictions for

the CCTM for 2060 and 2100 . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.15 CCTM-like analyses for ocean and land carbon accumulation fluxes . . . . . 44
2.16 Future vs. contemporary ocean and land carbon accumulation constraints for

2060 and 2100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.17 CO2-induced radiative forcing and temperature change estimated for models

and the CCTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 The 10 and 20 most-different ecoregions for the State of Alaska . . . . . . . 66
3.2 The 50 and 100 most-different ecoregions for the State of Alaska . . . . . . . 68
3.3 A hierarchy of ecoregions for the North Slope of Alaska emerge . . . . . . . . 70
3.4 Percent area distribution of 10 and 20 ecoregions for the present and future . 71
3.5 Ecoregions migrate across the landscape, become extinct, or are created . . . 74
3.6 Ecoregion-based representativeness maps for present-day Barrow . . . . . . . 80

v



3.7 Point-based representativeness maps for present-day Barrow . . . . . . . . . 80
3.8 Point-based representativeness for eight potential present-day sites . . . . . . 81
3.9 Ecoregion-based representativeness maps for a network of eight sites . . . . . 85
3.10 Point-based representativeness maps for a network of eight sites . . . . . . . 85

4.1 Atmospheric CO2 mole fraction, temperature, and ocean and land uptake for
the RAD, BGC, and FC simulations . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Template illustrating layout of maps used for cross-simulation comparisons . 100
4.3 Changes in mean 2 m air temperature over land . . . . . . . . . . . . . . . . 106
4.4 Net ocean carbon storage for the RAD, BGC, and FC simulations . . . . . . 109
4.5 Net land carbon storage for the RAD, BGC, and FC simulations . . . . . . . 111
4.6 Ocean concentration–carbon sensitivity, βBGC

O , and ocean climate–carbon sen-
sitivity, γRAD

O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Land concentration–carbon sensitivity, βL, and land climate–carbon sensitiv-

ity, γL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.8 Climate sensitivity, α, and climate–carbon cycle gain, g . . . . . . . . . . . . 117
4.9 Changes in gross primary production, ecosystem respiration, and net primary

production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.10 Contributions of GPP changes in the RAD and BGC simulations to the GPP

change in the FC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.11 Changes in precipitation over land, evapotranspiration, and precipitation mi-

nus evapotranspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.12 Contributions of precipitation changes in the RAD and BGC simulations to

the precipitation change in the FC simulation . . . . . . . . . . . . . . . . . 125
4.13 Changes in sensible heat, latent heat, soil moisture, and liquid runoff . . . . 126
4.14 Changes in net nitrogen mineralization and corresponding spatial patterns in

the FC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.15 Drivers of hydrological and ecological changes exhibited by the RAD, BGC,

and FC simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 Three-network representativeness map for global forests . . . . . . . . . . . . 141

vi



LIST OF TABLES

Page

2.1 Models that generated output used in this study . . . . . . . . . . . . . . . . 14
2.2 Decadal estimates of ESM atmosphere, ocean, and land uptake rates compared

with observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Atmospheric CO2 mole fraction, radiative forcing, and temperature change

for each CMIP5 ESM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 The 37 variables, averaged for 2000–2009 and 2090–2099, used in MSTC . . 63
3.2 10 Alaska Ecoregions with elevation, precipitation, and temperature . . . . . 67
3.3 10 Alaska Ecoregions with elevation, other environmental factors, and area . 67
3.4 Correspondence between MSTC ecoregions and Level 2 ecological groups de-

fined by Nowacki et al. (2001) . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Site state space distances for the present (2000–2009) . . . . . . . . . . . . . 83
3.6 Site state space distances for the future (2090–2099) . . . . . . . . . . . . . . 83
3.7 Site state space distances between the present and the future . . . . . . . . . 83

4.1 Three CESM1(BGC) simulation configurations used in this study . . . . . . 95
4.2 Century-by-century cumulative carbon and temperature changes and compat-

ible emissions for the RAD, BGC, and FC simulations . . . . . . . . . . . . . 97
4.3 Energy, nitrogen, water, and carbon variables that drove hydrological and

ecological changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Century-by-century climate–carbon cycle feedback parameters and gains . . 114

vii



ACKNOWLEDGMENTS

Funding for this research was provided in part by the Climate and Environmental Sciences
Division (CESD) of the Biological and Environmental Research (BER) Program in the U.S.
Department of Energy Office of Science. I am extremely grateful for the continuous support
I have received for my research through BER-sponsored research projects and Scientific
Focus Areas (SFAs). Having obtained a rarely granted sabbatical from Oak Ridge National
Laboratory (ORNL) to attend the University of California, Irvine (UCI), during 2010, I would
like to thank ORNL leadership for their enabling support and continuous encouragement
over the last five years. I would especially like to acknowledge the championing I received
throughout this journey from David C. Bader, John B. Drake, James J. Hack, Arthur B.
(Barney) Maccabe and Jeffrey A. Nichols.

It has been an honor and a privilege to have James T. Randerson as my Ph.D. advisor. Jim
is the quintessential scholar, a polymath and extraordinary researcher, who is captivated by
science and who engenders a sense of wonder and curiosity in those around him. His incessant
search for mechanistic understanding, meticulous approach to analysis, and selfless attention
to student scholarship all serve to make Jim an inspirational professor and remarkable human
being. Jim’s reassuring manner and unflagging support have impelled my research and
rekindled my enthusiasm for science. It has been a pleasure to work under his tutelage, and
I anticipate many years of continued collaboration.

I would like to thank my Ph.D. committee members Michael L. Goulden and J. Keith Moore
for fostering my research interests, offering motivational assistance, and providing insightful
comments on my papers, presentations, and dissertation. I am grateful for thoughtful advice
from James S. Famiglietti during the first few years of my Ph.D. research. I wish to personally
thank the scientists who encouraged and supported my quest for this Ph.D., many of whom
provided letters of recommendation or advocated for my admission to the Department of
Earth System Science, including Gordon B. Bonan, John B. Drake, James S. Famiglietti,
Inez Y. Fung, William W. Hargrove, Geoffrey M. Henebry, Paul F. Hessburg, Atul K. Jain,
Natalie M. Mahowald, Wilfred M. Post, Steven W. Running, Susan E. Trumbore, and Warren
M. Washington.

I gratefully acknowledge the contributions of the following co-authors to the published form
of Chapter 2, which appeared in the February 2014 edition of the Journal of Geophysical
Research – Biogeosciences : James T. Randerson, Vivek K. Arora, Qing Bao, Patricia Cadule,
Duoying Ji, Chris D. Jones, Michio Kawamiya, Samar Khatiwala, Keith Lindsay, Atsushi
Obata, Elena Shevliakova, Katharina D. Six, Jerry F. Tjiputra, Evgeny M. Volodin, and
Tongwen Wu. I gratefully acknowledge the contributions of the following co-authors to
the published form of Chapter 3, which appears in the October 2013 edition of Landscape
Ecology : Jitendra Kumar, Richard Tran Mills, and William Walter Hargrove, Jr. I gratefully
acknowledge the contributions of Jitendra Kumar, Damian M. Maddalena, and William W.
Hargrove to the global forest representativeness analysis and figure contained in Chapter 5.

viii



I want to thank my colleagues, co-authors, and co-workers for their encouragement and sup-
port, and for filling in for me when I was busy performing this research and preparing this
dissertation, especially, Nathaniel Collier, David J. Erickson III, Lianhong Gu, William W.
Hargrove, Jitendra Kumar, Yiqi Luo, Salil Mahajan, Richard Tran Mills, Richard J. Norby,
William J. Riley, Peter E. Thornton, Yingping Wang, Stanley D. Wullschleger, and Min
Xu. I further wish to thank my colleagues who were students, interns, and post-doctoral fel-
lows working with me at ORNL during my Ph.D. pursuit, notably, Rahul Barman, Yasemin
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Rosenbloom, R. C. Stöckli, S. W. Running, D. E. Bernholdt, and D. N. Williams (2007),
Results from the Carbon-Land Model Intercomparison Project (C-LAMP) and availabil-
ity of the data on the Earth System Grid (ESG), J. Phys.: Conf. Ser., 78(1):012026,
doi:10.1088/1742-6596/78/1/012026.

F. M. Hoffman, I. Fung, J. Randerson, P. Thornton, J. Foley, C. Covey, J. John, S. Levis,
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Anthropogenic perturbation of global biogeochemical cycles, particularly through emissions

of radiatively active greenhouse gases into the atmosphere—chiefly carbon dioxide (CO2),

methane (CH4), and nitrous oxide (N2O)—is altering the Earth’s climate and inducing feed-

backs from the terrestrial biosphere and oceans on future CO2 levels and the climate system.

Identifying and quantifying these feedbacks and quantifying and reducing uncertainties asso-

ciated with them in process-rich Earth system models (ESMs) are important for advancing

our understanding of the Earth system, predicting future atmospheric CO2 levels, informing

carbon management and energy policies, and fostering the future of life on Earth. This

dissertation presents three studies designed to advance our understanding of biogeochemical

processes and their interactions with climate under conditions of increasing atmospheric CO2

and to offer an approach for understanding observational representativeness and for scaling

up measurements.

In the first investigation, I analyzed emission-driven simulations of ESMs from the fifth phase

of the Coupled Model Intercomparison Project (CMIP5) in which atmospheric CO2 levels

were computed prognostically. Comparison of ESM prognostic atmospheric CO2 over the

historical period with observations indicated that ESMs, on average, had a small positive bias
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in predictions of contemporary atmospheric CO2, due in part to weak ocean carbon uptake.

I found a significant linear relationship between contemporary atmospheric CO2 biases and

future CO2 levels for the multimodel ensemble, and used this emergent constraint to create a

contemporary CO2 tuned model (CCTM) to estimate an atmospheric CO2 trajectory for the

21st century for the Representative Concentration Pathway (RCP) 8.5. The CCTM yielded

CO2 estimates of 600 ± 14 ppm at 2060 and 947 ± 35 ppm at 2100, which were 21 ppm

and 32 ppm below the multi-model mean during these two time periods, respectively. This

analysis indicated that much of the model-to-model variation in projected CO2 during the

21st century was tied to biases that existed during the observational era and that model

differences in the representation of concentration–carbon feedbacks and other slowly varying

carbon cycle processes appear to be the primary driver of this variability.

In the second study, I extended a quantitative methodology for stratifying sampling do-

mains and understanding the representativeness of measurements, measurement sites, and

observational networks. Multivariate spatiotemporal clustering was applied to down-scaled

general circulation model results and data for the State of Alaska at 4 km2 resolution to

define multiple sets of ecoregions across two decadal time periods and to identify optimal

sampling locations for those ecoregions. I developed a representativeness metric and used it

to characterize environmental dissimilarity between potential sampling sites. This analysis

provided insights into optimal sampling strategies and offered a framework for up-scaling

measurements that can be applied at different spatial and temporal scales to meet the needs

of individual measurement campaigns.

In the third investigation, I applied a feedback analysis framework to three sets of long-

term climate change simulations from the Community Earth System Model version 1.0

(CESM1(BGC)) to quantify drivers of nonlinear terrestrial and ocean responses of carbon

uptake. In the biogeochemically coupled simulation (BGC), the effects of CO2 fertilization

and nitrogen deposition were expressed in the biosphere. In the radiatively coupled sim-
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ulation (RAD), the effects of rising temperature and circulation changes due to radiative

forcing from CO2, other greenhouse gases, and aerosols were expressed in the atmosphere.

In the third, fully coupled simulation (FC), both the bigoeochemical and radiative coupling

effects acted simultaneously. I found that climate–carbon sensitivities derived from RAD

simulations produced a net ocean carbon storage climate sensitivity that is weaker and a net

land carbon storage climate sensitivity that is stronger than those diagnosed from the FC

and BGC simulations. For the ocean, this nonlinearity was associated with warming-induced

weakening of ocean circulation and mixing that limited exchange of dissolved inorganic car-

bon between surface and deeper water masses. For the land, this nonlinearity was associated

with strong gains in vegetation productivity in the FC simulation that were driven by en-

hancements in the hydrological cycle and increased nutrient availability. I developed and

applied a nonlinearity metric for individual model variables to rank nonlinear responses and

drivers. For these simulations, the overall climate–carbon cycle feedback gain at 2300 was

28% lower when estimated from climate–carbon sensitivities derived from the RAD simula-

tion than when derived from the difference between the FC and BGC simulations. The gain

estimated from compatible emissions calculations corresponded well with the gain estimated

from FC−BGC climate–carbon sensitivity parameters, confirming the validity of the larger

gain. This difference has direct implications for carbon management and energy policies

because underestimating the climate–carbon cycle feedback gain would result in allowable

emissions estimates that would be too low to meet climate change targets.

In these studies, I have shown that 1) we can reduce uncertainties in future climate pro-

jections by improving models to more closely match the long-term time series of observed

atmospheric CO2; 2) we can reduce sampling biases and partition important environmental

gradients to design an optimized network of sampling sites at desired scales; and 3) we can

reduce uncertainties in the assessment of climate–carbon cycle feedbacks due to nonlinear

terrestrial and marine responses by deriving climate–carbon sensitivities from fully coupled

and biogeochemically coupled simulations.
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Chapter 1

Introduction

Anthropogenic emissions of radiatively active greenhouse gases into the atmosphere—chiefly

carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—combined with changes in

aerosol loading and land use change, are rapidly accelerating global biogeochemical cycles,

increasing radiative forcing, and altering Earth’s climate (IPCC , 2013). The perturbation

of the global carbon cycle is expected to induce feedbacks between terrestrial and marine

ecosystems and the climate system, affecting future atmospheric CO2 levels; temperatures;

precipitation; rates of permafrost thaw; sea level rise; ocean acidification; frequency, ex-

tent, and severity of extreme events; water availability and quality; crop and fishery yields;

and energy production and consumption. Most induced climate–carbon cycle feedbacks are

highly uncertain, difficult to predict, and potentially large (Ciais et al., 2013a). Identify-

ing and quantifying feedbacks between biogeochemical cycles and the climate system, and

quantifying and reducing uncertainties associated with those feedbacks in process-rich Earth

system models (ESMs), are important for understanding the behavior of the Earth system,

predicting future atmospheric CO2 levels, and informing carbon management and energy

policies.
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Contemporary ESMs represent human, ecosystem, and climate processes and attempt to

capture the complex interactions, responses, and feedbacks between all of these dynamic

systems, operating on different temporal and spatial scales. Scenarios characterizing alter-

native future socioeconomic, technological, and environmental conditions, along with atten-

dant energy resource options and consequent demand, are used to generate a consistent set

of biological, chemical, and land use inputs to drive ESMs (Moss et al., 2010). Results from

these ESMs are subsequently analyzed to gauge the potential success of mitigation efforts

required to stabilize CO2 levels in the atmosphere or to diagnose the climate impacts of

energy and agricultural policies and practices, taking into account carbon cycle responses

and feedbacks.

1.1 Feedback Analysis Framework

Friedlingstein et al. (2003, 2006) developed a formulation for analysis of climate–carbon cycle

feedbacks and applied it to the analysis of 11 coupled atmosphere–ocean general circulation

models with coupled carbon cycles for the Coupled Climate–Carbon Cycle Model Intercom-

parison Project (C4MIP). The C4MIP experimental protocol specified a biogeochemically

coupled and radiatively uncoupled run (BGC), in which the radiative effects of increasing

atmospheric CO2 were turned off, and a fully coupled run (FC), in which all processes experi-

enced the effects of increasing atmospheric CO2. Friedlingstein et al. (2006) defined the effect

of climate-induced changes in the global carbon budget due to an increase of atmospheric

CO2 as

∆CFC
A =

1

(1− g)
∆CBGC

A , (1.1)

where ∆CFC
A is the change in atmospheric CO2 in the fully coupled run, ∆CBGC

A is the
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corresponding change in CO2 in the biogeochemically coupled or radiatively uncoupled run,

and g is the gain of the climate–carbon cycle feedback as defined by Hansen et al. (1984). To

separate the influences of climate and CO2 on land and ocean carbon uptake, they defined

the land and ocean carbon storage as

∆CFC
L = βL∆CFC

A + γL∆TFC, (1.2)

∆CFC
O = βO∆CFC

A + γO∆TFC, (1.3)

where ∆CFC
L and ∆CFC

O are the changes in land and ocean carbon storage (in units of Pg C)

in the fully coupled simulation arising from an increase in atmospheric CO2 mole fraction

of ∆CFC
A (ppm) and a temperature increase of ∆TFC (K). Here βL and βO are the land

and ocean concentration–carbon sensitivities in units of Pg C ppm−1, and γL and γO are the

land and ocean climate–carbon sensitivities in units of Pg C K−1. Friedlingstein et al. (2006)

assumed all the climate change effects could be effectively represented by the temperature

change, ∆TFC.

The strengths of these sensitivities were found by first solving for βO and βL from a radiatively

uncoupled simulation forced with a trajectory of carbon emissions to the atmosphere,

βBGC
O =

∆CBGC
O

∆COBGC
2

, (1.4)

βBGC
L =

∆CBGC
L

∆COBGC
2

, (1.5)

then solving for γO and γL from the fully coupled simulation as follows,
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γFC−BGC
O =

∆CFC
O − βO∆COFC

2

∆TFC
, (1.6)

γFC−BGC
L =

∆CFC
L − βL∆COFC

2

∆TFC
. (1.7)

The effect of changing CO2 on the global mean temperature was approximated as

∆TFC = α∆CFC
A , (1.8)

where α is the linear transient climate sensitivity to CO2 in units of K ppm−1.

Gregory et al. (2009) extended the carbon cycle feedback methodology and described ways

to estimate feedback sensitivity parameters from different model experiments, including cal-

culating the climate–carbon feedback parameters directly from model experiments that were

biogeochemically uncoupled and radiatively coupled, herein called RAD simulations. Arora

et al. (2013) analyzed the idealized 1% y−1 increasing CO2 simulations from the fifth phase of

the Coupled Model Intercomparison Project (CMIP5) using this framework. Following from

Friedlingstein et al. (2006) and Arora et al. (2013), the overall climate–carbon feedback gain,

g, can be related to these feedback sensitivity parameters through the following equation,

g =
−α (γO + γL)

(m+ βO + βL)
, (1.9)

where m is a constant (2.12 Pg C ppm−1). The gain of the carbon cycle is larger for stronger

effective climate–carbon sensitivities (i.e., for more negative values of γL and γO). Con-

versely, the gain of the carbon cycle is weaker if ocean and land uptake respond positively to

increasing atmospheric CO2 (i.e., larger positive values of βL and βO). Nonlinear and inter-
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active aspects of the climate–carbon cycle feedback were neglected in the original derivation.

Subsequent work has shown that for the ocean, γO is different when estimated using RAD or

FC− BGC simulations (Schwinger et al., 2014). In addition, since βL is non-linear with re-

spect to changes in atmospheric CO2 mole fractions, γL derived from emissions-forced model

experiments is different than when derived from concentration-forced simulations (Zickfeld

et al., 2011). Here, I show that γL is also sensitive to the manner in which it is estimated

from a given set of simulations.

1.2 Quantifying Feedbacks and Reducing Biases

As ESMs become increasingly complex, there is a growing need for comprehensive, multi-

faceted, and rigorous evaluation, analysis, and diagnosis of model results. In addition, re-

source and logistical constraints limit the frequency and extent of environmental observa-

tions available for developing, parameterizing, or evaluating models, resulting in unquantified

sampling biases and necessitating a systematic sampling strategy to maximize coverage and

objectively represent environmental variability at desired scales. To advance our under-

standing of biogeochemical processes and their interactions with climate under conditions

of increasing atmospheric CO2, and to offer an approach for understanding observational

representativeness and up-scaling measurements, I conducted a series of studies to 1) iden-

tify and quantify persistent atmospheric CO2 biases in a suite of the world’s leading ESMs;

2) develop a quantitative and systematic methodology for stratifying sampling domains, in-

forming measurement site selection, and determining the representativeness of observational

sites and networks; and 3) characterize nonlinear responses of terrestrial ecosystems and

ocean processes in long-term climate change simulations.

In the first of these investigations, I analyzed emission-driven simulations—in which at-

mospheric CO2 levels were computed prognostically—for historical (1850–2005) and future
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periods (Representative Concentration Pathway (RCP) 8.5 for 2006–2100) produced by 15

ESMs for the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Com-

parison of ESM prognostic atmospheric CO2 over the historical period with observations

indicated that ESMs, on average, had a small positive bias in predictions of contemporary

atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based

on comparisons with observations of ocean and atmospheric anthropogenic carbon invento-

ries. A significant linear relationship between contemporary atmospheric CO2 biases and

future CO2 levels found for the multimodel ensemble (i.e., an emergent constraint) was used

to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajec-

tory for the 21st century. This analysis provided evidence that much of the model-to-model

variation in projected CO2 during the 21st century was tied to biases that existed during the

observational era and that model differences in the representation of concentration–carbon

feedbacks and other slowly varying carbon cycle processes appear to be the primary driver

of this variability. By improving models to more closely match the long-term time series of

CO2 from Mauna Loa, our analysis suggests that uncertainties in future climate projections

can be reduced. This paper is published as

F. M. Hoffman, J. T. Randerson, V. K. Arora, Q. Bao, P. Cadule, D. Ji, C. D. Jones, M.

Kawamiya, S. Khatiwala, K. Lindsay, A. Obata, E. Shevliakova, K. D. Six, J. F. Tjiputra,

E. M. Volodin, and T. Wu (2014), Causes and implications of persistent atmospheric

carbon dioxide biases in Earth system models, J. Geophys. Res. Biogeosci., 119(2):141–

162, doi:10.1002/2013JG002381.

In the second study, I further developed a quantitative methodology for stratifying sampling

domains and understanding the representativeness of measurements, measurement sites, and

observational networks. Because making environmental measurements can be difficult, dan-

gerous, and expensive, a systematic sampling strategy is needed to minimize sampling biases

and represent important environmental gradients at desired spatial and temporal scales.
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Multivariate spatiotemporal clustering was applied to down-scaled general circulation model

results and data for the State of Alaska at 4 km2 resolution to define multiple sets of ecore-

gions across two decadal time periods. Maps of ecoregions for the present (2000–2009) and

future (2090–2099) were produced, showing how combinations of 37 characteristics are dis-

tributed and how they may shift in the future. Representative sampling locations were

identified on present and future ecoregion maps. A representativeness metric was developed,

and representativeness maps for eight candidate sampling locations were produced. This

metric was used to characterize the environmental similarity or dissimilarity of each site.

The analysis provided model-inspired insights into optimal sampling strategies, provided

a framework for up-scaling measurements, and could inform a down-scaling approach for

integration of models and measurements. The techniques described here can be applied at

different spatial and temporal scales to meet the needs of individual measurement campaigns.

This paper is published as

F. M. Hoffman, J. Kumar, R. T. Mills, and W. W. Hargrove (2013), Representativeness-

based sampling network design for the State of Alaska, Landscape Ecol., 28(8):1567–1586,

doi:10.1007/s10980-013-9902-0.

In the third investigation, I used three sets of long-term climate change simulations; con-

sisting of historical (1850–2005), RCP 8.5 (2006–2100), and extended-RCP 8.5 (2101–2300)

simulations from the Community Earth System Model version 1.0 (CESM1(BGC)); to quan-

tify drivers of terrestrial and ocean carbon and water cycle changes. In two simulations,

called BGC and RAD, the effects of CO2 fertilization and nitrogen (N) deposition in the

biosphere (biogeochemically coupled) and the effects of rising temperature and circulation

changes due to radiative forcing from CO2, other greenhouse gases, and aerosols (radiatively

coupled), respectively, were isolated. In a third fully coupled simulation, called FC, the ra-

diative and biogeochemical couplings were combined to investigate the net effect of CO2 and

N fertilization and climate change on terrestrial and marine ecosystems. The feedback anal-
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ysis framework, described above, was applied to these simulation experiments to quantify

the concentration–carbon, β, and climate–carbon, γ, feedback sensitivities in two different

ways out to year 2300. I found that γL was weaker when estimated as the reduction in land

carbon from the BGC and FC simulations, as compared to γL derived directly from the RAD

simulation, indicating a strong nonlinearity in the response of the biosphere to the combined

effects of increasing atmospheric CO2 and rising temperatures. Meanwhile, γO exhibited the

opposite nonlinear behavior. The nonlinearity in terrestrial climate–carbon cycle feedbacks

was attributed to differences in gross primary production (GPP) between the BGC and FC

simulations because climate-induced GPP reductions were buffered by nonlinear changes in

the hydrological cycle and N mineralization. These results suggest that employing RAD

simulations to estimate carbon–climate feedbacks results in an underestimate in the increase

of land carbon uptake and an overestimate in the increase of ocean carbon uptake under

the combined conditions of increased temperature and elevated atmospheric CO2. The im-

balance of these opposing estimate biases will lead to allowable emissions estimates that are

too low or too high to maintain a given CO2 level or temperature target.
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Chapter 2

Causes and Implications of Persistent

Atmospheric Carbon Dioxide Biases

in Earth System Models

2.1 Introduction

Anthropogenic emissions of radiatively active greenhouse gases into the atmosphere, espe-

cially carbon dioxide (CO2), are rapidly increasing the burden of these gases and altering the

Earth’s climate (IPCC , 2007; Raupach and Canadell , 2010). This perturbation of the global

carbon cycle is expected to induce feedbacks from the terrestrial biosphere and oceans on

future CO2 concentrations and the climate system. These climate–carbon cycle feedbacks

are highly uncertain, difficult to predict, and potentially large (Denman et al., 2007). Un-

derstanding and predicting the strength and direction of feedbacks is critically important for

estimating future atmospheric CO2 concentrations and, therefore, accurately predicting the

effects and extent of climate change.
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Models of Earth’s climate system are used to predict responses to human and natural forc-

ings into the future, while hind-casts are used to judge the ability of individual models to

reproduce observed patterns. Current generation Earth System Models (ESMs) attempt

to capture the complex interactions and feedbacks between climate, terrestrial and ocean

ecosystems, and human activities. Scenarios describing alternative prospective future so-

cioeconomic, technological, and environmental conditions are used to generate a consistent

set of chemical, biological, and land use data to drive ESMs (Moss et al., 2010). The results

from such ESM simulations are valuable for diagnosing the magnitude of mitigation efforts

required to stabilize CO2 levels in the atmosphere under various scenarios, taking into ac-

count carbon cycle responses and feedbacks. Traditionally, such models were provided with

a trajectory of CO2 and other greenhouse gases consistent with scenario assumptions about

population, energy resources and consumption, and agricultural policies and practices. Re-

cently, as improvements to the representation of biogeochemical processes on land and in

the ocean and better atmospheric chemistry have been added to ESMs, scenario-derived

emissions of radiatively active gases, consistent with plausible natural and anthropogenic

influences, are used to force ESMs. Concentration-driven simulation results are frequently

analyzed to evaluate the mean carbon stocks and fluxes and to constrain biosphere processes

and feedbacks in land and ocean models (Friedlingstein et al., 2006; Arora et al., 2013; Anav

et al., 2013). They also provide the opportunity to estimate emissions scenarios consistent

with a specific trajectory of atmospheric CO2 (Jones et al., 2013). Emission-driven simu-

lations, in contrast, provide the opportunity to assess the implications of biases resulting

from uncertainties associated with ecosystem processes and feedbacks as the effects of those

uncertainties propagate through the coupled ESM.

Friedlingstein et al. (2003, 2006) developed a framework for analysis of climate–carbon cy-

cle feedbacks and applied it to 11 coupled climate–carbon cycle atmosphere–ocean general

circulation models for the Coupled Climate–Carbon Cycle Model Intercomparison Project

(C4MIP). Friedlingstein et al. (2006) introduced model sensitivities of land and ocean carbon
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sinks to climate (γL and γO, respectively) and to atmospheric CO2 concentration (βL and βO,

respectively) as metrics of climate–carbon and concentration–carbon feedbacks, respectively,

to complement the overall climate sensitivity to atmospheric CO2 parameter, α, in common

use. In their study, Friedlingstein et al. (2006) found that the model sensitivities of the land

carbon sinks to climate (γL) varied by almost a factor of 9 and to concentration (βL) by

almost a factor of 14. Moreover, the models varied by a factor of almost 8 in their gain (g)

of the climate–carbon cycle feedback. Arora et al. (2013) performed a similar analysis for

nine ESMs participating in the Fifth Phase of the Coupled Model Intercomparison Project

(CMIP5) (Taylor et al., 2012) and found that γL varied by almost a factor of 6, βL varied

by almost a factor of 7, and the emissions-derived gain (gE) varied by more than a factor

of 6. The emissions-derived gain (gE) is analogous to the Friedlingstein et al. (2006) gain

(g) for concentration-forced simulations. The multi-model mean feedback parameters, and

their standard deviations, were lower in the nine CMIP5 models than in the C4MIP models,

with γL being 26% weaker and βL being 32% weaker. These differences may be partially

explained by differences in the future emissions scenarios used in the two studies. Neverthe-

less, these results point to very large uncertainties in the response of terrestrial biosphere

models to climate change and rising CO2 concentrations, and in the overall strength of the

feedbacks they predict. While the framework developed by Friedlingstein et al. (2006) is

useful for evaluating the overall strength of feedback responses within a given model and for

comparing concentration and climate sensitivities between models, it provides no indication

about the likelihood of any model being correct. In addition, multiple factors contribute

to the apparent strength of the βL, βO, γL, and γO sensitivities, and the concentration and

climate sensitivities interact with each other non-linearly through biological and chemical

processes (Gregory et al., 2009).

In the studies described above characterizing carbon cycle feedback processes, no compar-

isons were made to observations. This is the next crucial step for reducing uncertainties

associated with future scenarios of global climate change. Recent research has made initial
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steps in this direction. Cox et al. (2013) used the observed relationship between the growth

rate of atmospheric CO2 and tropical temperature as a constraint to reduce predicted uncer-

tainty in the land carbon storage sensitivity to climate change (γL) in the tropics in C4MIP

models. Similarly, Gillett et al. (2013) used the ratio of warming to cumulative emissions

of CO2 to estimate a transient response to cumulative emissions (TRCE) from observations

for comparison with 12 CMIP5 models. Such innovative use of contemporary measurements

to constrain carbon cycle responses to climate change is important for reducing the range of

uncertainty in future climate change projections (Randerson, 2013). Moreover, comparisons

with data sets derived from the synthesis of measurements collected over a wide geospatial

range can provide constraints on individual processes and on carbon cycle responses that

are sensitive to initial conditions. Todd-Brown et al. (2013) compared soil carbon stocks

from 11 CMIP5 models with the Harmonized World Soil Database (HWSD) and the North-

ern Circumpolar Soil Carbon Database (NCSC). Despite reasonable global-scale agreement

with these observations, most ESMs failed to reproduce grid-scale soil carbon variations,

suggesting that key processes may be missing in the majority of ESMs.

The goal of this paper is to identify long-term CO2 biases in emission-driven simulation

results produced by ESMs participating in CMIP5 and describe the causes and implications

of those biases for future climate projections during the middle and latter half of the 21st

century. In our analysis, we developed a new approach using contemporary inventory obser-

vations and structural information about feedbacks within the CMIP5 models to constrain

future CO2 predictions and to reduce uncertainties associated with the range of possible CO2

mole fractions consistent with the RCP 8.5 emissions scenario.
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2.2 Methods

2.2.1 Model descriptions

We analyzed historical and future emission-driven simulation results produced using ESMs

for CMIP5. The historical simulations, referred to as experiment 5.2 or esmHistorical (Taylor

et al., 2012), were forced with spatially distributed CO2 emissions reconstructed from fossil

fuel consumption estimates (Andres et al., 2011) for the period 1850–2005. The future

simulations, referred to as experiment 5.3 or esmrcp85 (Taylor et al., 2012), were forced

with projected CO2 emissions for the period 2006–2100, following the scenario described by

the Representative Concentration Pathway (RCP) 8.5 (Moss et al., 2010). Model output

was obtained primarily from the Earth System Grid Federation (ESGF), an international

network of distributed climate data servers (Williams et al., 2011).

Simulation results were produced by fully coupled ESMs with interactive terrestrial and

marine biogeochemistry models, which feature climate–carbon cycle feedback mechanisms.

Since the simulations were forced with CO2 emissions, these models prognostically computed

global atmospheric CO2 mole fractions, which represent an integration of physical, chemical,

and biological processes on Earth and their interactions and feedbacks with the climate sys-

tem. The ESMs employed different aerosol emissions, land use change processes, and process

parameterizations, leading to a range of different aerosol and greenhouse gas concentrations,

radiative forcings, and climate interactions. The ability of models to accurately reproduce

the observed atmospheric CO2 mole fraction trajectory over the historical period provides

a broad indication of model fidelity, a necessary but not sufficient condition for credible

ESM performance. Each of the models that generated output used in this study is listed in

Table 2.1.
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Table 2.1: Models that generated output used in this study.

Component Models and Resolutions
Model Modeling Center (or Group) Atmosphere Land Ocean Sea Ice

BCC-CSM1.1
(Wu et al., 2013)

Beijing Climate Center, China
Meteorological Administration,
CHINA

AGCM2.1
(2.875◦ ×

2.875◦, L26)

BCC AVIM1.0
(2.875◦ × 2.875◦)

MOM4 L40
(1◦ × (1– 1

3 )◦,
L40)

SIS
(1◦ × (1– 1

3 )◦)

BCC-CSM1.1(m)
(Wu et al., 2013)

Beijing Climate Center, China
Meteorological Administration,
CHINA

AGCM2.2
(1.125◦ ×

1.125◦, L26)

BCC AVIM1.0
(1.125◦ × 1.125◦)

MOM4 L40
(1◦× (1– 1

3 )◦, L40)
SIS

(1◦× (1– 1
3 )◦)

BNU-ESM†f

(Dai et al., 2003, 2004;
College of Global Change

and Earth System
Science, 2012)

Beijing Normal University, CHINA CAM3.5
(2.875◦ ×

2.875◦, L26)

CoLM3 &
BNUDGVM (C/N)

(2.875◦ ×
2.875◦, L10)

MOM4p1 &
IBGC

(1◦ × (1– 1
3 )◦,

L50)

CICE4.1
(1◦ × (1– 1

3 )◦)

CanESM2‡

(Arora et al., 2011)

Canadian Centre for Climate
Modelling and Analysis, CANADA

CanAM4
(2.81◦ × 2.81◦,

L35)

CLASS2.7 &
CTEM1

(2.81◦ × 2.81◦)

CanOM4 &
CMOC1.2

(1.5◦ × 1◦, L40)

CanSIM1
(2.81◦ × 2.81◦)

CESM1-BGCf

(Hurrell et al., in press;
Keppel-Aleks et al., 2013;

Lindsay et al., 2014)

Community Earth System Model
Contributors, NSF-DOE-NCAR, USA

CAM4
(0.9◦ × 1.25◦,

L30)

CLM4
(0.9◦ × 1.25◦)

POP2 & NPZD
(1◦ × (1– 1

3 )◦,
L60)

CICE4
(1◦ × (1– 1

3 )◦)

FGOALS-s2.0a

(Bao et al., 2013; Liu
et al., 2012; Lin et al.,

2013)

LASG, Institute of Atmospheric
Physics, CAS, CHINA

SAMIL2.4.7
(1.67◦ × 2.81◦,

L26)

CLM3 &
VEGAS2.0

(1.67◦ × 2.81◦)

LICOM2.0
(1◦ × (1– 1

2 )◦,
L30)

CSIM5
(1◦ × (1– 1

2 )◦)

GFDL-ESM2g,
GFDL-ESM2mb

(Dunne et al., 2012, 2013)

NOAA Geophysical Fluid Dynamics
Laboratory, USA

AM2
(2◦ × 2.5◦, L24)

LM3
(2◦ × 2.5◦)

MOM4
(1◦ × (1– 1

3 )◦, L50)
SIS

(1◦ × (1– 1
3 )◦)

HadGEM2-ESc

(Collins et al., 2011;
Jones et al., 2011)

Met Office Hadley Centre, UNITED
KINGDOM

HadGAM2 &
UKCA

(1.25◦ × 1.875◦,
L38)

MOSES2 &
TRIFFID

(1.25◦ × 1.875◦)

HadGOM2 &
diat-HadOCC

(1◦× (1– 1
3 )◦, L40)

HadGOM2
(1◦× (1– 1

3 )◦)

INM-CM4†‡

(Volodin et al., 2010)

Institute for Numerical Mathematics,
RUSSIA

(2◦ × 1.5◦, L21) (2◦ × 1.5◦) (1◦ × 0.5◦, L40) (1◦ × 0.5◦)

IPSL-CM5A-LRd

(Dufresne et al., 2013)

Institut Pierre-Simon Laplace,
FRANCE

LMDZ4
(3.75◦ × 1.9◦,

L39)

ORCHIDEE
(3.75◦ × 1.9◦)

ORCA2 &
PISCES

(2◦× (2– 1
2 )◦, L31)

LIM2
(2◦× (2– 1

2 )◦)

MIROC-ESMf

(Watanabe et al., 2011;
Oschlies, 2001)

Japan Agency for Marine-Earth
Science and Technology, Atmosphere
and Ocean Research Institute
(University of Tokyo), and National
Institute for Environmental Studies,
JAPAN

MIROC-AGCM
& SPRINTARS

(2.875◦ ×
2.875◦, L80)

MATSIRO &
SEIB-DGVM

(2.875◦ × 2.875◦, L6)

COCO3.4 &
NPZD

(1.5◦ × 1◦, L44)

COCO3.4
(1.5◦ × 1◦)

MPI-ESM-LRef

(Maier-Reimer et al.,
2005; Raddatz et al.,
2007; Brovkin et al.,

2009)

Max Planck Institute for Meteorology,
GERMANY

ECHAM6
(2.81◦ × 2.81◦,

L47)

JSBACH
(2.81◦ × 2.81◦)

MPIOM &
HAMOCC

(1.5◦ × 1.5◦, L40)

MPIOM
(1.5◦ × 1.5◦)

MRI-ESM1
(Yukimoto et al., 2011;
Nakano et al., 2011;
Yukimoto et al., 2012;

Obata and Shibata, 2012)

Meteorological Research Institute,
JAPAN

GSMUV
(0.75◦ × 0.75◦,

L48)

HAL &
MRI-LCCM2

(0.75◦ × 0.75◦)

MRI.COM3
(1◦ × 0.5◦, L51)

MRI.COM3
(1◦ × 0.5◦)

NorESM1-ME
(Bentsen et al., 2013;
Iversen et al., 2013;
Tjiputra et al., 2013)

Norwegian Climate Centre, NORWAY CAM4-Oslo
(1.9◦ × 2.5◦, L26)

CLM4
(1.9◦ × 2.5◦)

MICOM &
HAMOCC

(1◦ × (1– 1
3 )◦,

L53)

CICE4
(1◦ × (1– 1

3 )◦)

†Atmospheric CO2 required unit correction. cHadGEM2-ES output available for December 1859 through November 2099; an-
nual atmospheric CO2 obtained directly from Hadley Centre.

‡Ocean carbon flux required unit correction. dIPSL-CM5A-LR monthly atmospheric CO2 obtained directly from IPSL.
aFGOALS-s2 model provided no ocean carbon fluxes. eMPI-ESM-LR provided three esmHistorical realizations and one esmrcp85 re-

alization.
bGFDL-ESM2g and GFDL-ESM2m output available beginning January 1861. fAtmospheric CO2 mole fraction was computed from 3-dimensional output.
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2.2.2 Model output

Monthly output of prognostic atmospheric CO2 and surface ocean CO2 flux from emission-

driven ESM simulations were analyzed to evaluate the evolution of the carbon cycle over

the 20th and 21st centuries. Atmospheric CO2 was obtained either as the total atmospheric

mass of CO2 and converted to mole fraction, or as the atmospheric CO2 mole fraction at

every atmosphere model layer. In the latter case, the global mole fraction was calculated

as the area-weighted mean of CO2 in the lowest atmosphere level. Surface ocean CO2 flux

was integrated spatially to determine global carbon uptake and further integrated over time

to estimate the global change in ocean carbon inventory. While the net terrestrial CO2 flux

was available for some models in the form of net biospheric productivity, here, annual land

carbon uptake was calculated as the difference between the prescribed annual anthropogenic

emissions and the sum of the annual change in atmosphere and ocean carbon inventories.

Therefore, the change in land carbon storage for a given year was estimated as

∆CL =
∑
i

Fi −∆CA −∆CO, (2.1)

where Fi was the total anthropogenic fossil carbon emissions from all sources i (fossil fuel

burning and cement production) for that year, ∆CA was the change in atmospheric carbon

storage for that year, and ∆CO was the change in ocean carbon storage for that year. A single

trajectory of annual anthropogenic carbon emissions, derived from the experimental forcing,

was used in calculations for all model results. Carbon fluxes due to land use change were

included implicitly in ∆CL and were not included explicitly in total fossil carbon emissions∑
i Fi. We assumed Fi in each model followed the historical and RCP 8.5 time series on

the Potsdam Institute for Climate Impact Research site (http://www.pik-potsdam.de/

~mmalte/rcps/index.htm). We also assumed the individual ESMs were at steady state

at the beginning of the historical simulation (i.e., that drift in the control simulation was
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minimal).

2.2.3 Comparing CMIP5 ESMs with long-term carbon cycle ob-

servations

Atmospheric CO2 mole fraction observations used for comparison with model projections

of atmospheric CO2 over the historical period were the same as those used to force the

corresponding concentration-driven simulations, which were not analyzed here. Compiled

by Tom Wigley and Malte Meinshausen, these “end-of-year CO2 concentrations” consist of

a combination of 75-y smoothed Law Dome ice core data (Etheridge et al., 1996) up to 1832;

20-y smoothed Law Dome ice core data for 1823–1958; the Keeling Mauna Loa record, with

0.59 ppm subtracted (which is the Mauna Loa mean minus the NOAA global mean over

1982–1986) for 1959–1981; and the NOAA global mean value for 1982–2008 (Conway et al.,

1994). Development of these and related forcing data for pre-industrial control, 20th century,

and RCP simulations are described by Meinshausen et al. (2011).

Sabine et al. (2004) used inorganic carbon measurements from the World Ocean Circulation

Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS), both conducted in

the 1990s, and the tracer-based ∆C* separation technique to estimate the global oceanic

anthropogenic CO2 sink for the period 1800–1994. Their ocean inventory estimate of 118±

19 Pg C accounts for approximately 48% of the total emissions from fossil fuel burning

and cement production. They subtracted this ocean inventory estimate and the change in

atmospheric inventory over the same period of 165± 4 Pg C from the estimate of cumulative

emissions of 244±20 Pg C to obtain a cumulative terrestrial biosphere source of 39±28 Pg C.

More recently, Khatiwala et al. (2009) applied a Green’s function model for ocean tracer

transport, estimated from tracer and salinity data using a maximum entropy deconvolu-

tion technique, to simulate the time evolution of the ocean inventory and uptake rate of
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anthropogenic CO2 for the period 1765–2008. They estimated the ocean inventory and up-

take rate in 2008 to be 140 ± 25 Pg C and 2.3 ± 0.6 Pg C y−1, respectively. When they

adjusted the estimate to include the Arctic Ocean and marginal seas not represented in the

GLobal Ocean Data Analysis Project (GLODAP) database, the global inventory increased

by approximately 11 Pg C. Using annual estimates of anthropogenic emissions and the at-

mospheric inventory, including uncertainties, they produced a trajectory for the terrestrial

carbon budget, indicating that the terrestrial biosphere was a source of anthropogenic CO2

until the 1940s, after which it became a sink. Tans (2009) performed a similar mass balance

calculation using an empirical pulse response function constrained by the integrated ocean

uptake in 1994 (Sabine et al., 2004), the 1993–2002 uptake rate centered on late 1997 from

atmospheric oxygen measurements (Manning and Keeling , 2006), and the 1995–2000 uptake

rate estimate from an ocean inverse model (Gruber et al., 2009). Deriving net terrestrial

emissions as a residual, instead of including land use emissions explicitly due to their large

uncertainty, Tans (2009) also found that net terrestrial emissions were positive before 1940

and were negative thereafter, making their cumulative contribution in 2008 small.

Khatiwala et al. (2013) produced a newly updated global ocean anthropogenic carbon sink

trajectory through 2010 using the Green’s function model. A cumulative sum of this ocean

uptake provided an ocean anthropogenic carbon inventory estimate for 2010 of 150±26 Pg C.

Adding a partial estimate for accumulation in marginal seas and coastal areas from Lee et al.

(2011) of 8.6± 0.6 Pg C yielded a more spatially comprehensive estimate of 160± 26 Pg C.

Since the Lee et al. (2011) estimate was a lower bound, the upper bound was constrained

using multiple Community Climate System Model (CCSM)-based simulations, resulting in a

range for the inventory outside the GLODAP region of 9–14 Pg C. However, Khatiwala et al.

(2013) ultimately computed a “best estimate” inventory for the GLODAP region in 2010 of

143 Pg C by averaging results from three different inversion methods, including the Green’s

function model. Using the above range for marginal seas and coastal areas, they provide a

2010 global best estimate inventory of 152–157 Pg C. Selecting the mid-point value yields a
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final estimate of 155 Pg C with an uncertainty of ±20%. Here we scaled the Green’s function

time series to obtain the 155 Pg C best estimate for 2010 and to account for marginal seas

and coastal areas.

The Sabine et al. (2004) and Khatiwala et al. (2013) data-based estimates with uncertainties

provide valuable global constraints on model carbon cycle processes and feedbacks. However,

these inventory estimates must be further adjusted to the 1850 equilibrium starting date of

model simulations. The Sabine et al. (2004) ocean inventory estimate for 1994 was adjusted

by subtracting the difference between the 1850 and 1800 ocean inventory estimates from

the scaled Khatiwala et al. (2013) 1765–2010 time series, yielding 109± 19 Pg C. Similarly,

the scaled Khatiwala et al. (2013) ocean inventory best estimate for 2010 was adjusted by

subtracting the 1850 value, yielding 141 ± 38 Pg C. Using the adjusted trajectory of ocean

uptake and applying Equation 2.1 on the time series through 2010, we calculated total

carbon accumulation in the ocean and on land from 1850–2010 with their uncertainties

based on Khatiwala et al. (2013) uncertainty estimates (Figure 2.1). Land and ocean carbon

sinks computed using this approach were consistent with combined estimates reported by

Ballantyne et al. (2012); however, here the net land flux included land use emissions.

2.2.4 A framework for constraining future trends

One approach for reducing uncertainties using contemporary observations is to identify

relationships between contemporary variability and future trends within the models and

constrain the contemporary variability using observations. This strategy was employed by

Hall and Qu (2006), who evaluated the strength of the springtime snow albedo feedback

(∆αS/∆TS) from 17 models used for the IPCC Fourth Assessment Report and compared

them with the observed springtime snow albedo feedback from the International Satellite

Cloud Climatology Project (ISCCP) and ERA-40 reanalysis data. They found a linear re-
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Figure 2.1: Observational estimates of anthropogenic carbon emissions (excluding land use
change) and accumulation in the atmosphere, ocean, and land reservoirs are shown for 1850 to
2010. Land carbon accumulation/loss and its uncertainty was calculated from mass balance
using an adjusted ocean carbon accumulation time series with uncertainty from Khatiwala
et al. (2013).

lationship between model predictions of seasonal and 21st century snow albedo feedbacks.

Hall and Qu (2006) assumed this relationship, which represents consistency in the structure

of these models, accurately reflects functional behavior in nature, and used observational

estimates of the contemporary seasonal cycle snow albedo feedback to constrain the longer-

term snow albedo feedback that occurs in the models during the 21st century. More recently,

this approach was applied by Cox et al. (2013) to the carbon cycle. In this latter study, the

authors were able to show that the long-term climate sensitivity of tropical carbon fluxes

was related to this same sensitivity on interannual timescales. By using contemporary ob-

servations, they were able to narrow the likely range of future model scenarios, showing that

the likelihood of forest dieback was probably overestimated in earlier work.
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As described below, we found a similar linear relationship over decadal timescales between

contemporary and future atmospheric CO2 mole fractions in CMIP5 emission-driven simula-

tions. Specifically, models that had higher positive biases in atmospheric CO2 mole fraction

by the end of the observational era in 2010 tended to predict higher atmospheric CO2 levels

during the 21st century for the RCP 8.5 scenario than models that more closely matched

the observations. We used this relationship, and implicitly the collection of CMIP5 models,

to construct a hypothetical model that was tuned to contemporary observations, hereafter

referred to as the contemporary CO2 tuned model, or CCTM.

The CCTM estimate was obtained using the following approach. First, we computed a linear

regression between atmospheric CO2 at each future year (y-axis) and atmospheric CO2 during

2010 (x-axis), defined as the 5-y mean for 2006–2010. In particular, we repeatedly applied

the regression formula,

yi = β0 + β1xi + εi (2.2)

where xi was the 2010 CO2 mole fraction, yi was the future CO2 mole fraction, and εi was

an error term for every model i = 1, . . . , n. β0 and β1 were two parameters, representing the

y-intercept and the slope of the resulting line, respectively. Here, n = 17, representing the 17

separate simulations from 15 models from the CMIP5 collection. For every future interval,

the error term εi was minimized using ordinary least squares to yield a linear regression

model,

ŷi = β̂0 + β̂1xi, (2.3)

where ŷi was the predicted future CO2 mole fraction from the linear regression model that
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minimizes the residual, ei = yi − ŷi. The least squares estimates for the parameters were

calculated using a standard algebraic approach. As shown in the results section below,

these regressions were statistically significant through 2100, although uncertainties increased

through time. Second, we estimated the intersection of this regression with a vertical line rep-

resenting NOAA Global Monitoring Division (GMD) observations in 2010 (384.6± 0.5 ppm;

a 5-y mean centered on 2008) (Conway et al., 1994). This intercept at each time interval

and the 95% confidence limits on the intercept comprised our CCTM estimate.

The CCTM estimate allowed us to inquire what might be the impact of tuning ESMs to

capture the observed recent trajectory of global atmospheric CO2. This approach takes

advantage of the collection of CMIP5 models—including the wide range of sensitivities of

gross land and ocean carbon fluxes to elevated CO2 and climate changes, residence time

distributions of carbon in ocean and land reservoirs, and feedbacks—to create an estimate

with a zero bias at the end of the observed record. As such, it can be thought of as a “black

box” approach to representing the carbon cycle. It was useful in developing approaches for

analyzing ESM uncertainties because of the long-term bias persistence observed for this set

of models.

We also developed a similar multi-model constraint on the evolution of ocean and land

cumulative flux (inventory) time series to better understand why atmospheric CO2 biases

were so persistent. As described in the results, observational uncertainties were considerably

higher for the ocean and land inventories, and, as a consequence, it was not possible to reduce

uncertainties in future estimates by the same amount as for atmospheric carbon dioxide.

2.2.5 Calculating climate implications of CO2 biases

Individual models directly calculate radiative forcing and surface temperature responses to

anthropogenic CO2, and therefore have different climate sensitivities (α). For our analysis,
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we chose to use a standard method for approximating radiative forcing and subsequent

temperature changes to equitably assess the climate implications of CO2 biases across all

models. We adopted the method described by Boucher and Reddy (2008), who employed an

impulse response function (IRF) to describe the evolution of atmospheric CO2 and global

surface temperature. The IRF was derived from a HadCM3 climate model simulation in

which the global atmospheric CO2 mole fraction was abruptly ramped up to 4 times the

pre-industrial levels and subsequently held constant. As described by Boucher and Reddy

(2008), global surface temperature change may be estimated as

δT (t) =
∑
i

ci
di
e
−t
di , (2.4)

where the coefficients ci (in units of K (W m−2)−1) and di (in units of y) are in Table A1

of Boucher and Reddy (2008). Next, this IRF was used to estimate the global surface

temperature change at a time period horizon, P , from a radiative forcing profile, RF(t), as

∆Ts(t, P ) =

∫ t0+P

t0

RF(t) δT (t0 + P − t) dt. (2.5)

We reduced the c1 and d1 coefficients from the Hadley model by 10.5%, by multiplying by

0.895, to obtain a transient climate response of 1.9 K, the same as the mean of ESMs reported

by Gillett et al. (2013).

First, we followed Ramaswamy et al. (2001) to approximate radiative forcing due to anthro-

pogenic CO2 at time t as
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RF(t) = m ln

(
[CO2](t)

[CO2](t0)

)
, (2.6)

where m was set equal to 5.35 W m−2 and [CO2](t0) was defined as 284 ppm in the year 1850.

Second, we calculated CO2-corrected predictions of future surface temperature following the

method of Boucher and Reddy (2008, their Appendix A). This method approximates the de-

layed response of surface temperature to radiative forcing as a sum of two exponentials with

adjustment times of 8.4 and 410 years. Coefficients c1 and d1 in the exponentials (Boucher

and Reddy , 2008, Appendix A) were multiplied by 0.895 to obtain a transient climate re-

sponse of 1.9 K per doubling of CO2 as reported by Gillett et al. (2013) for the mean of the

CMIP5 ESMs. While using the IRF from another ESM might alter the mean temperature

change per unit of radiative forcing presented here, it would not change the order among

models. We note that this calculated temperature change accounts only for CO2-driven cli-

mate change and does not include observed cooling due to aerosols or contributions from

other greenhouse gases like methane (CH4), nitrous oxide (N2O), and chlorofluorocarbons

(CFCs).

2.2.6 Quantifying uncertainty

Sabine et al. (2004) provided uncertainty estimates for their estimate of the ocean anthro-

pogenic carbon inventory. Khatiwala et al. (2013) used the GLODAP/WOA05 databases

to generate global estimates of historical anthropogenic CO2 ocean uptake, and they prop-

agated uncertainties from these databases through their Green’s function model to provide

uncertainties for these uptake estimates. We used these uncertainties in quadrature to pro-

vide an uncertainty range for the Khatiwala et al. (2013) inventory and propagated them

through Equation 2.1 to provide estimates of uncertainty for land carbon accumulation. For
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the linear regression models used here to construct the CCTM estimate, 95% confidence

intervals were calculated and propagated into estimates of atmospheric CO2, radiative forc-

ing, and temperature change. For purposes of uncertainty comparison, the 95% confidence

interval ranges for the CCTM were compared with the 95th percentile of the range for the

multi-model distribution, assuming a normal distribution.

2.3 Results

2.3.1 Contemporary biases

Comparison of ESM prognostic atmospheric CO2 mole fraction over the historical period

with observations indicated that ESMs, on average, had a high bias in their predictions

of contemporary atmospheric CO2 (Figure 2.2(a)). For the multi-model mean, this high

bias was persistent from 1946 throughout the 20th century (Figure 2.2(b)). By the end of

the historical model simulation period (2005), the multi-model mean was 5.6 ppm above

observations and the models ranged from 21.7 ppm below to 26.2 ppm above the observed

CO2 mole fraction of 378.8 ppm. Of the 19 historical simulations from 15 ESMs included in

this analysis, only two predicted a CO2 mole fraction well below observations in 2005. By

2010, near the end of the observational record, the multi-model mean was 7.9 ppm higher

than the global mean CO2 mole fraction reported by NOAA GMD (Conway et al., 1994).

This bias was probably a conservative estimate of the true multi-model mean bias because

fossil fuel emissions from the RCP 8.5 scenario during 2006–2010 (8.6 Pg C y−1) were slightly

lower than the observed emissions (8.7 Pg C y−1) (Peters et al., 2013; Le Quéré et al., 2013).

24



ESM Historical Atmospheric CO2 Mole Fraction

Year

C
O

2 (
pp

m
)

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

Observations
BCC−CSM1.1
BCC−CSM1.1−M
BNU−ESM
CanESM2 (x3)
CESM1−BGC
FGOALS−s2.0
GFDL−ESM2G
GFDL−ESM2M
HadGEM2−ES
INM−CM4
IPSL−CM5A−LR
MIROC−ESM
MPI−ESM−LR (x3)
MRI−ESM1
NorESM1−ME

a)

Year

C
O

2 (
pp

m
)

1850 1870 1890 1910 1930 1950 1970 1990 2010

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

Observations
Multi−model Mean
(with range/envelope in grey)

b)

Figure 2.2: (a) Most ESMs exhibit a high bias in atmospheric carbon dioxide (CO2) mole
fraction. The predicted atmospheric CO2 mole fraction for the 19 historical simulations
shown here ranges from 357–405 ppm at the end of the CMIP5 historical period (1850–
2005). (b) The multi-model mean is biased high from 1946 throughout the remainder of the
20th century, ending 5.6 ppm above observations in 2005.

25



2.3.2 Causes of the contemporary bias

Most ESMs exhibited a small or moderate low bias in ocean carbon accumulation from 1870–

1930 when compared with adjusted estimates from Khatiwala et al. (2013), but most ESMs

were contained within the envelope of observational uncertainty after 1930 (Figure 2.3(a)).

Ocean carbon accumulation ranged from 88–261 Pg C, with a multi-model mean of 145 Pg C,

as compared with observational estimates of 142 ± 38 Pg C through year 2010. Excluding

the two outlier models that had unlikely land contemporary sink estimates (FGOALS-s2.0

and MRI-ESM1), the range of ocean carbon accumulation was reduced to 101–210 Pg C

with a mean of 141 Pg C at 2010, a better match with observations. However, most ocean

models achieved this correspondence with observational estimates primarily as a consequence

of high biases in atmospheric CO2 mole fraction. Normalizing ocean carbon accumulation

with atmospheric accumulation
(

∆CO

∆CA

)
provided a measure of the strength of ocean carbon

storage in emissions-forced simulations that partially accounted for atmospheric CO2 biases.

Performing this normalization and comparing with adjusted ocean inventories from Sabine

et al. (2004) for 1994 (Figure 2.4) and from Khatiwala et al. (2013) for 2010 (Figure 2.5)

indicated that the majority of models were near or below the observed ratio. Across the

different models, the ocean/atmosphere ratio ranged from 0.42–0.99, with a multi-model

mean of 0.61, which compared well with the observational estimate of 0.64 ± 0.15 in 2010.

Excluding the same two outlier models (FGOALS-s2.0 and MRI-ESM1), the range of the

ocean/atmosphere ratio was reduced to 0.42–0.91, with a mean of 0.58.

Terrestrial biosphere models within ESMs also had a wide range of responses, with both

positive and negative net carbon accumulation throughout the 20th century (Figures 2.4 and

2.5). Terrestrial and ocean carbon accumulation compensated for one another (R = −0.91,

Figure 2.6), reducing the bias in predicted atmospheric CO2. This compensation effect was

exemplified by the INM-CM4 model, which had the correct atmospheric CO2 in 2005, but

had strong ocean uptake that was balanced by weak land carbon uptake. During the second
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ESM Historical Ocean and Land Carbon Accumulation
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Figure 2.3: (a) Ocean and (b) land anthropogenic carbon inventories from CMIP5 models
compared to estimates from Khatiwala et al. (2013). Most ESMs exhibit a low bias in ocean
anthropogenic carbon accumulation from 1870–1930 as compared with adjusted estimates
from Khatiwala et al. (2013). While some models enter the envelope of observational un-
certainty later in the 20th century, this was often a consequence of the increasing high bias
in atmospheric CO2 mole fractions. ESMs had a wide range of land carbon accumulation
responses to increasing atmospheric CO2 and land use change, ranging from a cumulative
source of 170 Pg C to a cumulative sink of 107 Pg C in 2010. In these figures, solid colored
lines represent historical simulation results and the extending dashed line segments represent
the first 5 years of the RCP 8.5 simulations. The shaded polygon represents the uncertainties
surrounding the adjusted observational estimates of ocean and land carbon accumulation,
and the error bars correspond to the ±20% uncertainty in the Khatiwala et al. (2013) best
estimate of ocean carbon accumulation for 2010.
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Figure 2.4: Reconstructed atmospheric CO2 levels and observationally based estimates of
carbon uptake from Sabine et al. (2004) provide powerful constraints on carbon inventories
in the atmosphere and ocean as well as on land. While ocean carbon accumulation appears
adequate in some model results, ocean carbon accumulation in most ESMs show a low bias
once normalized by atmospheric accumulation (lower right panel).
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Figure 2.5: Reconstructed atmospheric CO2 levels and observationally based estimates of
ocean carbon uptake from Khatiwala et al. (2013) provide constraints on carbon inventories
in the ocean, and on land when combined with fossil fuel and atmospheric CO2 observations.
While ocean carbon accumulation appears adequate in some model results, ocean carbon
accumulation in most ESMs show a low bias once normalized by atmospheric accumulation
(lower right panel).

29



Land vs. Ocean Carbon Accumulation (1850−2010)
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Figure 2.6: Land versus ocean carbon accumulation for all CMIP5 models in 2010. Terrestrial
and ocean carbon accumulation compensated for one another (R = −0.91) reducing the bias
in predicted atmospheric CO2.

half of the 20th century, the land carbon sink was persistent with high rates during the

1990s and 2000s (Table 2.2). Thought to be due to changes in human land use (i.e., reduced

deforestation, new afforestation, and secondary re-growth of previously cleared land), wildfire

suppression (Girod et al., 2007; Hurtt et al., 2002), and enhanced forest growth due to

rising atmospheric CO2 levels and higher rates of nitrogen deposition (Pan et al., 2011;

Phillips et al., 2009), this growing land sink reinforced rising ocean uptake rates and resulted

in a doubling of global carbon uptake between 1960 and 2010 (Ballantyne et al., 2012).

Although the multi-model mean distribution of land sinks closely matched the observations,

individual model estimates varied widely. BCC-CSM1.1-M, CESM1-BGC, FGOALS-s2.0,

GFDL-ESM2M, HadGEM2-ES, INM-CM4, and NorESM1-ME tended to underestimate land

sinks, whereas CanESM2 and MRI-ESM1 tended to overestimate them (Figure 2.3(b)).
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2.3.3 Implications of contemporary atmospheric CO2 biases in

CMIP5 models

High atmospheric CO2 biases produced radiative forcing during the latter half of the 20th

century that was too large in the affected ESMs (Table 2.3). For the year 2010, the multi-

model mean atmospheric CO2 mole fraction was 7.9 ppm above observations, corresponding

to a radiative forcing that was 0.10 W m−2 higher than that obtained from the observed

atmospheric CO2 mole fraction. The integrated effect of the radiative forcing bias from

the multi-model mean during the 19th and 20th centuries led to CO2-induced temperature

change that was 0.06◦C higher by 2010 than an estimate derived from the observed CO2

trajectory. Across all ESMs, the temperature change bias for 2010 ranged from −0.20◦C to

0.24◦C. Because land and ocean carbon uptake rates are likely to be reduced with climate

warming (negative γL and γO), these temperature biases have the potential to further rein-

force atmospheric CO2 biases in the 21st century, leading to persistent and divergent biases

into the future for many aspects of the climate system, unless compensated for by biases in

concentration–carbon feedbacks (βL and βO) or climate sensitivities (α). Atmospheric CO2

mole fraction projections out to 2100 under the RCP 8.5 scenario for all ESMs are shown in

Figure 2.7. Corresponding anthropogenic carbon inventories for the ocean and land out to

2100 are shown in Figure 2.8.

2.3.4 Persistence of biases into the future

To explore the persistence of atmospheric CO2 biases beyond the present, we examined the

relationship between 5-y mean contemporary and future atmospheric CO2 mole fractions

from ESMs. Figure 2.9(a) reveals a strong linear relationship between the predicted sizes of

contemporary and future atmospheric CO2 biases in 2060 with a coefficient of determination

R2 = 0.70. This correlation declined to R2 = 0.54 in 2100 (Figure 2.9(b)) probably as
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Table 2.3: Atmospheric CO2 mole fraction, radiative forcing, and resulting temperature
changes for each of the CMIP5 ESMs, the multi-model mean, the CCTM estimate, and the
combination of observed and RCP 8.5 projection for the years 2010, 2060, and 2100. Values
are 5-y means for the time periods 2006–2010, 2056–2060, and 2096–2100.

CO2 Mole Radiative Cumulative ∆T
Fraction (ppm) Forcing (Wm−2) ∆T (◦C) Bias (◦C)

Model 2010 2060 2100 2010 2060 2100 2010 2060 2100 2010 2060 2100

BCC-CSM1.1 390 603 945 1.70 4.03 6.43 0.97 2.39 4.02 0.03 0.02 −0.01
BCC-CSM1.1-M 396 619 985 1.78 4.16 6.65 1.04 2.49 4.16 0.10 0.12 0.13

BNU-ESM 382 602 963 1.59 4.02 6.53 0.90 2.33 4.07 −0.04 −0.04 0.04
CanESM2 r1 394 641 1024 1.75 4.36 6.86 0.98 2.58 4.30 0.04 0.21 0.27
CanESM2 r2 392 641 1023 1.72 4.35 6.85 0.98 2.57 4.30 0.04 0.20 0.27
CanESM2 r3 396 641 1025 1.78 4.35 6.87 1.01 2.58 4.30 0.07 0.21 0.27
CESM1-BGC 407 697 1121 1.92 4.80 7.34 1.12 2.85 4.64 0.18 0.48 0.61
FGOALS-s2.0 404 636 993 1.89 4.31 6.70 1.09 2.57 4.23 0.15 0.20 0.20
GFDL-ESM2G 395 616 967 1.77 4.14 6.56 1.04 2.49 4.12 0.10 0.12 0.09
GFDL-ESM2M 400 621 964 1.83 4.18 6.54 1.09 2.52 4.13 0.15 0.15 0.10
HadGEM2-ES 411 636 983 1.98 4.31 6.64 1.18 2.60 4.20 0.24 0.23 0.17

INM-CM4 386 591 897 1.64 3.92 6.15 0.92 2.36 3.86 −0.02 −0.01 −0.17
IPSL-CM5A-LR 375 573 908 1.48 3.75 6.22 0.86 2.21 3.87 −0.08 −0.16 −0.16

MIROC-ESM 398 658 1121 1.81 4.50 7.35 1.06 2.67 4.58 0.12 0.30 0.55
MPI-ESM-LR r1 383 590 948 1.60 3.91 6.45 0.95 2.31 4.03 0.01 −0.06 0.00

MRI-ESM1 361 516 778 1.28 3.20 5.39 0.74 1.89 3.33 −0.20 −0.48 −0.70
NorESM1-ME 391 667 1070 1.72 4.57 7.09 0.98 2.68 4.46 0.04 0.31 0.43

Multi-model Mean 392 621 980 1.72 4.18 6.63 1.00 2.48 4.17 0.06 0.11 0.14
CCTM Estimate 385 600 948 1.62 4.01 6.45 0.94 2.37 4.03 — — —

Historical + RCP 8.5 385 590 917 1.63 3.91 6.27 0.94 2.32 3.93 0.00 −0.05 −0.10
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ESM RCP 8.5 Atmospheric CO2 Mole Fraction
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Figure 2.7: (a) ESMs had a wide range of predicted atmospheric CO2 mole fraction by the
end of the 21st century, ranging from 800 ppm to over 1150 ppm. (b) The multi-model mean
is 63 ppm above the RCP 8.5 target atmospheric CO2 mole fraction by the end of the 21st

century.
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ESM Historical + RCP 8.5 Ocean and Land Carbon Accumulation
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Figure 2.8: (a) Ocean and (b) land anthropogenic carbon inventories from CMIP5 models
compared to estimates from Khatiwala et al. (2013). The spreads in model projections of
ocean and land carbon accumulation grown throughout the 21st century, and trends in land
model responses change sign in some models during this time. The shaded polygon represents
the uncertainties surrounding the adjusted observational estimates of ocean and land carbon
accumulation, and the error bars correspond to the ±20% uncertainty in the Khatiwala et al.
(2013) best estimate of ocean carbon accumulation for 2010.

35



a consequence of varying climate–carbon cycle feedbacks taking effect in different models.

Because model biases in atmospheric CO2 mole fraction are persistent, biases at year 1850

affect biases at year 2010. To investigate the impact of different model baselines, we also

examined the relationship between the 5-y mean contemporary and future anthropogenic

atmospheric carbon inventory in 2060 (Figure 2.10(a)) and 2100 (Figure 2.10(b)), taking

into account uncertainties from measurements of 19th century CO2 and fossil emissions. This

alternative metric slightly changed the ordering of models and strengthened the coefficient

of determination, further confirming the robustness of the bias persistence relationship. To

explore the value of a tuned model with no CO2 bias at the end of the historical period,

we compared the CCTM estimate described in the Methods with the set of CMIP5 model

predictions and the RCP 8.5 CO2 mole fraction trajectory. Figure 2.11 shows the coefficients

of determination (R2) of the CCTM atmospheric CO2 mole fraction trajectory, as well as for

the trajectories for ocean and land carbon accumulation when the same method is applied

for those reservoirs. All of the coefficients of determination peak at one for the contemporary

tuning year (2008, the center of the 2006–2010 averaging period), as expected, and decreases

on either side, into the past and future. Statistical significance (p < 0.05) was maintained

with N = 17 model results for R2 values above 0.23 (i.e., after about 1910 and through 2100

for atmospheric CO2). The resulting atmospheric CO2 trajectory for 1850–2100 is shown as

the red line in Figure 2.12.

The CCTM estimate suggests that for a tuned model, future atmospheric CO2 in 2060

under the RCP 8.5 scenario would be 600± 14 ppm (including the 95% confidence interval

of the estimate). In contrast, the multi-model mean atmospheric CO2 mole fraction in 2060

was 621 ± 80 ppm, which was above and outside the confidence interval for the CCTM

estimate (Figure 2.13(a)). Individual model predictions spanned a range from 516–697 ppm

in 2060. The spread of the CCTM was considerably smaller than that of the multi-model

95th percentile distribution spread. In 2100, the CCTM estimate yielded an atmospheric CO2

mole fraction of 948 ± 35 ppm, while the multi-model mean prediction was 980 ± 161 ppm
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Future  vs. Contemporary Atmospheric CO2 Mole Fraction
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Figure 2.9: (a) Future (2060) vs. contemporary (2010) atmospheric CO2 mole fraction fit for
CMIP5 emissions-forced simulations of RCP 8.5, and (b) Future (2100) vs. contemporary
(2010) atmospheric CO2 mole fraction for the same set of model simulations. The observed
atmospheric CO2 mole fraction is represented by the vertical line at 384.6 ppm with an
uncertainty range (±0.5 ppm) shown in gray. The linear regression model is represented by
the blue line surrounded by red dashed lines indicating a 95% confidence interval. While a
point is plotted for the historical observed atmospheric CO2 and the RCP 8.5 concentration
trajectory derived from a reduced form model without explicit feedbacks, that point is not
included in the linear regression.
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Future  vs. Contemporary Atmospheric Accumulation
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Figure 2.10: (a) Future (2060) vs. contemporary (2010) anthropogenic atmospheric carbon
accumulation fit for CMIP5 emissions-forced simulations of RCP 8.5, and (b) Future (2100)
vs. contemporary (2010) anthropogenic atmospheric carbon accumulation for the same set
of model simulations. The observed atmospheric carbon accumulation is represented by the
vertical line at 213.4 Pg C with an uncertainty range (±6.5 Pg C) shown in gray. The linear
regression model is represented by the blue line surrounded by red dashed lines indicating
a 95% confidence interval. Adding uncertainties from fossil fuel emissions increased the
uncertainty range to ±12.7 Pg C. Even with this larger range, only 6 of 17 simulations
were consistent with the available inventory observations. While a point is plotted for the
historical observed atmospheric carbon accumulation and the RCP 8.5 accumulation derived
from a reduced form model without explicit feedbacks, that point is not included in the linear
regression.
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R2 of Multi−model  Bias Structure
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Figure 2.11: The coefficients of determination (R2) for the multi-model bias structure, from
which the contemporary CO2 tuned model (CCTM) was derived, relative to the set of CMIP5
model atmospheric CO2 mole fractions (black) and oceanic (blue) and land (green) anthro-
pogenic carbon inventories in 2010, defined as the 5-y mean for the period 2006–2010.
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Contemporary CO2 Tuned Model (CCTM)
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Figure 2.12: The contemporary CO2 tuned model (CCTM) atmospheric CO2 mole fraction
estimate compared to the CMIP5 multi-model mean trajectory. The pink range surrounding
the CCTM represents the 95% confidence interval from the linear model around the contem-
porary observation projected onto the y-axis of historical or future CO2 mole fractions for
every year. The blue line represents the multi-model mean CO2 trajectory and the blue range
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(Figure 2.13(b)). The CanESM2, CESM1-BGC, MIROC-ESM, and NorESM1-ME models

predicted atmospheric CO2 mole fractions greater than 1000 ppm by 2100. In terms of

anthropogenic atmospheric carbon accumulation, the CCTM estimate in 2060 under the

RCP 8.5 scenario was 672± 28 Pg C (including the 95% confidence interval of the estimate).

The multi-model mean anthropogenic atmospheric carbon accumulation in 2060 was 715±

173 Pg C, which was above and outside the confidence interval for the CCTM estimate

(Figure 2.14(a)). In 2100, the CCTM estimate yielded an anthropogenic atmospheric carbon

accumulation of 1412±72 Pg C, while the multi-model mean prediction was 1488±347 Pg C

(Figure 2.14(b)).

To assess the mechanisms causing the strong relationship between contemporary and future

atmospheric CO2 levels among the models, we also developed CCTM-like estimates for the

individual ocean and land inventories (Figure 2.15). This analysis revealed that the ordering

of ocean inventories among the models was more persistent into the future than for land

inventories, but, for both components, statistically significant multi-model relationships ex-

isted between contemporary (2010) and future values through the end of the 21st century

(Figure 2.11). However, because uncertainties in ocean and land inventories were larger, con-

straints offered by contemporary observations were considerably weaker than for atmospheric

CO2, in terms of the future evolution of these inventory components (Figure 2.16).

2.3.5 Implications of a persistent atmospheric CO2 bias

To explore the climate implications of the persistent atmospheric CO2 biases described above,

we compared the radiative forcing (Equation 2.6) and the resulting temperature change

(Equations S1 and S2) for the CCTM estimate and the set of CMIP5 model predictions.

Figure 2.17(a) shows the radiative forcing due only to CO2 calculated for each of the CMIP5

models. The model range was 5.4–7.4 W m−2 at year 2100 for RCP 8.5. Figure 2.17(b)
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Figure 2.13: The probability density of CO2 mole fraction predictions from the CCTM
peaks lower than the probability density for multi-model mean for (a) 2060 and (b) 2100. In
addition, the width of the probability density is much smaller for the CCTM, by almost a
factor of 6 at 2060 and almost a factor of 5 at 2100, indicating a significant reduction in the
range of uncertainty for the CCTM prediction.
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Probability Density of Atmospheric Carbon Accumulation
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Figure 2.14: The probability density of anthropogenic atmospheric carbon accumulation
predictions from the CCTM peaks lower than the probability density for the multi-model
mean for (a) 2060 and (b) 2100. In addition, the width of the probability density is much
smaller for the CCTM, by more than a factor of 6 at 2060 and almost a factor of 5 at 2100,
indicating a significant reduction in the range of uncertainty for the CCTM prediction.
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Contemporary Carbon Tuned Model
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shows the multi-model mean radiative forcing compared to the radiative forcing for the

CCTM estimate. As with the CO2 comparison described above, the spread of the CCTM

was considerably smaller than that of the multi-model 95th percentile distribution spread.

In 2100, the CCTM estimate yielded a radiative forcing of 6.4 ± 0.2 W m−2, while the

multi-model mean prediction was 6.6± 0.9 W m−2. Figure 2.17(c) shows the corresponding

cumulative temperature change due to this CO2 radiative forcing for each of the CMIP5

models. The temperature increase for the models ranged from 3.3◦C to 4.6◦C. Figure 2.17(d)

shows the corresponding multi-model mean cumulative temperature change compared to the

CCTM estimate. In 2100, the CCTM estimate yielded a cumulative temperature increase

from the CO2-induced radiative forcing of 4.0±0.1◦C, while the multi-model mean prediction

was 4.2± 0.6◦C.

The CO2 mole fraction, CO2-induced radiative forcing, and CO2-induced cumulative temper-

ature change for each of the CMIP5 models are shown in Table 2.3 for the years 2010, 2060,

and 2100. In addition, the last three columns of the table show the temperature change

bias between the models and the CCTM estimate. In 2010 the temperature bias of the

multi-model mean was 0.06◦C (ranging from −0.20◦C to 0.24◦C), and this bias increased to

0.11◦C in 2060. Individual model results showed that some biases increased, some decreased,

and others remained the same between 2010 to 2060. The MRI-ESM1 and CESM1-BGC

models had the largest temperature biases in 2060, at −0.48◦C and 0.48◦C, respectively,

while the INM-CM4 and MPI-ESM-LR models had the smallest temperature biases in 2060,

at −0.02◦C and 0.01◦C, respectively. By 2100, the multi-model mean temperature bias had

increased to 0.14◦C. The MRI-ESM1 and CESM1-BGC models had the largest temperature

biases in 2100, at −0.70◦C and 0.61◦C, respectively. The temperature biases for individ-

ual models were significant and increased with time during the 21st century. The original

RCP 8.5 atmospheric CO2 mole fraction trajectory resulted in a −31 ppm mole fraction bias

and a −0.10◦C temperature bias from the CCTM estimate at 2100. This result suggests a

small inconsistency between the RCP 8.5 specification of the CO2 mole fraction trajectory
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and the corresponding fossil fuel emissions trajectory. The RCP 8.5 trajectory was derived

from the MESSAGE-MACRO integrated assessment model (Riahi et al., 2011), which incor-

porates the MAGICC/SCENGEN (version 4.1) coupled gas-cycle/climate model (Wigley ,

2003) that includes a net positive carbon cycle feedback, but lacks explicit representation

of many ecosystem processes that influence climate–carbon and concentration–carbon feed-

backs. Prior to its use in deriving the RCP 8.5 trajectory, parameters in the carbon cycle

model of MAGICC/SCENGEN (version 5.3) (Wigley , 2008) were changed to give concen-

tration projections consistent with the results from the C4MIP activity (Friedlingstein et al.,

2006).

It is important to note in the context of the results described above that model-to-model vari-

ations in atmospheric CO2 trajectories documented here contributed to only a small amount

of the model-to-model variation in surface air temperature changes. This is because many of

the models in the ensemble had different representations of aerosol processes, including forc-

ings and feedbacks, and because the models had widely varying climate sensitivities (e.g.,

Gillett et al. (2013)). Specifically, the multi-model mean estimate of temperature change

from the beginning of the simulations was 3.1± 1.3◦C at 2060 and 5.1± 2.2◦ at 2100. When

we adjusted each model temperature estimate for the impact of CO2 biases using the CO2-

induced temperature biases shown in Table 2.3, the multi-model mean changed slightly to

3.0± 1.2◦C at 2060 and 5.0± 1.9◦C at 2100.

2.4 Discussion

2.4.1 Why do carbon cycle biases persist on decadal timescales?

In our analysis, we found that the ordering among model predictions of atmospheric CO2

persisted for several decades. Models that had the highest positive biases near the end of the
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observational record in 2010 were more likely to have higher positive biases in earlier decades,

during the latter half of the 20th century (Figures 2.2 and 2.17). Similarly, this same set of

models also had the highest set of future atmospheric CO2 projections during the middle and

latter half of the 21st century in response to RCP 8.5 emissions (Figure 2.9). Many struc-

tural model elements probably contributed to this bias and ordering persistence, including

processes that influence the strength of concentration–carbon feedbacks. One important ex-

ample includes the representation of ocean mixing processes that regulate the formation of

intermediate and deep waters in the ocean. Past work from analysis of 13 simulations from

the second phase of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2)

indicated that climate models often underestimate this overturning in the Southern Ocean

(Doney et al., 2004; Matsumoto et al., 2004; Dutay et al., 2002). In addition, Russell et al.

(2006) performed an intercomparison of the Southern Ocean circulation in CMIP3 control

simulations and found that the maximum wind stress in the Southern Hemisphere, nominally

associated with the Antarctic Circumpolar Current (ACC), was located too far equator-ward

in most models. In ESMs, such deficiencies in model structure and large scale circulation

have the potential to limit CO2 uptake by the oceans, and are likely to contribute to a per-

sistent atmospheric CO2 bias over time because many of the physical processes regulating

mixing are unlikely to change rapidly. Biases in atmospheric CO2 caused by this type of

mechanism likely grow through time as the atmospheric CO2 growth rate accelerates and

transport of carbon out of the mixed layer becomes an increasing bottleneck to net ocean

carbon uptake. Our finding that many models underestimated the ocean anthropogenic car-

bon inventory (Figures 2.5 and 2.4) is consistent with other studies indicating some ocean

models exhibit weak meridional overturning circulation (Downes et al., 2011; Sallée et al.,

2013). However, additional research is needed to understand the causes of model-to-model

variations in ocean carbon uptake for the CMIP5 models.

On land, similar deficiencies in model structure have the potential to contribute to persistent

multi-decadal biases in carbon fluxes. Key regulators of carbon uptake on land in response
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to elevated levels of atmospheric CO2 include, for example, the response of gross primary

production (GPP) to CO2 concentration, the allocation of GPP to longer lived woody pools,

and subsequent increases in soil organic matter pools (Thompson et al., 1996; Luo et al.,

2006). Carboxylation parameterizations of Rubisco often follow the form of a modified

Michaelis-Menten equation (Farquhar et al., 1980) and vary considerably among models.

Models that have lower estimates of the maximum carboxylation rate in different biomes, in

response to nitrogen limitation (e.g., Thornton et al. (2007)) or other factors, are likely to

have smaller CO2-driven increases in GPP by the end of the 20th or 21st centuries. Similarly,

models that have reduced allocation of GPP to wood pools will also have lower rates of

carbon uptake, given the same trajectory of GPP increases. Since in many models, the

maximum carboxylation rate is either held constant or unlikely to rapidly change in response

to changing environmental conditions, this parameterization can induce a long-term bias in

carbon fluxes. The same argument applies to allocation submodels: although many plant

allocation models are dynamic (Friedlingstein et al., 1999; Arora and Boer , 2005; Litton

et al., 2007) and respond to regional variations in light availability, soil moisture, and other

environmental controls, many aspects of these models are unlikely to change rapidly during

the 20th and 21st centuries, allowing flux biases to persist in response to monotonic increases

in atmospheric CO2.

Other land model structural components not associated with concentration–carbon feedbacks

also can contribute to long-term flux biases. For example, land use carbon emissions are an

important component of the terrestrial carbon budget and are highly uncertain (Hansen

et al., 2010; Houghton et al., 2012; Baccini et al., 2012; Andres et al., 2012; Harris et al.,

2012). Model estimates of this flux can be biased if, for example, the representations of

aboveground and belowground carbon pools within the model do not capture observed pat-

terns. As a consequence, carbon losses for a given rate of land clearing may be too high or

too low, with a bias that is persistent if rates of land clearing change gradually from one

decade to the next. Similarly, climate–carbon feedbacks, including, for example, the response
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of heterotrophic respiration to temperature (Davidson and Janssens , 2006) could also con-

tribute to long-term biases. Nevertheless, for the CMIP5 models, their contribution during

the latter half of the 20th century and first half of the 21st century might be expected to

be smaller than other drivers, given that temperature and other changes in climate increase

through time (Arora et al., 2013).

The overall success of contemporary atmospheric CO2 observations in constraining future

CO2 levels (e.g., Figure 2.13) is probably related to several factors. First, the atmospheric

anthropogenic carbon inventory is known relatively well, in contrast to the much larger un-

certainties associated with the ocean and land inventories. Second, concentration–carbon

feedbacks appear to contribute more to the inter-model variations of future (2100) atmo-

spheric CO2 level projections than climate–carbon feedbacks (Arora et al., 2013). In this

context, the rapid rise of atmospheric CO2 observed over the last few decades provides an im-

portant direct test of the combined set of ocean and land concentration–carbon mechanisms

operating within the models, and, as described above, any biases today are likely amplified

as the growth rate of CO2 accelerates. Although temperature and other climate changes also

occurred during this period, the magnitude of these changes was much smaller as compared

to what is expected during the middle and latter part of the 21st century. As a consequence,

the variations in atmospheric CO2 estimates among models resulting from climate–carbon

feedbacks were likely relatively small for the contemporary period (e.g., Arora et al. (2013)).

The growing importance of climate–carbon feedbacks probably contributes to the increasing

uncertainty in our CCTM estimate during the latter part of the 21st century (Figure 2.12).
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2.4.2 What is the value of improving carbon cycle processes to

match contemporary CO2?

One of the goals of the integrated assessment modeling community in developing the differ-

ent representative concentration pathways (RCPs) was to enable ESMs to compute possible

emissions scenarios consistent with a particular atmospheric CO2 trajectory (van Vuuren

et al., 2011). This is valuable, for example, in identifying the magnitude of required miti-

gation efforts to stabilize CO2 levels in the atmosphere at a particular mole fraction, taking

into account carbon cycle responses and feedbacks (e.g., Jones et al. (2013)).

Our analysis has several implications for the interpretation of future compatible emissions

time series derived from the set of ESMs participating in CMIP5. First, the compatible

emissions time series derived from the multi-model mean of concentration-forced simulations

during the 21st century is likely to be too low. This assertion is based on the observation

that 1) fossil fuel emissions would have to be reduced below observations to eliminate the

high bias found in the multi-model mean during the last few decades (Figure 2.2), and 2)

our finding that biases observed today were significantly correlated with future atmospheric

CO2 projections because of parameterizations of slowly changing carbon cycle processes.

Second, the range of variation in compatible emission estimates among individual models

during the remainder of the 21st century has a large component that can be avoided for

any given concentration-forced scenario by reducing or eliminating biases in contemporary

atmospheric CO2. Specifically, if each model were individually optimized to eliminate bi-

ases in atmospheric CO2 during the last few decades, the range of compatible emissions

projections during the 21st century would be considerably compressed. In our analysis, we

investigated the potential magnitude of this uncertainty reduction by using the entire set of

CMIP5 ESMs to construct a tuned model (CCTM). Projections from the CCTM provided

almost a 6-fold reduction in uncertainty of atmospheric CO2 levels at 2060, and nearly a 5-
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fold reduction at 2100. As previously noted the range of model projections diverges through

time during the 21st century, as climate–carbon cycle feedbacks strengthen. However, even

by the end of the century, a significant component of the variation among models can be

attributed to biases that exist today. This result is consistent with results from Arora et al.

(2013) that show much of the model-to-model variation in carbon cycle estimates is driven by

concentration–carbon feedbacks, and only to a lesser degree by variation in climate–carbon

feedbacks.

Considering the carbon cycle a “black box” from the perspective of climate change impacts

on other aspects of the Earth system, there is significant value in model development efforts

to eliminate biases in atmospheric CO2 that occur by the end of the observational record. By

doing so for the set of simulations evaluated here, high biases in radiative forcing and global

temperature increases could be reduced in many of the models (Figure 2.17). Improved

estimates of CO2-induced climate change, in turn, would reduce uncertainties related to

rates of snow and ice melt (Flanner et al., 2009) and other processes contributing to climate

feedbacks (Hall and Qu, 2006; Davidson and Janssens , 2006; Zaehle et al., 2010; Koven et al.,

2011). Benefits would also exist for developing more precise estimates of changes in ocean

surface chemistry (Caldeira and Wickett , 2003; Doney et al., 2009a) and ocean circulation

(Downes et al., 2011; Sallée et al., 2013), and better estimates of climate change impacts on

agriculture and other aspects of human society (Lobell et al., 2011).

An interesting question then emerges regarding how best to reduce these biases within indi-

vidual models and for the set of ESMs as a whole contributing to future climate assessments.

Many structural elements of the models may be improved through extensive comparison of

ESMs with observations and the development of community-wide benchmarking and evalu-

ation systems such as the International Land Model Benchmarking (ILAMB) project (Luo

et al., 2012) and equivalent ocean projects (Doney et al., 2009b). These efforts are underway,

and significant advances are expected over the next several years. Biases also may be reduced
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by having closer coordination among different ESM development teams and allocating more

time to evaluating coupled transient ESM simulations during the 19th and 20th centuries.

More specifically, given that constraints on some long-term flux components are uncertain,

modeling teams may need to optimize several sets of parameters to achieve a more realistic

integrated carbon simulation. For example, adjustments to parameterizations of sub-grid

scale mesoscale eddy mixing can improve many aspects of physical ocean system (Gent and

McWilliams , 1990; Danabasoglu and Marshall , 2007; Danabasoglu et al., 2008; Gent , 2011),

but may have unintended consequences for ocean carbon uptake. At a minimum, more quan-

tification and analysis of these trade-offs is needed, and ocean carbon benchmarks need to

be fully considered when modifications are made to ocean model physics.

On land, uncertainties in land use histories and responses of carbon storage to elevated CO2

and other changing resources provide additional opportunities for making model adjustments

that can improve the fidelity of the model’s overall atmospheric CO2 trajectory, but not con-

flict with available data constraints. Ecosystem manipulation experiments and observations

also are needed to improve our understanding of ecosystem processes and their representa-

tion in models. In addition, a robust set of Earth system observations are needed to quantify

climate change impacts on terrestrial carbon sinks and carbon dynamics associated with land

use change.

2.5 Conclusions

The trajectories of atmospheric CO2 mole fraction for 19 historical and 17 future emission-

driven simulation results produced for CMIP5 by 15 fully coupled ESMs were analyzed.

Comparison of ESM prognostic atmospheric CO2 over the historical period with observations

indicated that ESMs, on average, had a high bias in their predictions of contemporary CO2

levels. Comparison with observationally based estimates of anthropogenic carbon inventories
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in the ocean indicated that this bias was driven by weak to nominal ocean carbon uptake in

many ESMs, and that terrestrial and ocean carbon accumulation often compensated for one

another within individual models, reducing the bias in predicted atmospheric CO2. We found

a linear relationship over decadal timescales between contemporary and future atmospheric

CO2 mole fractions, and used this relationship to construct a model of the atmospheric

CO2 trajectory tuned to contemporary observations, which we called the CCTM. CCTM

estimates of atmospheric CO2 were 21 ppm lower than the multi-model mean at 2060 and

32 ppm lower at 2100. Using an impulse response function, we approximated radiative

forcing and temperature changes resulting from ESM, CCTM, and observed CO2 trajectories.

Comparison of temperature changes from ESMs with the CCTM estimate indicated a small

positive multi-model mean bias during the 21st century. Individual model results exhibited

a much larger range of CO2-induced temperature change, from 1.9◦C to 2.9◦C in 2060 and

from 3.3◦C to 4.6◦C in 2100, demonstrating the net effect and significant climate implications

associated with the large model spread in carbon accumulation in ocean and land reservoirs.

Atmospheric CO2 biases persist in models for decades because parameterizations of biological

and physical processes related to carbon accumulation on land and in the ocean do not allow

the system to change rapidly. Many of the biases associated with concentration–carbon

feedbacks (i.e., Arora et al. (2013)) likely increase through time in the RCP 8.5 scenario

as the atmospheric CO2 growth rate accelerates. Because of the high atmospheric CO2

bias exhibited by ESMs for the contemporary period, future fossil fuel emissions trajectories

designed to stabilize atmospheric CO2 levels, sometimes called “allowable” emissions, would

be too low if estimated from the multi-model mean. We have shown that a significant

component of the variation of atmospheric CO2 levels among models during the 21st century

was linked to biases in their predictions of contemporary atmospheric CO2. This suggests

improving the agreement of individual models with the contemporary atmospheric CO2

record could reduce the magnitude of future CO2 biases in many models and narrow the range

of predicted radiative forcing and CO2-induced global temperature increases. To reduce
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biases in individual models, a rigorous campaign of extensive and multi-faceted evaluation—

directed at improving model structure and optimizing model parameters through comparison

with contemporary observations—must be performed. Community-based benchmarking and

model evaluation systems, such as ILAMB, tighter coordination among ESM development

teams, and optimization of model parameters using all available observational constraints

have the potential to both reduce model biases and significantly decrease the multi-model

spread of carbon cycle predictions for future development scenarios and mitigation.
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Chapter 3

Representativeness-Based Sampling

Network Design for the State of

Alaska

3.1 Introduction

The Arctic contains vast amounts of frozen water in the form of sea ice, snow, glaciers, and

permafrost. Extended areas of permafrost in the Arctic contain soil organic carbon that is

equivalent to twice the size of the atmospheric carbon pool, and this large stabilized car-

bon store could be released by widespread thawing of permafrost, resulting in a positive

feedback to climate warming (Schuur et al., 2008). The Intergovernmental Panel on Cli-

mate Change (IPCC) Fourth Assessment Report (AR4) has documented strong evidence for

warming of the Earth’s climate over the last century and has attributed the increase in global

temperatures primarily to the rising anthropogenic greenhouse gas burden (IPCC , 2007).

Climate warming is projected to continue with broad implications for sensitive ecosystems
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and globally important climate feedbacks (Anisimov et al., 2007). Warming is projected to

be especially pronounced at high latitudes and accompanied by significant regional impacts.

Evidence of Arctic-wide responses are already being observed (Hinzman et al., 2005). Despite

these potential implications, the Arctic has a limited record of low density observations. The

Arctic Climate Impact Assessment (ACIA) (2005) emphasized the need for studies of the

complex and interacting processes of the atmosphere, sea ice, ocean, and terrestrial systems

to improve the interpretation of past climate and projections of future climate. The Commit-

tee on Designing an Arctic Observing Network (2006) identified critical needs and gaps for

observations in the Arctic. It recommended an Arctic Observing Network to satisfy current

and future scientific needs and offered recommendations on key physical, biogeochemical,

and human dimensions variables to monitor.

Conducting systematic and continuous field observations and long term monitoring are chal-

lenging, particularly in the Arctic. Resource and logistical constraints limit the frequency

and extent of observations, necessitating the development of a systematic sampling strategy

that objectively represents environmental variability at the desired spatial scale. Statistical

design of the network, particularly the location of sampling sites, is critical for maximizing

the representativeness of the sampled data, given a fixed number of sampling locations. A

methodology that provides a quantitative framework for stratifying sampling domains, in-

forming site selection, and determining the representativeness of measurements is required

to ensure that observations are well distributed across geographic and environmental data

space. This information is needed for up-scaling and extrapolating point measurements to

a larger landscape with similar environmental characteristics. This study addresses these

needs by developing a quantitative methodology, based on the concept of ecoregions, for

objectively delineating sampling domains, identifying optimal sampling locations for these

domains, and quantifying representativeness of sites and measurements. This methodology

is applied at the landscape scale to inform the design of a sampling network for the U.S.

Department of Energy’s Next Generation Ecosystem Experiment (NGEE) Arctic project in
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the State of Alaska. The National Science Foundation’s (NSF’s) National Ecological Obser-

vatory Network (NEON) adopted an objective, data-based methodology to define 20 optimal

sampling domains across the conterminous United States (Keller et al., 2008; Schimel et al.,

2007). An extension of that same methodology was applied both across space and through

time to support identification of measurement sites and provide a framework for scaling

measurements and model parameters for the NGEE Arctic project.

3.2 Quantitative Delineation of Ecoregions

3.2.1 Ecoregions

Ecoregions have been widely used to stratify geographic domains into nearly homogeneous

land areas with respect to their geophysical, biological, and climatic characteristics. Since

ecoregions are selected to correspond well with biome distributions and species ranges, they

are frequently used as a framework for studying ecosystem structure and function. Qualita-

tive and generalized ecoregion maps of the United States and the world have traditionally

been developed by experts for studying ecosystem behavior or to define units for land man-

agement (Omernik , 1987; Olson and Dinerstein, 2002; Bailey and Hogg , 1986; Bailey , 2009).

Hargrove and Hoffman (1999) used cluster analysis for quantitative delineation of ecoregions

using a set of nine environmental characteristics for the conterminous United States at a

resolution of 1 km2, and subsequently demonstrated its application for sampling network de-

sign, environmental niche modeling, and comparison of global model predictions (Hargrove

and Hoffman, 2004; Hoffman et al., 2005). Krohn et al. (1999) applied clustering to create

hierarchical biophysical regions for Maine at a 21 km2 resolution. Jensen et al. (2001) used

agglomerative clustering for hierarchical classification of sub-watersheds in the Columbia

River Basin using 19 indirect biophysical variables. In this study, we used k-means cluster
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analysis to delineate ecoregions having nearly equal within-region heterogeneity for two time

periods: the present (2000–2009) and the future (2090–2099). While species ranges are ex-

pected to correspond well with ecoregions under equilibrium conditions, species responses to

transient climate conditions underlying dynamic ecoregions are difficult to predict. Assum-

ing the environmental changes are slow enough, that habitats are sufficiently connected to

enable migration, and that significant adapations do not occur, future instantiations of ecore-

gions in new geographic areas are likely to support the same plant and animal communities

as they do in the present.

3.2.2 Multivariate Spatiotemporal Clustering (MSTC)

The k-means algorithm (Hartigan, 1975) clusters a dataset of n observation vectors ( ~X1, ~X2,

. . . , ~Xn) into a user-selected number of groupings or clusters (k), equalizing the full multi-

dimensional variance across clusters. The algorithm begins by calculating the Euclidean

distance of each observation to the initial centroid vectors (~C1, ~C2, . . . , ~Cn) and classifies or

assigns each observation to its nearest centroid. Each centroid vector is recalculated as the

vector mean of all observations assigned to it. This classification and re-calculation process

is iteratively repeated until fewer than some fixed proportion of observations change their

cluster assignment between iterations. In the algorithm used here, convergence is assumed

once fewer than 0.05% of the observations change cluster assignments. The results of the

k-means algorithm are sensitive to the choice of initial centroids. Various heuristics may be

employed for their selection, such as choosing initial centroids to have an even distribution

within data space or to be spread along the edges of the distribution of observations. In this

study, a multi-stage refinement method based on the work of Bradley and Fayyad (1998) is

employed.

For geographic or spatial stratification applications, observation vectors consist of map cells,
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the dimensions of which are the biological or geophysical characteristics or variables under

consideration. In this case, the k-means algorithm produces geographic regions with nearly

equal heterogeneity with respect to the variance of these environmental characteristics. For

spatiotemporal partitioning, observation vectors consist of map cells at different time periods,

and the resulting regions maintain their equalized heterogeneity across variables for all time

periods considered together. Hoffman and Hargrove (1999) developed a parallel version

of the k-means algorithm for use on clusters of inexpensive personal computers (Hargrove

et al., 2001), and this code was used in a meta-computing environment to cluster data using

multiple supercomputers across the Internet (Mahinthakumar et al., 1999). Hoffman et al.

(2008) later implemented improvements to accelerate convergence, handle empty cluster

cases, and obtain initial centroids through a scalable implementation of the Bradley and

Fayyad (1998) method. Kumar et al. (2011) extended this work to develop a fully distributed,

highly scalable k-means parallel clustering tool for analysis of very large data sets, which

was employed in the study presented here.

3.2.3 Input Data Layers

Selection of input data layers reflects a compromise between desirability and availability.

Characteristics influencing the distribution, primary production, and reproduction of species

include climate factors, topography, permafrost characteristics, edaphic or soil properties,

disturbances, and community composition. Detailed and gridded data on soil factors, dis-

turbances, and community composition is sparse or completely unavailable for the State of

Alaska. However, climate is a primary driver controlling species ranges and affecting these

secondary environmental factors. Therefore, we have chosen to demonstrate the utility of

this analysis method using modeled climatic variables and permafrost properties and ob-

served topography. As observations of soil properties and disturbances become available,

they can easily be incorporated into future analyses as additional input data layers. This
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analysis used a set of 37 environmental characteristics shown in Table 3.1, from down-scaled

general circulation model (GCM) results and observational data for the State of Alaska at

a nominal resolution of 2 km × 2 km. These data were used to define a collection of ecore-

gions at multiple levels of division across two time periods for Alaska. Model results were

averaged for the present (2000–2009) and the future (2090–2099). This analysis combined

temperature, precipitation, and related bio-climatic projections from a five-model composite

data set of down-scaled GCM results for the A1B emissions scenario (Nakićenović et al.,

2000) described by Walsh et al. (2008); corresponding snow and permafrost projections from

the Geophysical Institute Permafrost Lab (GIPL) 1.3 permafrost dynamics model forced

with the composite GCM results (Romanovsky and Marchenko, 2009); limnicity data based

on the National Hydrography Dataset (NHD), pre-processed by Arp and Jones (2009); and

elevation from the Shuttle Radar Topography Mission 30 (SRTM30) data set. SRTM30 is a

combination of data from the SRTM and U.S. Geological Survey’s GTOPO30 data set. Since

the SRTM mission was only able to map up to approximately 60.25◦N latitude, values above

this point in the SRTM30 data set are completely from GTOPO30. The same limnicity and

elevation data were used for both time periods. Because the units of measurement differ

between variables, all data were standardized such that each variable had a mean of zero

and a standard deviation of one prior to clustering to equalize the contribution from each

predictor.

3.2.4 Alaska Ecoregions

Nowacki and Brock (1995) and Gallant et al. (1995) produced ecoregion maps for the State of

Alaska using two different expert-based methodologies, strongly focused on land form. Later,

Nowacki et al. (2001) produced a “unified” ecoregion map—combining the two expert-based

techniques—by considering limited data and in consultation with experienced ecologists, bi-

ologists, geologists, and regional experts. While useful for some purposes, such qualitative
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Table 3.1: The 37 characteristics or variables, averaged for 2000–2009 and 2090–2099, used
in Multivariate Spatiotemporal Clustering (MSTC) for the State of Alaska.

Number
Description or Name Units Source

Monthly mean air temperature 12 ◦C GCM
Monthly mean precipitation 12 mm GCM

Day of freeze
mean day of year GCM

standard deviation days

Day of thaw
mean day of year GCM

standard deviation days

Length of growing season
mean days GCM

standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 ◦C GIPL
Mean annual ground tempera-
ture at bottom of active layer

1 ◦C GIPL

Mean annual ground surface
temperature

1 ◦C GIPL

Thermal offset 1 ◦C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM30

maps are based on the subjective expertise of the person or group developing them and suffer

from various limitations (Hudson, 1992; Zhou, 1996). The question of whether ecoregions

can or should be developed using quantitative statistical methods or should rely upon hu-

man expertise has been a matter of debate among geographers (McMahon et al., 2001). In

this study, Multivariate Spatiotemporal Clustering (MSTC) was applied to derive ecoregions

based on climate and topographic factors for the present and the future at multiple levels of

division. The climate and topographic factors discussed in §3.2.3 describe the environmen-

tal conditions of each map cell and are the most important drivers controlling vegetation

and primary production. Thus, groupings or clusters of similarly characterized map cells

delineated based on these variables define unique ecoregions. As demonstrated by Hargrove

and Hoffman (2004), both present and projected future climate factors were included in the

same analysis so that groups of similar cells were objectively determined across space and

through time. MSTC provides a basis for comparison of environmental conditions in the

future with those in the present. Ecoregions constructed through this analysis may grow or
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shrink in spatial area and may shift across the landscape. At high levels of division or under

extreme environmental change conditions, some present-day ecoregions may become extinct

in the future (i.e., shrink to zero spatial area), while others may exist only in the future

(i.e., have no analog in the present). This quantitative delineation of ecoregions across space

and through time facilitates assessment of the magnitude of change between present and

future environmental conditions and enables the evaluation of the ecological implications of

climate change scenarios. From a conservation perspective, this methodology maps changing

habitats and species at risk from climate change (Saxon et al., 2005). From a field sampling

perspective, this methodology identifies regions fostering potentially vulnerable ecosystems

or supporting large and vulnerable carbon stores that may be sensitive to climate change

(McGuire et al., 2009; Chapin et al., 2010). Such ecoregions warrant intense observation and

benefit from careful, quantifiable, and defensible sampling network design strategies.

Expert-derived ecoregion maps are static and have boundaries based on subjective consider-

ation of geographic properties and expert judgment. In contrast, statistically derived ecore-

gions can vary with time and are delineated in the data space or state space representing all

the characteristics under consideration. Moreover, the state space resolution can be varied by

selecting different values of k, the level of division in the clustering algorithm. Figures 3.1(a)

and 3.1(b) contain maps of the 10 quantitatively defined, most-different Alaskan ecoregions

for the present and future, respectively. The cluster centroid of each ecoregion represents the

mean value of all the characteristics or state variables for that ecoregion. Tables 3.2 and 3.3

show the 10 centroid values of all 37 state variables, as well as the land area and percent

land area for both the present and future time periods. Increasing the selected number of

clusters in the k-means algorithm allows the definition of a larger number of more specifically

defined, less generalized ecoregions. For example, Figures 3.1(c) and 3.1(d) contain maps of

the 20 quantitatively defined, most-different Alaskan ecoregions for the present and future,

respectively. By continuing to increase the level of division, the state space resolution can

be further increased. Maps of Alaska were produced for k = 5, 10, 20, 50, 100, 200, 500, and
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1000 ecoregions (Hoffman et al., 2013). To demonstrate the additional state space resolution

provided by higher levels of division, maps of 50 and 100 ecoregions for the present and future

are shown in Figure 3.2. Since cluster centroids are calculated in the 37-dimensional state

space, they may not actually exist in geographic space. However, the map cell closest to the

calculated centroid in state space is easily identified. This cell is called the realized centroid

for the ecoregion, and it best represents the combination of environmental conditions for the

entire ecoregion. The location of these representative realized centroids is indicated by the

blue dot in each ecoregion in Figures 3.1 and 3.2.

Ecoregions defined quantitatively may or may not correspond well to expert-derived ecore-

gions (Hargrove et al., 2006). Table 3.4 shows the spatial overlap or correspondence between

the 10 quantitatively defined MSTC Ecoregions and the eight dominantly associated Level

2 ecological groups consisting of the 32 ecoregions defined by Nowacki et al. (2001). As

expected, strongly distinctive or orographically constrained ecoregions, like Arctic Tundra,

have a high degree of correspondence. As shown in Table 3.4, nearly 96% of MSTC Ecore-

gion 3 overlaps with the Arctic Tundra Level 2 ecological group defined by Nowacki et al.

(2001), and 93% of their Arctic Tundra group overlaps with MSTC Ecoregion 3. Meanwhile,

MSTC Ecoregion 4 intersects multiple Level 2 ecological groups but most dominantly corre-

sponds to the Bering Taiga group with less than 48% overlap. Because 10 MSTC Ecoregions

are intersected with eight Level 2 ecological groups, MSTC Ecoregions appear to subdivide

two Level 2 ecological groups and the percent area overlap of MSTC Ecoregions on Level 2

ecological groups is usually larger than the percent area overlap of Level 2 ecological groups

on MSTC Ecoregions. A quantitative goodness-of-fit method that explicitly accounts for

the degree of spatial correspondence between categorical maps with different numbers of

categories (Hargrove et al., 2006) can be used to further explore this sort of correspondence

analysis.

Alaska exhibits wide ranging heterogeneity in environmental conditions, which can be re-
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Table 3.4: Spatial correspondence between the 10 quantitatively defined MSTC Ecoregions
and the eight dominantly associated Level 2 ecological groups consisting of the 32 ecoregions
defined by Nowacki et al. (2001).

% area overlap % area overlap
MSTC Nowacki Level 2 of MSTC of Nowacki

Ecoregion Ecological Group on Nowacki on MSTC

1 Coastal Rainforests 85.62 30.83
2 Bering Tundra 58.69 78.77
3 Arctic Tundra 95.75 93.44
4 Bering Taiga 47.66 70.63
5 Intermontane Boreal 78.70 81.58
6 Aleutian Mountains 41.31 22.23
7 Aleutian Mountains 64.18 2.94
8 Coastal Rainforests 96.56 27.46
9 Alaska Range Transition 59.99 35.23

10 Alaska Range Transition 64.38 9.19

solved by selecting larger numbers of clusters in the MSTC algorithm. While MSTC is a

non-hierarchical procedure, inherently hierarchical relationships within the combinations of

state variables automatically emerge when increasing the level of division. For example, at

a level of division of k = 10, the North Slope of Alaska is represented by a single ecoregion

(#3) corresponding to the Arctic Tundra Level 2 ecological group (Figure 3.3(a)). The North

Slope is divided into two ecoregions (#5 and #13) corresponding to the Brooks Range and

Beaufort Coastal Plains ecoregions defined by Nowacki et al. (2001) at a level of division of

k = 20 (Figure 3.3(b)). By further increasing the level of division to k = 50, the North Slope

is divided into five different ecoregions (#32, 33, 34, 35, and 40) corresponding to the Inter-

montane Boreal ecological group, high- and low-elevation Brooks Range, Brooks Foothills,

and Beaufort Coastal Plains ecoregions defined by Nowacki et al. (2001) (Figure 3.3(c)).

Even more specialized ecoregions can be resolved by further increasing the desired level of

division in the MSTC algorithm (Figure 3.2).
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(a) At k = 10, the North Slope is
occupied by MSTC Ecoregion #3,
which corresponds to the Arctic
Tundra Level 2 ecological group.

(b) At k = 20, the North Slope
is occupied by MSTC Ecoregion
#5, corresponding to the Brooks
Range ecoregion; and MSTC
Ecoregion #13, corresponding to
the Beaufort Coastal Plains ecore-
gion.

(c) At k = 50, the North Slope
is occupied by MSTC Ecoregion
#32, corresponding to the Inter-
montane Boreal ecological group;
MSTC Ecoregions #33 and #34,
corresponding to low- and high-
elevation subsets of the Brooks
Range ecoregion; MSTC Ecoregion
#35, which corresponds to the
Brooks Foothills ecoregion; and
MSTC Ecoregion #40, which cor-
responds to the Beaufort Coastal
Plains ecoregion.

Figure 3.3: A hierarchy of increasingly specific ecoregions for the North Slope of Alaska
emerge by increasing the level of division in the MSTC algorithm. MSTC cluster numbers
are shown and the spatially corresponding Level 2 ecological group or ecoregion defined by
Nowacki et al. (2001) is identified.
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Figure 3.4: Percent area distribution of (a) 10 and (b) 20 ecoregions during the present
(2000–2009) and future (2090–2099) periods. Mean values for the state variables for the 10
ecoregions are contained in Tables 3.2 and 3.3.

3.3 Mapping Sensitive Environments

Evidence of environmental change in the Arctic and resulting impacts on aquatic productivity

and biodiversity, terrestrial ecosystems, and local economies were highlighted by Anisimov

et al. (2007). Increased shrub abundance has been observed in Alaska (Sturm et al., 2001,

2005; Tape et al., 2006). During the last 50 years, the tree line along the Arctic to sub-Arctic

boundary has moved 10 km northward and 2% of Alaskan tundra on the Seward Peninsula

has been replaced by forests. Ecoregions derived for the present and future (Figure 3.1) show

a similar northward shift, indicating a dramatic change in environmental conditions due to a

warming climate by the end of this century, as projected by models using the A1B emissions

scenario (Nakićenović et al., 2000). By tracking changes in the spatial area and migration of

ecoregions statistically derived from a hypervolume of environmental gradients (Hutchinson,

1957), this objective approach for mapping landscapes undergoing environmental change can

be applied to predict shifts in species ranges and constrain estimates of changes in the carbon

balance of sensitive environments.
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Figure 3.4(a) shows the percent area distribution of each ecoregion, at the k = 10 level

of division, for the present and future time periods. Correspondence between these MSTC

Ecoregions and Nowacki et al. (2001) Level 2 ecological groups is shown in Table 3.4. A sig-

nificant decrease in the area of Ecoregion #3, representing most of the North Slope of Alaska

as shown in Figure 3.3(a), is observed. This contemporary Arctic Tundra environment is

predicted to be reduced to about 0.78% of its present area by the end of the century. About

76% of the area will be replaced by conditions typical of the warmer Bering Tundra environ-

ment (Ecoregion #2). Meanwhile, the Bering Tundra (Ecoregion #2) environment moves

northward by the end of the century and more than doubles in areal extent. About 70% of

its current area, especially over the Seward Peninsula, will change to conditions similar to

contemporary Bering Taiga (Ecoregion #4). In the future, the Bering Taiga (Ecoregion #4)

environment decreases in extent by 32% and migrates northward. Under increased temper-

atures and reduced permafrost conditions, the present-day Aleutian Mountains (Ecoregion

#7) environmental conditions are predicted to replace 65% of Bering Taiga (Ecoregion #4),

and Alaska Range Transition (Ecoregion #10) environmental conditions are expected to re-

place 28% of Bering Taiga (Ecoregion #4). Aleutian Mountain (Ecoregion #7) and Alaska

Range Transition (Ecoregion #10) environments, which exist in the southern coastal regions

of Alaska, are expected to grow in extent northward and occupy a larger portion of Alaska.

Alaska Range Transition (Ecoregion #10) environmental conditions are also expected to re-

place about 75% of the Intermontane Boreal (Ecoregion #5) environment in the future, which

will be reduced to 18% of its current area by the end of the century. While similar trends

of large scale northward migrations and changes in the areal extents of the environments

discussed above are observed at 20 and higher levels of divisions, these ecoregion refinements

highlight the changes that are occurring in smaller, more uniquely defined environments.

Figure 3.4(b) shows the percent area distribution of k = 20 ecoregions for the present and

future time periods. In addition to areal extent, changes and geographic redistribution of

ecoregions between the present and future, at this level of division one present-day ecoregion
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ceases to exist in the future (i.e., becomes extinct) while another ecoregion exists only in

the future (i.e., is born) and has no analog in the present. Ecoregion #13 (Figure 3.5(a)),

which represents the most northern portion of Arctic Tundra on the North Slope, becomes

extinct in the future due to projected climate change. Ecoregions #2 and #17, which

presently occupy the Seward Peninsula and nearby coasts (Figure 3.5(b)), replace Ecoregion

#13 in the future (Figure 3.5(c)). Approximately 46% of the area of Ecoregion #13 is

replaced by Ecoregion #2 and 53% is replaced by Ecoregion #17. Under this climate change

scenario, the ecoregions replacing the extinct region in the future have characteristically

higher precipitation, higher temperatures, earlier thaw dates, later freeze dates, a longer

growing season, increased active layer depth, and higher ground surface temperatures. At

the end of the century, much of the Seward Peninsula and nearby coasts are occupied by

an entirely new combination of environmental conditions, defined by Ecoregion #1, which

has no analog in the present (Figure 3.5(d)). This new ecoregion, which appears only in the

future time period, represents an environment with higher precipitation and temperature, an

increased growing season length, increased active layer depth, and higher soil temperatures.

As the level of division is increased in the MSTC algorithm, more specialized ecoregions are

delineated. As a result, the number of present-day ecoregions that become extinct and the

number of non-analog future ecoregions will both increase. Identification of regions repre-

senting new combinations of environment conditions that did not previously occur together

is important for forecasting species range distributions, conservation planning, and climate

change impacts on biodiversity (Fitzpatrick and Hargrove, 2009).

3.4 Site Selection

Selection of sampling locations for long term monitoring of ecosystem properties and pro-

cesses should be guided by an objective, quantitative, systematic, and defensible methodol-
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1000 km

(a) Ecoregion #13 (present), the coldest Arc-
tic Tundra on the North Slope, ceases to exist
in the future.

1000 km

(b) Ecoregions #2 and #17 (present) are
limited to the Seward Peninsula and nearby
coasts.

1000 km

(c) Ecoregions #2 and #17 (future) have
moved northward, displacing Ecoregion #13
(present) on the North Slope.

1000 km

(d) A new Ecoregion #1 (future) occupies
much of the Seward Peninsula and nearby
coasts and has no analog in present.

Figure 3.5: At k = 20, MSTC Ecoregions migrate across the landscape, one becomes extinct,
and one comes into existence between the present and future.
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ogy. Instead, sampling locations in large-scale networks have often been established in op-

portunistic, political, or logistically-driven ways, resulting in unquantified representation of

heterogeneity, biased sampling, uncharacterized uncertainty, and undirected network growth.

Finite resources and logistical constraints limit the spatiotemporal frequency and extent of

environmental observations, necessitating the development of a systematic sampling strategy

to objectively represent environmental variability at the desired spatial scale. An appropri-

ately designed observation strategy should be employed to quantitatively delineate sampling

domains, sites, and frequencies. The National Science Foundation’s (NSF’s) National Ecolog-

ical Observatory Network (NEON) adopted the objective, data-based methodology described

above to define 20 optimal sampling domains across the conterminous United States (Keller

et al., 2008; Schimel et al., 2007). Accurate characterization of the landscape and transla-

tion of data collected in the field and laboratory into useful datasets, process algorithms,

and model parameters requires classification of the landscape into discrete units based on

ecological, hydrological, and geological properties. In much the same way that ecologists de-

velop ecoregions, geologists often classify landscape areas into geomorphological units based

on their geophysical and hydrological features. For complex and evolving landscapes featur-

ing interacting vegetation and geomorphological dynamics responding to changes in climate,

such as in the Arctic, these stratification concepts may be unified to produce biogeomorphic

units at relevant spatial scales for landscape characterization, identification of ecological and

geomorphological processes, assessing the representativeness of measurements, and providing

a framework for scaling measurements and model parameters to larger domains.

An important aspect of site selection and the up- and down-scaling approach to integration

of models, observations, and process studies is the estimation of representativeness. The

MSTC methodology described above for landscape characterization offers useful metrics for

indicating the representativeness of sites, measurements, and model parameters, assuming

the environmental characteristics included in the analysis covary with the measured variables.

Hargrove et al. (2003) described this technique for understanding the representativeness of

75



a sampling network based on a suite of environmental gradients considered to be useful

proxies for the characteristics being measured. Maps identifying poorly represented regions

can be produced, suggesting where new measurements should be taken to maximize sampling

network coverage. As discussed in §3.2.4, since the cluster centroid represents the mean value

of all the state variables in an ecoregion, the realized centroid for an ecoregion is the location

that best represents the combination of environmental conditions of the entire ecoregion.

Therefore, statistically defined realized centroids, indicated by blue dots in each ecoregion

in Figures 3.1 and 3.2, are the optimal sampling locations for each ecoregion. Logistical

constraints—including accessibility, availability of electric power and telecommunications

infrastructure, and geologic stability—may prevent establishment of sampling sites at such

optimal locations, particularly in an Arctic environment. Nevertheless, the MSTC Ecoregion

framework provides a means for quantifying the representativeness of measurements taken

at sub-optimal locations, either within an ecoregion or across any larger domain for which

the desired state variables are available.

3.5 Quantifying Representativeness

While most in situ field measurements are made at relatively small, individual geographic

points, ecosystem processes operate at many scales. To utilize limited point measurements

at larger spatial and temporal scales for input to or evaluation of process modeling or for es-

timating landscape-scale characteristics, the representativeness of those measurements must

be quantified in the context of a heterogeneous and evolving landscape. A useful representa-

tiveness metric is one that can inform the selection of sampling locations, up-scaling of point

measurements, down-scaling of remote sensing data, and extrapolation of measurements to

unsampled domains. This requires that the underlying variables used to define ecoregions co-

vary with the point measurements (i.e., the surrogate variables have and maintain predictive
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power). The representativeness metric described by Hargrove et al. (2003) provides a unit-

less, relative measure of the dissimilarity between the ecoregion of interest, which may contain

a sampling site, and any other ecoregion. It is calculated as the Euclidean distance between

two ecoregion centroids within the standardized n-dimensional state space. Ecoregions with

similar combinations of environmental conditions will have centroids located near to each

other in state space. Therefore, the Euclidean distance between those centroids will be small,

representing a low dissimilarity or high representativeness measure. Meanwhile, ecoregions

with very different combinations of environmental conditions will have centroids located far

from each other in state space, resulting in a large Euclidean distance between them. Such

ecoregions will have a high dissimilarity or low representativeness measure. To best capture

the natural heterogeneity at the scale of interest, this ecoregion-based representativeness

should be calculated using MSTC Ecoregions with a large number of divisions (i.e, a large

value of k).

While Hargrove et al. (2003) calculated representativeness in the context of ecoregions, this

same approach can be applied to every map cell projected individually onto the n-dimensional

state space used to perform the cluster analysis that produced MSTC Ecoregions. This

point-based representativeness metric captures the full range of heterogeneity in the combi-

nations of environmental conditions, providing a continuously varying measure of dissimilar-

ity for every map cell with respect to a map cell of interest, which may contain a sampling

location. When a single ecoregion centroid or map cell of interest is considered, a map of site

representativeness can be produced. However, multiple ecoregions or map cells of interest

may be considered simultaneously, for instance, to provide a quantitative measure of the

representativeness of an array or network of sampling sites. The result is a map of network

representativeness for which the dissimilarity measure for every ecoregion centroid or map

cell is the Euclidean distance between that point and the nearest ecoregion centroid or map

cell of interest (i.e., the minimum value from a stack of site representativeness maps, one for

each ecoregion centroid or map cell containing a measurement site). This representativeness
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metric, whether ecoregion- or point-based, can be calculated not only between different geo-

graphic points in space, but also between different (or the same) geographic points through

time. For example, the Euclidean distance between the present combination of environmen-

tal conditions and those of the future for any single map cell represents a measure of the

magnitude of environmental change over time. Therefore, with this metric it is possible to

calculate not only the present-day representativeness of measurements from a site, but also

the future representativeness of those present-day measurements, based on future projections

of the state variables used in the analysis.

3.5.1 Site Representativeness

Due to significant logistical constraints when working in the Arctic, a set of eight potential

sites were identified as candidates for measurements, long term monitoring and potential

manipulative experiments for the U.S. Department of Energy’s Next Generation Ecosystem

Experiment (NGEE) Arctic project in the State of Alaska: Barrow, Council, Atqasuk, Iv-

otuk, Kougarok, Prudhoe Bay, Toolik Lake, and Fairbanks. Because of available support

infrastructure, Barrow was selected as an initial location for collecting field measurements.

To adequately capture the heterogeneity of environmental gradients, an ecoregion-based

representativeness analysis employed ecoregion maps at the k = 1000 level of division. Fig-

ure 3.6(a) shows the present-day representativeness of the monitoring site at Barrow for the

present period. In this map, white to light gray land areas are well-represented by the Barrow

location, while dark gray to black land areas are poorly represented by Barrow. The Arctic

Tundra of the North Slope is well represented by the Barrow site, but the representativeness

drops rapidly at the Brooks Range, which experiences different climate conditions driven

by high topography. If a field researcher were attempting to select one additional sampling

location to provide optimal coverage of the environments within the state of Alaska, that

next site should be chosen within the darkest land areas shown in the map. Once a new
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candidate site has been selected, a new map of representativeness can be generated with

simultaneous consideration of both sites. Using this relative representativeness metric, opti-

mal sampling locations can be chosen to maximize the coverage of environmental conditions

for any domain at any scale for which sufficient state variable data are available.

Since climate model projections for the future were included in the MSTC procedure, the fu-

ture representativeness of the present-day Barrow-containing ecoregion can also be mapped

(Figure 3.6(b)). Since the climate is projected to change significantly, the future repre-

sentativeness of the present-day ecoregion is relatively lower, which is indicated by darker

colors in Figure 3.6(b) as compared with Figure 3.6(a). Such changes in representative-

ness are especially large in the Northern Arctic Coastal Plains since this Arctic Tundra is

projected to warm significantly and has been identified as a sensitive environment (§3.3).

Similarly, Figures 3.7(a) and 3.7(b) contain maps of the present and future representative-

ness of present-day Barrow, respectively, calculated using the point-based representativeness

method. As expected, the large-scale pattern of maps in Figure 3.7 is the same as that of

the maps in Figure 3.6, but the maps in Figure 3.7 show more detail and are less generalized

than those in Figure 3.6. Point-based site representativeness maps for each of the eight

candidate sites for the present time period are shown in Figure 3.8.

Since the representativeness metric—or measure of dissimilarity—can be computed between

any two map locations, a table quantitatively characterizing dissimilarity of the eight in-

dividual candidate sampling locations may be useful for site selection purposes. Table 3.5

shows point-to-point dissimilarity values for the eight candidate sampling locations for the

present time period. Of those locations, Barrow and Fairbanks are the most dissimilar, hav-

ing a dissimilarity value of 12.16. Atqasuk and Prudhoe Bay are the most similar of the

sites. Both Atqasuk and Prudhoe Bay are near-coastal sites at the northern extent of the

North Slope; therefore, the environmental conditions are expected to be similar. In addition,

according to Table 3.5, the Prudhoe Bay site is most similar to Barrow, while the Council
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1000 km

(a) Barrow

1000 km

(b) Council

1000 km

(c) Fairbanks

1000 km

(d) Atqasuk

1000 km

(e) Ivotuk

1000 km

(f) Kougarok

1000 km

(g) Prudhoe Bay

1000 km

(h) Toolik Lake

Figure 3.8: Point-based representativeness for eight potential present-day NGEE Arctic sites
for the present time period. White to light gray land areas are well-represented by the site,
while dark gray to black land areas are poorly represented by the site.
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site is the most dissimilar to Barrow, ignoring Fairbanks. This example analysis suggests

that if Barrow were the first sampling site selected, Council may be a strong candidate for

a second site in the northern half of the State of Alaska because of its dissimilarity to Bar-

row. Similarly, Table 3.6 shows point-to-point dissimilarity values for the eight candidate

sampling locations for the future time period. While the dissimilarity values for the future

are similar to those of the present, it is apparent that some sites become more similar while

others become less similar. For example, Barrow and Council become less dissimilar in the

future (i.e., their dissimilarity value of 9.13 in the present changes to 8.87 in the future),

indicating that the environmental conditions in Barrow and Council are more different in

the present than they are projected to be in the future.

Table 3.7 shows a full matrix of point-to-point dissimilarity values for the eight candidate

sites between the present and the future. This table quantifies the dissimilarity of present-

day sites to those same sites in the future. For this list of widely dispersed locations, the

environmental conditions for any single site in the present will be most like the environmental

conditions for that same site in the future. Therefore, the smallest dissimilarity values are

along the diagonal in Table 3.7. The largest value on the diagonal is for the Barrow site,

indicating that environmental conditions at Barrow are projected to change more than at any

other candidate site. In addition, this table shows that environmental conditions at Barrow

in the future are more similar to those at Council in the present (8.38) than are the conditions

at Barrow in the present to Council in the future (9.67). This result is consistent with the

MSTC Ecoregion migration shown in Figure 3.5. This point-to-point analysis through time

is a novel method for quantifying relationships between sampling locations and how those

relationships evolve over time due to environmental change.
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Table 3.5: Site state space distances for the present (2000–2009).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 4.53 5.90 5.87 7.98 3.57 12.16
Council 8.69 6.37 7.00 2.28 8.15 5.05

Atqasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90

Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57

Prudhoe Bay 10.38

Table 3.6: Site state space distances for the future (2090–2099).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 8.87 4.89 6.88 6.94 8.04 4.18 11.95
Council 8.82 6.93 7.74 2.43 8.24 5.66

Atqasuk 5.86 5.84 8.15 2.30 10.16
Ivotuk 2.01 7.27 4.75 7.51

Toolik Lake 7.81 5.00 8.33
Kougarok 7.89 6.42

Prudhoe Bay 9.81

Table 3.7: Site state space distances between the present (2000–2009) and the future (2090–
2099).

Future (2090–2099)
Toolik Prudhoe

Sites Barrow Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

P
re
se
n
t
(2
0
0
0
–
2
0
0
9
) Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67

Council 8.38 1.65 8.10 5.91 6.87 3.10 7.45 5.38
Atqasuk 6.01 9.33 2.42 5.46 5.26 8.97 2.63 10.13

Ivotuk 7.06 7.17 5.83 1.53 2.05 7.25 4.87 7.40
Toolik Lake 7.19 7.67 6.07 2.48 1.25 7.70 5.23 8.16

Kougarok 7.29 3.05 6.92 5.57 6.31 2.51 6.54 5.75
Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81

Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96
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3.5.2 Network Representativeness

A monitoring network often consists of a geographically distributed constellation of mea-

surement sites or may be locations where samples are collected for further analysis in the

laboratory. Quantifying the representativeness of the network as a whole is important for

optimal network design to avoid unnecessary duplication and to maximize the coverage of

the monitoring network. By combining multiple maps of site representativeness for every

sampling location, and calculating the minimum value for every map cell, maps of network

representativeness are produced. Figures 3.9(a) and 3.9(b) contain maps of ecoregion-based

network representativeness for all eight candidate sampling sites for the present and future

time periods, respectively. Similarly, Figures 3.10(a) and 3.10(b) contain maps of point-

based network representativeness for the same eight candidate sampling sites for the present

and future time periods, respectively. White to light gray land areas are well-represented

by the network of sites, while dark gray to black land areas are poorly represented by the

network of sites. If the objective were to maximize the coverage of all environments in the

State of Alaska, the next sampling location should be chosen within the darkest land areas

shown in the map. Most of Alaska is well represented by this network of eight sampling

locations.

3.6 Conclusions

Systematic sampling strategies are essential for understanding ecosystem responses to climate

change and informing model development. In the harsh Arctic environment—where climate

change appears to be most rapidly affecting sensitive ecosystems and vulnerable, carbon-rich

permafrost—filling critical gaps in observations is expensive and technically challenging. To

fully explore the regional and global implications of climate change in the Arctic, global

Earth System Models must capture the important processes and feedbacks. Such models
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must be developed based on a rich body of observational data as representative as possible of

multiple spatial and temporal scales. Meanwhile, finite resources and logistical constraints

place restrictions on the number of sampling sites, spatial extent, frequency, and types

of measurements that can be collected. This study develops a quantitative, data-based

methodology for stratifying sampling domains, informing site selection, and determining the

representativeness of measurement sites and sampling networks.

Multivariate spatiotemporal clustering (MSTC), based on k-means cluster analysis, was ap-

plied to down-scaled general circulation model (GCM) results and observational data for the

State of Alaska at a nominal resolution of 4 km2 to define a set of ecoregions at multiple levels

of division across two decadal time periods. Maps of ecoregions for the present (2000–2009)

and future (2090–2099) were produced, showing how combinations of 37 environmental con-

ditions are distributed across Alaska and how these combinations shift as a result projected

climate change in the 21st century. Using this statistical approach, optimal sampling loca-

tions, called realized centroids, were identified for each ecoregion at every level of division.

In addition, the resulting geographic shifts and changes in areal distribution of ecoregions

suggested that some environments may disappear, many will be redistributed, and new ones

will appear in the coming century. This analysis provides insights into the identification of

the most sensitive and potentially vulnerable Arctic ecosystems. The Euclidean distance

within the 37-dimensional state space used for MSTC provides a metric for representative-

ness. Gray-scale maps of representativeness, showing the similarity of every map cell to a list

of eight candidate samples locations near town sites in Alaska, were produced for each site.

Tables quantitatively characterizing the similarity of candidate sampling locations to each

other across space and through time were generated. These tables are useful for understand-

ing the strength of the environmental gradients between sites and how those gradients may

change based on model projections of the future. Taken together, these analysis products

provide model-inspired insights into optimal sampling strategies across space and through

time, and these same techniques can be applied at different spatial and temporal scales to
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meet the needs of individual measurement or monitoring campaigns.

The representativeness of a sampling network is best maximized during the design of the

network. Even if additional “optimized” sites are added to an existing network, it will

require many more additions to approach the theoretical maximum representativeness for

a given number of initial sites. It is difficult, with only the sequential addition of new

optimized sites, to achieve the same representativeness once some sampling sites have been

established. Representativeness resulting from such network “repairs” rarely ever equal the

representativeness of a network initially designed de novo with that same number of sampling

sites. Even if the network is to be constructed in stages, it is best to design site placement

using the final, ultimate complement of sites and to operate sub-optimally until the full

network can be completed. Otherwise, many more sites will have to be added to the existing

network to achieve the same representativeness than could otherwise have been designed in

initially.

Cluster analysis and n-dimensional data space regressions offer quantitative methods for

up-scaling and extrapolating measurements to land areas within and beyond the sampling

domain and provide a down-scaling approach to the integration of models, observations, and

process studies. The success of these methods depends upon selecting appropriate surrogate

environmental characteristics that covary with the observations and parameters that will be

up- or down-scaled. The accuracy of the up-scaled data will be higher for areas represented

well by the monitoring network and lower for areas that are poorly represented. At a

large scale, these techniques are useful for delineating distinct, broad regions and optimal

measurement sites. However, this methodology can also be applied at finer spatiotemporal

scales, with inclusion of other geophysical characteristics and remote sensing data, to inform

measurement frequency and site selection within these broader ecoregions.
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Chapter 4

Climate and Atmospheric

Composition Drivers of Terrestrial

and Marine Carbon Cycle Changes

from 1850 to 2300

4.1 Introduction

Quantifying the strength of climate–carbon cycle feedbacks is important for understanding

the long-term responses and sustainability of natural and managed ecosystems to changes

in climate and for informing carbon management and energy policies. Feedback sensitivities

relating the global carbon cycle and Earth’s climate system are traditionally decomposed

into the response of land and ocean carbon uptake to changes in atmospheric CO2 (the

concentration–carbon feedback) and changes in climate (the climate–carbon feedback), using

different types of simulations and experimental designs (Friedlingstein et al., 2006; Gregory
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et al., 2009). Concentration–carbon feedback sensitivities, denoted by βO and βL with units

of Pg C ppm−1, quantify the changes in carbon accumulation in the ocean and on land,

respectively, that result from ecosystem responses to a change in the atmospheric CO2 mole

fraction. Climate–carbon feedback sensitivities, denoted by γO and γL with units of Pg C K−1,

quantify the changes in carbon storage that result from ocean and land responses to all of the

changes in climate, which are characterized for the purposes of analysis by the change in near-

surface air temperature. Following from Friedlingstein et al. (2006) and Arora et al. (2013),

the overall climate–carbon feedback gain, g, can be related to these feedback sensitivity

parameters through the following equation,

g =
−α (γO + γL)

(m+ βO + βL)
, (4.1)

where α is the sensitivity of the global mean near-surface air temperature to cumulative

changes in atmospheric CO2 (usually referred to as the climate sensitivity) in units of

K ppm−1, m is a constant (2.12 Pg C ppm−1), and γO, γL, βO, and βL are defined above.

These feedback parameters are derived from Earth system model (ESM) experiments de-

signed to isolate the climate and atmospheric CO2 mole fraction responses. By holding

atmospheric CO2 constant for the terrestrial biosphere while simultaneously increasing CO2

for atmospheric radiation computations, the temperature, precipitation, and related climate

changes will be manifested, and simulated physical and ecological processes will respond

only to those changes. Such radiatively coupled or RAD simulations are used to directly

extract the climate–carbon feedback parameter, γ. In biogeochemically coupled or BGC

simulations, atmospheric CO2 is increased for the land and ocean biosphere while being

held constant for atmospheric radiation calculations, stimulating direct biogeochemical re-

sponses due to rising CO2 partial pressure. BGC simulations are used to directly compute

the concentration–carbon feedback parameter, β. Radiative and biogeochemical coupling
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are combined in fully coupled or FC simulations, which exhibit responses due to the net

effects of rising temperatures and elevated atmospheric CO2. If the climate–carbon and

concentration–carbon effects combine linearly, the change in any variable in the FC simula-

tion will be the same as the change in that variable in the RAD and the BGC experiments

added together, which we write as,

∆FC = ∆RAD + ∆BGC. (4.2)

Using results from a previous generation of climate models with coupled carbon cycle com-

ponents that contributed to the first Coupled Climate–Carbon Cycle Model Intercomparison

Project (C4MIP) experiment, Gregory et al. (2009) extended this feedback analysis method-

ology and concluded that nonlinear interactions could be exhibited by different model exper-

iments. They argued that γ diagnosed across different scenarios would yield similar results,

and that γ is less sensitive to differences in simulation design than is β. Drawing upon

the findings of Gregory et al. (2009), Arora et al. (2013) chose to use the γ calculated from

the RAD simulations in their analysis of idealized 1% y−1 increasing CO2 simulations from

the fifth phase of the Coupled Model Intercomparison Project (CMIP5). This was different

from Friedlingstein et al. (2006), who calculated γ as the difference between the FC and

the BGC results from emissions-forced simulations in C4MIP. Arora et al. (2013) and Ciais

et al. (2013b) reported that land and ocean concentration–carbon sensitivity, β, was typically

four to five times larger than climate–carbon sensitivity, γ, across CMIP5 ESMs. While the

land and ocean concentration–carbon responses, β, contributed nearly equally to the overall

concentration–carbon response, model spread was larger for βL than for βO. In addition, the

land climate–carbon response, γL, was larger than the ocean climate–carbon response, γO,

in all models. The magnitudes and model spread of both sets of land and ocean sensitivities,

β and γ, declined from C4MIP to CMIP5 due to changes in model parameterizations and
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process representations in participating ESMs. However, models with a coupled terrestrial

nitrogen cycle exhibited the weakest concentration–carbon and climate–carbon sensitivities,

and increased the multi-model range of these feedback parameters. Ciais et al. (2013b) reit-

erated the Gregory et al. (2009) conclusion that γ is much less sensitive to scenario differences

than β since both global temperature and carbon uptake lag the forcing. While Arora et al.

(2013) quantified the carbon cycle feedbacks for land and ocean for a suite of CMIP5 models,

those results were not used by either Arora et al. (2013) or Ciais et al. (2013b) to investigate

the magnitude of nonlinear ecosystem responses in different models.

Studies of the evolution of the global carbon cycle and the climate over long time scales usu-

ally employ Earth system models of intermediate complexity (EMICs) (Plattner et al., 2008;

Zickfeld et al., 2011). However, the detailed interactive multi-scale process representations in

fully coupled ESMs make them ideally suited for such investigations. Uncertainties regarding

the sustainability of tropical forests (Cox et al., 2004; Huntingford et al., 2013), variable rates

of permafrost thaw and deepening of the active layer (Koven et al., 2015), and slowdown of

the Atlantic meridional overturning circulation (Randerson et al., in press) require scenario

testing in simulation experiments with explicit consideration of relevant dynamics over a

period of multiple centuries. For example, nutrient cycling affects ocean and land carbon

uptake and is controlled by climate, ecosystem productivity, and anthropogenic perturba-

tions that alter nutrient inputs. Terrestrial ecosystem productivity and the resulting carbon

sequestration potential may be overestimated in models that do not consider nitrogen and

phosphorus limitation (Wieder et al., 2015). Two CMIP5 models incorporated a coupled ter-

restrial carbon–nitrogen cycle, and their results suggest that nutrient limitation may buffer

both climate and CO2 concentration ecosystem responses (Arora et al., 2013; Ciais et al.,

2013b). It may be important to capture the complex interactions of physical, chemical, and

biological processes, such as these, that lead to thresholds or nonlinear behaviors that may

be simulated only by rigorous, process-rich ESMs.
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Zickfeld et al. (2011) employed both emissions-forced and concentration-driven simulations

from an EMIC, the University of Victoria Earth System Climate Model (UVic ESCM),

to explore carbon cycle nonlinearities both on land and in the ocean. They found that

land was responsible for about 80% of the overall nonlinearity, while the ocean accounted

for the remaining 20%. They further confirmed that concentration–forced simulations are

better suited for deriving comparable feedback parameters than are emissions–forced simula-

tions. More recently, Schwinger et al. (2014) analyzed the nonlinearity of ocean carbon cycle

feedbacks in a collection of CMIP5 models and found that climate-induced carbon uptake

reductions computed from the combination of FC and BGC simulations were stronger than

those inferred from the RAD experiment. This result was attributable to increased strat-

ification between the deep ocean and the mixed layer produced by climate warming that

weakened the pathway for penetration of anthropogenic atmospheric CO2 into the ocean.

Consequently, the loss of carbon in the RAD simulation emanates primarily from the upper

ocean, leading to an overall ocean climate–carbon feedback that effectively underestimates

the reduction of ocean carbon uptake resulting from increased temperature and elevated

CO2.

To investigate the degree of linearity of these feedbacks, we analyzed results from three long-

term simulations of the Community Earth System Model version 1.0 (CESM1(BGC)) with

fully coupled ocean and land biogeochemical cycles (Lindsay et al., 2014). These RAD, BGC,

and FC simulations followed a business-as-usual future trajectory—comprised of historical,

Representative Concentration Pathway 8.5 (RCP 8.5), and Extended Concentration Path-

way 8.5 (ECP 8.5) forcing (Meinshausen et al., 2011)—for increases in atmospheric CO2,

other greenhouse gases, and aerosols from the pre-industrial period to the end of the 23rd

century (1850–2300). We quantified feedback parameters, century by century, and assessed

land and ocean carbon cycle responses to anthropogenic atmospheric forcing agents in the

absence of land use change. Unlike what Schwinger et al. (2014) concluded for the ocean, we

found that land climate–carbon feedback sensitivities calculated from the RAD simulation
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may overestimate the reduction of land carbon uptake under the combined conditions of

increased temperature and elevated CO2. No group has similarly investigated nonlinearities

of the terrestrial carbon cycle from a contemporary ESM with fully interactive physical and

biogeochemical processes.

4.2 Methods

4.2.1 Model description

We performed simulations using the Community Earth System Model version 1.0 (Gent

et al., 2011; Hurrell et al., 2013) with fully interactive biogeochemical cycles enabled (Lindsay

et al., 2014). The model system configuration, referred to as CESM1(BGC), consisted of

the Community Atmosphere Model version 4 (CAM4) (Neale et al., 2013), the Community

Land Model version 4 (CLM4) (Lawrence et al., 2012a) with a coupled carbon–nitrogen cycle

(Thornton et al., 2007), an ocean physics component based on the Parallel Ocean Program

version 2 (POP2) (Smith et al., 2010; Danabasoglu et al., 2012) with the Biogeochemical

Elemental Cycling (BEC) module (Moore et al., 2013), and a dynamic sea ice model (Jahn

et al., 2012; Hunke et al., 2013). The multi-phase procedure for spin-up of CESM1(BGC)

entailed performing independent spin-up simulations for the land and ocean models using

a fixed pre-industrial atmospheric CO2 mole fraction, followed by interactive ocean-land-

atmosphere-sea ice simulations in which atmospheric CO2 was allowed to evolve as a three

dimensional tracer as described by Lindsay et al. (2014). Model spin-up was followed by

a 1000-year control simulation designed to capture only natural climate variability and for

which no anthropogenic perturbation was included.

The experiments described here were branched at year 151 of the control simulation, the

same year simulations performed for CMIP5 were branched. The CMIP5 simulations are
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available from the Earth System Grid Federation archive. Transient land cover change and

wood harvesting, using land cover information derived from observations and future scenarios

(Hurtt et al., 2011), were enabled in CLM4’s plant functional type framework (Lawrence

et al., 2012b) for years 1850 through 2100 in most CMIP5 simulations and in long-term

simulations described by Randerson et al. (in press). However, land cover distributions were

held constant and wood harvesting was disabled in the simulations described here. The

performance of CESM1(BGC) is described in detail by Long et al. (2013) for the ocean

carbon cycle and chlorofluorocarbons, by Moore et al. (2013) for ocean ecosystem dynamics

and nutrient cycling, by Keppel-Aleks et al. (2013) for atmospheric CO2, and by Lindsay

et al. (2014) for seasonal and interannual cycles of atmospheric CO2, surface fluxes, and

their responses to El Niño-Southern Oscillation.

4.2.2 Experimental design

We conducted three CESM1(BGC) simulations with different coupling configurations, as

shown in Table 4.1, following the CMIP5 protocol for concentration-forced historical (1850–

2005), RCP 8.5 (2006–2100), and ECP 8.5 (2101–2300) trajectories of atmospheric CO2

mole fractions, which increased from about 285 ppm in 1850 to 1962 ppm in 2300 (Fig-

ure 4.1(a) and Table 4.2). Biogeochemical processes and interactions were enabled in the

ocean and land models, and terrestrial and marine ecosystems were allowed to respond to

either static pre-industrial or transient forcing agents in the absence of land use change ef-

fects. In the RAD simulation, transient atmospheric CO2, CH4, chlorofluorocarbons, ozone,

aerosols, and aerosol deposition on snow were all radiatively coupled, but the ocean and

land experienced constant pre-industrial (1850) atmospheric CO2 and nitrogen deposition

forcing. In the BGC simulation, the radiative transfer scheme experienced pre-industrial

(1850) CO2 and other greenhouse gas mole fractions and aerosols, while the ocean and land

were forced with transient trajectories of atmospheric CO2 and nitrogen deposition. In the
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Table 4.1: CESM1(BGC) simulations for three different coupling configurations were ana-
lyzed and are referenced as shown in the first column throughout this paper. All three 451-y
simulations followed the CMIP5 Historical, RCP 8.5, and ECP 8.5 protocol (1850–2300) and
were forced with the same prescribed CO2 mole fraction trajectory as shown in Figure 4.1(a).

Radiative Coupling Biogeochemical Coupling
Simulation Other GHG Nitrogen Land
Identifier CO2 & aerosols CO2 deposition use

RAD X X – – –
BGC – – X X –
FC X X X X –

X Transient anthropogenic forcing
– Constant pre-industrial (1850) forcing

FC simulation, forcing agents were both radiatively and biogeochemically coupled, such that

all model components experienced the same transient trajectories of atmospheric CO2, other

greenhouse gases, aerosols, and nitrogen deposition. The difference in responses between the

FC and RAD experiments allowed us to quantify the impact of elevated atmospheric CO2

levels on carbon cycle processes and estimate the concentration–carbon feedback parameters

over time, which were subsequently compared to those parameters calculated directly from

the BGC simulation. The difference in responses between the FC and BGC simulations

allowed us to assess the impact of climate change on carbon cycle processes and estimate the

climate–carbon feedback parameters over time, which were subsequently compared to those

parameters calculated directly from the RAD simulation.

After analyzing feedback parameters from both emissions-forced and corresponding concentration-

forced simulations, Zickfeld et al. (2011) advised using experiments with prescribed CO2 mole

fractions rather than prescribed emissions for deriving carbon cycle feedback parameters and

exploring the mechanisms for nonlinear behaviors in those feedbacks. They found that the

simultaneous effect of elevated CO2 levels and climate change acted to reduce uptake in

concentration-forced simulations, whereas it acted to increase uptake in runs with speci-

fied emissions (except for the land uptake between 2180 and 2300). The reason for these

differences is that carbon sinks depend on atmospheric CO2 mole fractions and land and
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Figure 4.1: (a) The prescribed atmospheric CO2 mole fraction was stabilized at 1962 ppm
after 2225. (b) Near-surface air temperature increased in all three simulations by the end of
the 23rd century. (c) Net ocean uptake decreased in the RAD simulation, but increased in
the BGC and FC simulations. (d) Net land uptake was more variable than net ocean update,
and it increased in the BGC and FC simulations and decreased in the RAD simulation.
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Table 4.2: Cumulative carbon and temperature changes and corresponding compatible emis-
sions were calculated for the 20th, 21st, 22nd, and 23rd centuries from the RAD, BGC, and
FC simulations.

Time (year)
Variable 2000 2100 2200 2300

[CO2]A (ppm) 369 936 1829 1962

Time Period (years)
Variable 1850–2000 1850–2100 1850–2200 1850–2300

∆TRAD
2 m (K) 1.13 4.76 7.46 8.90

∆TBGC
2 m (K) 0.10 0.50 0.87 0.99

∆TFC
2 m (K) 1.19 4.92 8.11 9.41

∆CRAD
O (Pg C) −6 −19 −62 −113

∆CBGC
O (Pg C) 100 519 1050 1414

∆CFC
O (Pg C) 97 475 866 1082

∆CRAD
L (Pg C) −8 −100 −275 −430

∆CBGC
L (Pg C) 69 276 529 687

∆CFC
L (Pg C) 55 213 336 309

ERAD
C (Pg C) 167 1265 2948 3023

EBGC
C (Pg C) 349 2180 4862 5663

EFC
C (Pg C) 331 2072 4486 4955
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ocean uptake compensate for each other, which can lead to persistent biases in prognos-

tic atmospheric CO2 (Hoffman et al., 2014) and result in different CO2 trajectories across

experiments. Here, we analyzed simulations forced with prescribed CO2 mole fractions to

allow for rigorous separation of feedback processes. Land use change can similarly confound

analysis of carbon cycle feedbacks. Zickfeld et al. (2011) reported that in the absence of

CO2 fertilization, widespread replacement of forests by C4 grasses, which are more produc-

tive than forests, reduced the negative effect of climate change on land carbon uptake. Our

more-idealized experiments avoided confounding effects of land use change by enforcing a

static, pre-industrial distribution of vegetation and disabling wood harvest processes.

Important hydrological and biogeochemical model output variables, listed in Table 4.3, from

all three simulations were analyzed over the entire 451 y period to diagnose the climate change

and increasing anthropogenic atmospheric CO2 impacts on terrestrial and marine ecosystems

as well as the hydrological cycle. Except where noted, a 5 y center-mean smoothing was

applied to all variable line plots, and a gray-colored horizontal baseline is plotted at the y-axis

value that represents the average of the initial 5 y means of the variable from the RAD and

BGC experiments. Decadal means from the end of the simulation period were subtracted

from decadal means at the beginning of the simulation period to spatially map changes

in output variables. To show spatial distributions of temporal changes in variables across

experiments and to diagnose nonlinear responses in those variables (i.e., where Equation (4.2)

did not hold exactly), maps are shown in a 3×3 arrangement as exemplified in Figure 4.2. As

in Equation (4.2), ∆FC represents the change in a variable over time from the FC simulation,

∆RAD represents the change in a variable over time from the RAD simulation, and ∆BGC

represents the change in a variable over time from the BGC simulation. If the ESM responses

to climate change and increasing atmospheric CO2 levels were linear (i.e., Equation (4.2) held

exactly) across the time scale of these simulations, then, in Figure 4.2, panel (f) would be

a white map, panel (c) would be identical to panel (h), and panel (i) would be identical to

panel (b).
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Table 4.3: The energy, nitrogen, water, and carbon variables shown here were the primary
drivers of hydrological and ecological changes in the RAD, BGC, and FC simulations. The
change in each variable from 1850 to 2300 is shown for the RAD and BGC simulations, the
sum of the RAD + BGC results, and the FC simulation. The nonlinear metric, contained
in the last column, is shown in either red or green, depending on whether the RAD or the
BGC coupling contributed most to change in the FC simulation. This same information is
presented graphically in Figure 4.15.

Abbreviated (∆RAD+ Nonlinear

Variable Name ∆RAD ∆BGC ∆BGC) ∆FC Units Metric

Energy and Nitrogen Variables

air temperature at 2 m T at 2m 8.85 0.95 9.80 9.33 K −0.05
sensible heat SH 4.46 9.38 13.84 12.66 W/m2 −0.09
latent heat LH 6.39 −7.57 −1.18 0.62 W/m2 2.91
net N mineralization N mineral −0.03 0.29 0.26 0.29 Pg N/y 0.10

Water Variables

precipitation Precip 0.48 0.02 0.50 0.53 mm/d 0.06
relative humidity at
2 m

RH at 2m −4.24 −3.63 −7.86 −6.78 % −0.16

precipitation minus
evapotranspiration

P − ET 0.26 0.28 0.54 0.51 mm/d −0.06

evapotranspiration ET 0.22 −0.26 −0.04 0.02 mm/d 2.83
transpiration Transp 0.03 −0.29 −0.26 −0.17 mm/d −0.55
soil moisture to 1 m SMoist 0.47 2.28 2.74 2.25 mm −0.22
total liquid runoff Runoff 0.25 0.29 0.54 0.50 mm/d −0.07

Carbon Variables

gross primary
production

GPP −7.73 82.54 74.80 99.56 Pg C/y 0.25

net primary production NPP −8.94 24.33 15.39 19.07 Pg C/y 0.19
ecosystem respiration ER −6.09 81.05 74.96 99.26 Pg C/y 0.24
heterotrophic
respiration

HR −7.29 22.84 15.55 18.77 Pg C/y 0.17

total leaf area index LAI −0.39 1.60 1.20 1.19 unitless −0.01
cumulative net biome
production

CL storage −428.90 685.25 256.34 310.40 Pg C 0.17

cumulative DIC gas
flux

CO storage −113.43 1413.99 1300.56 1081.61 Pg C −0.20
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Figure 4.2: Maps comparing changes in variables across experiments are presented in three
columns, where the first column (panels a, d, and g) show the (identical) change in the
FC simulation, panel (b) shows the change in the RAD simulation, panel (h) shows the
change in the BGC simulation, panel (e) shows the sum of the changes in the RAD plus
BGC simulations, and the third column (panels c, f, and i) show the difference between the
first column and the second column. If the ESM responses to climate change and increasing
atmospheric CO2 levels were linear across the simulation time scale, then panel (f) would be
a white map, panel (c) would be identical to panel (h), and panel (i) would be identical to
panel (b).
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4.2.3 Carbon cycle feedback metrics

For C4MIP, Friedlingstein et al. (2006) defined the overall climate–carbon cycle feedback

in terms of the ratio of the changes in atmospheric CO2 from FC and BGC simulations.

The ocean and land feedback parameters were defined in terms of the influences of the

atmospheric CO2 and temperature changes in ocean and land carbon storage as follows,

∆CFC
O = βO∆COFC

2 + γO∆TFC, (4.3)

∆CFC
L = βL∆COFC

2 + γL∆TFC, (4.4)

where the feedback parameters (βO, βL, γO, and γL) are the same as defined above. The

strengths of these sensitivities were found by first solving for βO and βL from a radiatively

uncoupled simulation,

βBGC
O =

∆CBGC
O

∆COBGC
2

, (4.5)

βBGC
L =

∆CBGC
L

∆COBGC
2

, (4.6)

then solving for γO and γL from the fully coupled simulation as follows,

γFC−BGC
O =

∆CFC
O − βO∆COFC

2

∆TFC
, (4.7)

γFC−BGC
L =

∆CFC
L − βL∆COFC

2

∆TFC
. (4.8)

Gregory et al. (2009) extended the carbon cycle feedback methodology and described ways

to estimate feedback sensitivity parameters from different model experiments, including cal-
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culating the climate–carbon feedback parameters directly from RAD simulations as follows,

γRAD
O =

∆CRAD
O

∆TRAD
, (4.9)

γRAD
L =

∆CRAD
L

∆TRAD
. (4.10)

Arora et al. (2013, their Appendix A) outlined three approaches for estimating concentration–

carbon and climate–carbon feedbacks from FC, RAD, and BGC experiments, which they

derived for emission-driven and concentration-forced experiments in a companion publica-

tion (Boer and Arora, 2013). Schwinger et al. (2014, their Appendix A) derived formulas

for calculating feedback parameters from a pair of model experiments, and their simplified

approximations, when the temperature change in the BGC experiment is small (∆TBGC ≈ 0)

and/or the temperature change in the FC and RAD experiments are approximately equal

(∆TFC ≈ ∆TRAD). For two model experiments, E1 and E2, with different trajectories of

CO2 and temperature (T ) and full or partial coupling of CO2 and temperature change in at

least one of the experiments, the changes in ocean and land carbon storage are given by

∆CE1 = β∆COE1
2 + γ∆TE1, (4.11)

∆CE2 = β∆COE2
2 + γ∆TE2. (4.12)

Solving for the feedback parameters gives

βE1−E2 =

(
∆CE1∆TE2 −∆CE2∆TE1

)(
∆COE1

2 ∆TE2 −∆COE2
2 ∆TE1

) , (4.13)

γE1−E2 =

(
∆CE2∆COE1

2 −∆CE1∆COE2
2

)(
∆COE1

2 ∆TE2 −∆COE2
2 ∆TE1

) , (4.14)
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where the denominators for each are the same. Using this formulation, we can determine the

concentration–carbon feedback parameters from the FC and RAD simulations as follows,

βFC−RAD =
∆CFC∆TRAD −∆CRAD∆TFC

∆CO2 ∆TRAD
≈ ∆CFC −∆CRAD

∆CO2

, (4.15)

where atmospheric CO2 is constant for the RAD simulation (∆CORAD
2 = 0) and the ap-

proximation holds when the temperature change in the FC simulation is about the same as

in the RAD simulation (∆TFC ≈ ∆TRAD). Likewise, we can determine the climate–carbon

feedback parameters as follows,

γFC−BGC =
∆CBGC −∆CFC

∆TBGC −∆TFC
≈ ∆CFC −∆CBGC

∆TFC
, (4.16)

where the approximation holds when the temperature change in the BGC simulation is small

(∆TBGC ≈ 0). Since the change in temperature is a surrogate for all of the effects of climate

change, this condition implicitly requires that all climate change effects are negligible in the

BGC simulation. Note that this approximate form is equal to the result obtained when

substituting Equation (4.5) into Equation (4.7) and Equation (4.6) into Equation (4.8) since

the ocean and land experience the same trajectory of anthropogenic atmospheric CO2 in the

FC and BGC simulations (∆COFC
2 = ∆COBGC

2 ).

To investigate the degree of nonlinearity in climate–carbon cycle feedbacks, we compared the

time evolution of concentration–carbon and climate–carbon feedback parameters, derived

both from partially coupled experiments and from differences with the fully coupled experi-

ment, across the four centuries of simulation. Specifically, we compared the concentration–

carbon feedback sensitivities calculated from Equations (4.5) and (4.6) with those derived

from Equation (4.15), referred to as βFC−RAD
O and βFC−RAD

L . In addition, we compared the

103



climate–carbon feedback sensitivities estimated from Equations (4.9) and (4.10) with those

derived from Equation (4.16), referred to as βFC−BGC
O and βFC−BGC

L . We used these feedback

parameters in different combinations to calculate the overall climate–carbon cycle feedback

gain, g, for each century time interval from Equation (4.1). Following the method described

by Arora et al. (2013), we calculated trajectories of compatible emissions from the RAD,

BGC, and FC experiments. We used the compatible emissions to compute the gain for the

same century time intervals, following Equation (13) from Arora et al. (2013),

g =
EBGC

C − EFC
C

EBGC
C

, (4.17)

and compared that gain with those obtained from combinations of simulation experiments,

following Equation (4.1). Feedback parameter choices responsible for divergence among

these gains indicated which experiments were the largest sources of nonlinearity and sug-

gested whether source or sink processes were the underlying drivers in ocean and land model

responses.

4.2.4 Nonlinearity metric

We developed a metric to gauge the nonlinearity of energy, carbon, nitrogen, and hydrology

drivers of model responses to increasing atmospheric CO2 and resultant climate change across

the full period of simulation. This metric is defined as one minus the ratio of the sum of the

output variable change in the RAD and BGC simulations from 1850–2300, divided by the

corresponding change of the variable in the FC simulation, as follows:

MNL = 1− (∆RAD + ∆BGC)

∆FC
. (4.18)
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This metric considers only the beginning and end points of the analysis period for the

output variable time series, and, therefore, ignores any transient nonlinear effects that may

be eliminated by the end of the analysis period.

4.3 Results

4.3.1 Temperature and carbon storage changes

Global mean near-surface air temperature increased by 9.4 K between 1850 and 2300 in the

fully coupled (FC) model simulation (Figure 4.1(b) and Table 4.2). Over the same period,

temperature increased by 8.9 K in the radiatively coupled (RAD) simulation. Therefore, we

attributed 8.9 K of the warming in the FC simulation to direct radiative effects, while the

remaining 0.5 K should be attributed to the effects of increasing nitrogen deposition and

rising atmospheric CO2 on the terrestrial biosphere and marine biogeochemistry. However,

in the biogeochemically coupled simulation (BGC), the temperature increased by 1.0 K, a

relatively small amount, but twice that expected from subtracting the temperature change

in the RAD simulation from that in the FC simulation, (∆FC − ∆RAD), following Equa-

tion (4.2). The temperature increase due to biogeochemical coupling in the FC and BGC

simulations was a consequence of changes in stomatal conductance and leaf area in response

to elevated atmospheric CO2. As we will discuss below, the 0.5 K difference between the

(∆FC−∆RAD) and the ∆BGC temperatures was due to stronger gross primary production

(GPP) in the FC simulation that produced enhanced leaf area over the 22nd and most of

the 23rd centuries. Between 1850 and 2300, mean near-surface air temperature over land

increased by 11.7 K in the FC simulation, by 10.8 K in the RAD simulation, and by 1.5 K in

the BGC simulation (Figure 4.3(a)). The largest temperature increases in the FC simulation

occurred at high latitudes, with some land regions exhibiting temperature changes as large as
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(a) Trajectories of 2 m air temperature over land for
the RAD, BGC, and FC simulations

(b) Spatial distribution of change in 2 m air temper-
ature over land in the FC simulation

Figure 4.3: The mean 2 m air temperature over land increased by 11.6 K between 1850
and 2300 under the combined effects of increased atmospheric CO2 and consequent climate
change.

25 K (Figure 4.3(b)). Northern Europe showed some of the smallest temperature increases,

likely due to the slowdown of the Atlantic meridional overturning circulation (AMOC) in

the 22nd and 23rd centuries (Randerson et al., in press). The (∆RAD + ∆BGC) tempera-

ture over land, which represents the combination of temperature changes from the effects of

climate change simulated separately from CO2 and N fertilization, was larger than the ∆FC

temperature over land by 0.6 K. The nonlinearity metric, calculated from Equation (4.18),

was −0.05, indicating that the (∆RAD + ∆BGC) temperature increase was 5% larger than

the ∆FC temperature increase at 2300.

Ocean and land rates of carbon uptake were reduced in response to climate change and the

absence of elevated atmospheric CO2. Under these conditions, ocean uptake rates dropped

slowly and stabilized in the 23rd century, while rates of land uptake dropped rapidly after

year 2000 then rose modestly during the 23rd century. Meanwhile, rising atmospheric CO2

increased ocean and land uptake rates, with and without the influence of climate change, from

the pre-industrial through the 21st century (Figure 4.1(c) and 4.1(d)). Under elevated CO2,

both ocean and land rates of uptake declined after year 2100; however, their maxima were
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lower and they began declining earlier due to climate change. In response to radiative forcing

and elevated CO2, terrestrial rates of uptake declined more rapidly than in the absence of

climate change. After 2100, ocean uptake rates estimated for the combination of climate

change and CO2 increase from the addition of the RAD and BGC simulation responses were

larger than those produced in the FC simulation, averaging about 40–45% higher than FC

uptake rates after 2150. Under elevated CO2, the rate of land uptake declined more rapidly

due to climate change than it did without radiative forcing. Moreover, it dropped below zero

after 2225, when the atmospheric CO2 mole fraction was stabilized at 1962 ppm. The net

land uptake rate under climate change and elevated CO2 estimated from the combination of

RAD and BGC responses was slightly positive, approximately 0.14 Pg C y−1, while for the

FC simulation it was about −0.92 Pg C y−1. The nonlinearity metric for net land uptake was

1.15, indicating that the (∆RAD + ∆BGC) response was 15% larger than the fully coupled

response.

Net ocean carbon storage, calculated as the cumulative net ocean uptake since 1850, de-

creased throughout the 451 y simulation period due to anthropogenic climate change in the

absence of elevated atmospheric CO2 (Figure 4.4(a) and Table 4.2). By the end of the RAD

simulation, the ocean lost 113 Pg C, primarily at tropical and subtropical latitudes and

from the Southern Ocean (Figure 4.4(d)). Including the ameliorating effects of increased

atmospheric CO2 with climate change, net ocean carbon storage increased throughout the

simulation, with 56% of the anthropogenic carbon storage occurring after 2100. At the

end of the FC simulation, the ocean accumulated 1082 Pg C, predominantly at mid- and

high latitudes (Figure 4.4(c)). Without climate change, net ocean carbon storage rose more

strongly than in the FC simulation after 2050 and ended 23% higher at 2300, with 1414 Pg of

anthropogenic carbon accumulated. Cumulative uptake was stronger in the BGC simulation

than in the FC simulation (Figure 4.4(b)). The (∆RAD+∆BGC) ocean carbon storage was

20% greater than the accumulation from the ∆FC simulation at 2300, indicating that ma-

rine responses to climate change and to elevated atmospheric CO2 do not combine linearly.
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When estimated from the difference between the FC and BGC simulations (∆FC−∆BGC),

the implied effect of climate change only on net ocean carbon storage was −332 Pg C, a

loss nearly three times larger than that exhibited by the RAD simulation. This result is

consistent with that of Schwinger et al. (2014), who attributed nonlinear ocean carbon cycle

responses in CMIP5 models primarily to reduced carbon losses in climate change simulations

as a consequence of warming-induced weakening of ocean circulation and mixing.

In response to climate change, net land carbon storage declined strongly, with 76% of the loss

occurring after 2100 (Figure 4.5(a) and Table 4.2). The climate change-induced loss totaled

430 Pg C at 2300, and originated principally from tropical forests and secondarily from sub-

tropical forests (Figure 4.5(d)). In contrast, when computed as the difference between the

FC and BGC simulations (∆FC−∆BGC), the terrestrial biosphere lost 378 Pg C as a result

of increasing temperatures, suggesting the RAD simulation may overestimate land carbon

losses. Under climate change and elevated CO2, land sequestered 309 Pg of anthropogenic

carbon by 2300, primarily in tropical forests and in southeast Asia, while losses occurred

in northeast South America (Figure 4.5(c)) due to drying that resulted from atmospheric

circulation changes, a phenomenon consistent across a majority of CMIP5 model projections

(Stocker et al., 2013a; Lau and Kim, 2015) In the absence of radiative forcing, elevated atmo-

spheric CO2 fueled strong land carbon accumulation, especially in tropical and subtropical

forests, which reached 687 Pg C at 2300 (Figure 4.5(b)). Terrestrial biosphere responses to

climate change and elevated CO2 separately did not combine linearly, but resulted in weaker

carbon accumulation on land after 2050 and ended 17% below that of the fully coupled

simulation. After 2050, about 52 Pg (20%) more anthropogenic carbon was accumulated on

land under the combined effects of elevated CO2 and climate change than under the linear

combination of the two. This is in contrast to the report of Zickfeld et al. (2011), whose

EMIC results indicated that the carbon sinks on land were less efficient when exposed to

the combined effects than to their linear combination, likely due primarily to conversion of

forests at low latitudes to more productive C4 grasses that are associated with higher soil
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carbon in the Zickfeld et al. (2011) radiatively coupled simulations.

Carbon uptake responses to elevated CO2 and climate change will determine anthropogenic

emissions compatible with a given CO2 concentration pathway (Jones et al., 2013). The

resulting diagnosed cumulative emissions may be used to evaluate the overall climate–carbon

cycle feedback gain and may also be determined from feedback parameters (Arora et al.,

2013). Compatible emissions, EC , diagnosed from the evolving ocean, land, and atmosphere

carbon inventories, were lowest for the warming-only simulation and largest for the increasing

atmospheric CO2 simulation (Table 4.2). Under the combined conditions of warming and

elevated CO2, compatible emissions began to diverge slowly from those diagnosed for the

BGC simulation and were reduced by 12% at 2300, from 5663 Pg C in the BGC simulation

to 4955 Pg C in the FC simulation. Most of the reduction occurred after the atmospheric

CO2 mole fraction was stabilized around 2225.

4.3.2 Climate–carbon cycle feedback parameters

To investigate the effects of nonlinear uptake responses on the climate–carbon cycle feedback

gain, we derived evolving climate–carbon and concentration–carbon feedback parameters for

the ocean and land in multiple ways, using individual simulations and combinations of them

as described above. The ocean concentration–carbon feedback declined during the 21st and

22nd centuries, with βBGC
O decreasing from 0.80 Pg C ppm−1 at 2100 to 0.68 Pg C ppm−1 at

2200 (Figure 4.6(a) and Table 4.4), likely as a consequence of diminished buffering capacity

of the oceans with increasing pCO2, often expressed as an increasing Revelle factor (Sabine

et al., 2004). During the 23rd century, when atmospheric CO2 rose slowly toward stabiliza-

tion at 1962 ppm, βO increased because ocean mixing processes had more time to adjust

to rising pCO2. The ocean concentration–carbon feedback derived from the FC and RAD

simulations, βFC−RAD
O , exhibited a similar trajectory to βBGC

O . However, βFC−RAD
O declined
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from βBGC
O nearly linearly, likely as a consequence of increasing stratification that weakened

the coupling between the surface waters and deeper water masses, further increasing the

Revelle factor, in the warming-only simulation. Ocean regions at higher latitudes, especially

the Southern Ocean, exhibited the strongest positive sensitivities to increasing pCO2 (Fig-

ure 4.6(c)). When calculated directly from the warming-only simulation, the sensitivity of

ocean carbon uptake to temperature, γRAD
O , strengthened by a factor of 3, changing from

−4.06 Pg C K−1 in 2100 to −12.69 Pg C K−1 in 2300 (Figure 4.6(b) and Table 4.4). However,

this same sensitivity increased by a factor of 4 when estimated from the FC and BGC simu-

lations, γFC−RAD
O , changing from −10.06 Pg C K−1 at 2100 to −39.37 Pg C K−1 at 2300. This

difference is attributable to temperature-driven reduction in ocean mixing and reduction in

dissolved inorganic carbon (DIC) solubility (i.e., weakening of the solubility pump), which

served to limit exchange of carbon with deeper water masses, in the climate change simu-

lation. Tropical to sub-tropical ocean regions, particularly the equatorial Pacific, as well as

the Southern Ocean, exhibited the strongest negative sensitivities to increasing temperature

(Figure 4.6(d)).

On land, the sensitivity of carbon uptake to increasing atmospheric CO2 mole fractions

calculated directly from the BGC simulation, βBGC
L , declined 19% in the 22nd century,

dropping from 0.42 Pg C ppm−1 at 2100 to 0.34 Pg C ppm−1 at 2200, before returning to

0.41 Pg C ppm−1 at 2300 (Figure 4.7(a) and Table 4.4). During the 23rd century, the ter-

restrial biosphere was better able to sequester additional anthropogenic carbon when the

growth rate was lower because vegetation and soil carbon pools had more time to adjust

to rising CO2 levels. When derived from the FC and RAD simulations, this sensitivity,

βFC−RAD
L , was slightly stronger after 2100 as a result of strong ecosystem productivity en-

hancements under the combined conditions of climate change and elevated atmospheric CO2.

Tropical and sub-tropical forests exhibited the largest positive sensitivity to rising atmo-

spheric CO2 (Figure 4.7(c)). The climate–carbon feedback sensitivity on land, when cal-

culated from the warming-only simulation, γRAD
L , strengthened rapidly after 2000, reaching
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Figure 4.6: The ocean concentration–carbon sensitivity, βBGC
O , was 0.84 Pg C ppm−1, and

the climate–carbon sensitivity, γRAD
O , was −12.69 Pg C K−1 at the end of the 23rd century.

Global βO and γO values shown above the maps in (c) and (d) may differ from those shown
on the plots and reported in Table 4.4 because 1) they are computed as the unweighted
mean of the cell-by-cell sensitivities, and 2) temperature changes are calculated as decadal
differences in the maps.
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Table 4.4: Climate–carbon cycle feedback parameters and gains were calculated for the 20th,
21st, 22nd, and 23rd centuries, demonstrating the time-varying nonlinearity of land and ocean
biogeochemical responses.

Time Period (years)
Parameter 1850–2000 1850–2100 1850–2200 1850–2300

α (K ppm−1) 0.0140 0.0075 0.0052 0.0056

βBGC
O (Pg C ppm−1) 1.19 0.80 0.68 0.84

βFC−RAD
O (Pg C ppm−1) 1.23 0.76 0.60 0.71

βBGC
L (Pg C ppm−1) 0.84 0.42 0.34 0.41

βFC−RAD
L (Pg C ppm−1) 0.72 0.48 0.39 0.44

γRAD
O (Pg C K−1) −5.10 −4.06 −8.26 −12.69

γFC−BGC
O (Pg C K−1) −2.22 −10.06 −25.47 −39.37

γRAD
L (Pg C K−1) −5.70 −21.09 −36.54 −48.25

γFC−BGC
L (Pg C K−1) −15.00 −14.05 −26.69 −44.77

g(βBGC, γRAD) 0.035 0.056 0.075 0.101

g(βFC−RAD, γRAD) 0.036 0.056 0.075 0.104

g(βBGC, γFC−BGC) 0.057 0.054 0.087 0.139

g(βFC−RAD, γFC−BGC) 0.058 0.053 0.087 0.144

g(ERAD
C , EFC

C ) 0.056 0.051 0.084 0.143
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−21.09 Pg C K−1 at 2100, and slowed slightly in the 23rd century, ending at −48.25 Pg C K−1

at 2300. (Figure 4.7(b) and Table 4.4). In this experiment, significant temperature increases

had a devastating effect on tropical and sub-tropical forests globally after 2100, and drove up

autotrophic and heterotrophic respiration until vegetation productivity began to collapse,

especially in the 23rd century (Figure 4.7(d)). The temperature sensitivity of land carbon

storage, γFC−BGC
L , diverged from that calculated directly from the RAD simulation, and

their differences peaked around 2175. This difference was a result of enhanced vegetation

productivity under the combined effects of climate change and elevated CO2 levels, driven

by a combination of intensified hydrology and increased nutrient availability. The weakening

of the land sensitivity to temperature was diminished by 2300 because of rising maintenance

respiration costs at high temperatures that reduced vegetation productivity.

The overall climate–carbon cycle feedback gain, g, was dominated by the temperature sen-

sitivities of terrestrial and marine ecosystems and ocean circulation processes. Although the

temperature sensitivity to rising atmospheric CO2, α, declined by 31% between 2100 and

2200, from 0.0075 K ppm−1 to 0.0052 K ppm−1, the gain increased by 34–65% over this same

time period (Figure 4.8 and Table 4.4). During the 23rd century, the climate sensitivity rose

slightly, from 0.0052 K ppm−1 to 0.0056 K ppm−1, and the gain continued to climb another

35–41%, in response to a slowing growth rate and temperatures that continued to rise, and

despite rising sensitivities to atmospheric CO2, βL and βO. We calculated the feedback gain

century-by-century, using Equation (4.1), from feedback parameters derived from individual

simulations, from pairs of experiments, and combinations of single and paired simulations

(Table 4.4). All of these estimates of the feedback gain corresponded well with each other

at 2100. However, they diverged after 2150 and clustered around two different values at

2300, depending on whether the temperature sensitivities, γ, were obtained from the RAD

or the combination of FC and BGC simulations (Figure 4.8(b)). The gain estimated from

compatible emissions, using Equation (4.17), corresponded well with those estimated from

the γFC−BGC parameters (Figure 4.8(b) and Table 4.4).
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Figure 4.7: The land concentration–carbon sensitivity, βL, was 0.44 Pg C ppm−1, and the
land climate–carbon sensitivity, γL, was −48.25 Pg C K−1 at the end of the 23rd century.
Global βL and γL values shown above the maps in (c) and (d) may differ from those shown
on the plots and reported in Table 4.4 because 1) they are computed as the unweighted
mean of the cell-by-cell sensitivities, and 2) temperature changes are calculated as decadal
differences in the maps.
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different values, depending on the method and experiments used to calculate it.
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4.3.3 Driving mechanisms of nonlinear ocean and land responses

The growing difference between the increasing sensitivities of ocean carbon flux to climate af-

ter 2100 was a consequence of reduced exchange between surface and intermediate and deep

waters, including weakening of the Atlantic meridional overturning circulation (AMOC).

Randerson et al. (in press) quantified the AMOC weakening in similar FC and BGC sim-

ulations of CESM1(BGC) that included land use change. The AMOC decreased primarily

during the 22nd century and stabilized around 5 Sv by 2300, consistent with long-term simu-

lations that employed other CESM configurations that followed the RCP 8.5 scenario (Meehl

et al., 2012, 2013). Randerson et al. (in press) estimated a climate–carbon sensitivity for the

ocean that was 7% weaker than derived here from the combination of FC and BGC simu-

lations, γFC−BGC
O , suggesting a similar degree of stratification between the two fully coupled

simulations. In the warming-only simulation presented here, exchange between surface and

intermediate and deep waters was significantly reduced, resulting in a γRAD
O that was 68%

weaker than γFC−BGC
O at 2300. This climate change-induced circulation change, partially

due to temperature-induced weakening of the solubility pump (Long et al., 2013), was the

source of nonlinear marine responses that grew as temperatures increased in the 22nd and

23rd centuries, consistent with the nonlinear ocean feedbacks reported by Schwinger et al.

(2014) from their analysis of seven CMIP5 models.

After year 2000, gross primary production (GPP) on land increased more rapidly under

the combined effect of climate change and elevated CO2 than under the effect of elevated

CO2 alone, and ended 8% higher at 2300, having increased globally by 84% (Figures 4.9(a)

and 4.10(a)). This acceleration of production rates in the FC simulation was fueled by

increased precipitation and N mineralization, in response to climate change, and stomatal

closure, in response to elevated CO2. The nonlinearity metric was 0.25, indicating that

the change in GPP expected from the combination of the RAD and BGC simulations was

25% lower than that exhibited by the FC simulation. Ecosystem respiration (ER) in all
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three simulations exhibited behavior similar to GPP and produced the same nonlinearity

metric (Figure 4.9(b)). Net primary production (NPP) increased less dramatically due to

soil respiration increases, which were driven up by increased temperatures and precipitation;

surging litter inputs; and plant growth and maintenance respiration that were driven up

by rising temperatures (Figure 4.9(c)). Most regions saw gains in NPP, particularly in

the tropics (Figure 4.9(d)), with notable exceptions being northeast South America, south

Central America, and west sub-Saharan Africa, which experienced persistent and increasing

dryness due to large scale atmospheric circulation responses to rising temperature.

To investigate the regional contributions to nonlinear responses in GPP, we produced maps

of GPP change from single and combined experiments in a 3 × 3 arrangement, shown in

Figure 4.10. The first column of maps—identified as Figures 4.10(a), 4.10(d), and 4.10(g)—

are identical and indicate the GPP changes under simultaneous climate change and ele-

vated CO2 at year 2300. Figures 4.10(b) shows the GPP changes for the warming-only

experiment, indicating widespread production declines primarily in tropical and subtropical

forests. Figure 4.10(h) shows the GPP changes for the elevated CO2-only experiment, ex-

hibiting widespread increases in annual production rates. The GPP changes from the RAD

simulation, combined with those from the BGC simulation, are shown in Figure 4.10(e).

Subtracting the second column of maps from the first column of maps yields the third col-

umn of maps. Therefore, Figure 4.10(c) (∆FC − ∆RAD) shows primarily very large GPP

increases, since the losses from the RAD simulation were subtracted from the large gains

in the FC simulation. Likewise, Figure 4.10(i) (∆FC −∆BGC) shows a mixed set of GPP

changes globally, since GPP gains were often larger in the FC simulation than in the BGC

simulation. Finally, Figure 4.10(f) (∆FC−(∆RAD+∆BGC)) shows the regions where GPP

gains and losses resulted from nonlinear responses in the FC simulation. In this map, we

observed strong nonlinear increases in rates of production in the tropics, particularly in the

Central Amazon Basin, and moderate increases in subtropical forests. Nonlinear GPP losses

were moderate, with the greatest declines occurring in western coastal South America, parts
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Figure 4.9: (a) The gross primary production (GPP) of the FC simulation exhibited larger
than expected gains under the combined conditions of increasing temperature and elevated
CO2. (b) The trajectories of ecosystem respiration (ER) for all three simulations correspond
well with and were slightly lower than GPP. (c) The net primary production (NPP) for the FC
simulation cross that of the BGC simulation just before 2200 due primarily to hydrological
imbalances in regions where strong drying was expected to occur. (d) NPP losses by 2300
were largest where drought stress was induced by strong circulation changes in the 22nd and
23rd centuries.
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of South Africa, and northern India.

The nonlinear response in GPP was driven by a variety of interacting energy, water, and nu-

trient factors, many of which strengthened after 2100. Chief among these factors was a large

increase in global precipitation as a consequence of climate change (Figure 4.11(a)). While

global precipitation increased by less than 1% in response to elevated CO2, climate change

and the consequent atmospheric circulation changes induced a 20% increase in precipitation

globally. After 2100, precipitation increased more rapidly in response to climate change and

elevated CO2, likely due to additional precipitation recycling as a consequence of the positive

feedback with GPP that enhanced leaf area. By the late 20th century, divergent responses in

evapotranspiration (ET) due to warming and to increasing atmospheric CO2 were already

evident (Figure 4.11(b)). In the RAD simulation, increasing heat stress drove up ET in the

21st and 22nd centuries. It continued to rise slightly in the 23rd century, for a total increase

of 14%, due primarily to ground evaporation because of the dramatic loss of vegetation in

this simulation. In contrast, increasing atmospheric CO2 pushed up the water use efficiency

of vegetation, as a consequence of stomatal closure due to the improved carbon assimilation

efficiency with elevated CO2, driving ET down by 17% at 2300. When climate change and

increasing CO2 acted together, ET had increased by less than 1% by 2300, yet the combi-

nation of the RAD and BGC simulations suggested it should have decreased by 2% instead,

resulting in a large nonlinear metric value because of the sign difference. The divergence of

ET in the FC simulation from its expected trajectory at 2100 was a consequence of increased

canopy evaporation and increased transpiration due to enhanced leaf area.

To investigate the regional distribution of nonlinear responses in precipitation, we produced

maps of precipitation differences from single and combined experiments in a 3× 3 arrange-

ment, shown in Figure 4.12. Strong increases in precipitation due to elevated CO2 under

simultaneous climate change occurred in western tropical South America, central tropical

Africa, and the Indo-Pacific region; while the largest precipitation declines were in eastern
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equatorial South America, as shown in Figure 4.12(c). The spatial distribution of nonlinear

precipitation change anomalies under climate change and elevated CO2 conditions is shown

in Figure 4.12(f). Precipitation declines occurred in eastern South America, southeast Asia,

and northwestern Australia, while the largest increases were observed in inland tropical

South America, central tropical Africa, and the Indo-Pacific, further suggesting that these

positive anomalies may be due to precipitation recycling in or around dense tropical forests.

We estimated net water availability as the difference between precipitation and evapotranspi-

ration, P−ET, and found that the nonlinearities in these two factors counteracted, although

not perfectly (Figure 4.11(c)). While only a negligible precipitation increase was exhibited

under elevated CO2, its trajectory of P−ET was higher than that of the warming-only

simulation until the end of the 23rd century due to the strong stomatal closure effect. At

2300, P−ET had increased by about 34% in the RAD and BGC simulations, while it had

increased by about 65% in the FC simulation. The largest increases in P−ET occurred in

the western half of South America, the middle of tropical Africa, the Indo-Pacific region,

and the southern edge of the Tibetan Plateau (Figure 4.11(d)). Sensible heat rose due to

a repartitioning from latent heat as a consequence of stomatal closure under elevated CO2,

while overall temperatures increased as a result of climate change (Figure 4.13(a)). In the

FC simulation, the effects of rising temperature and stomatal closure combined, resulting in

a 48% increase in sensible heat globally by 2300. However, the change expected from the

combination of the RAD and BGC simulations was 9% greater than that produced by the

FC simulation due to enhanced leaf area that resulted in increased canopy evaporation and

transpiration. Trajectories of latent heat exhibited the same pattern as trajectories of ET

(Figure 4.13(b)). Soil moisture, integrated down to 1 m, decreased due to climate change in

the 21st and early 22nd centuries, despite increases in precipitation, due to increasing heat

stress on global vegetation (Figure 4.13(c)). Under elevated CO2, soil moisture increased

after 2000 and was 2% larger by 2300. Under the combined conditions of climate change and

elevated CO2, soil moisture increased with a trajectory similar to that of the BGC simula-
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(b) Trajectories of evapotranspiration for the RAD,
BGC, and FC simulations
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(c) Trajectories of precipitation minus evapotran-
spiration (P − ET) for the RAD, BGC, and FC
simulations

(d) Spatial pattern of P − ET for the FC simulation
at 2300

Figure 4.11: (a) Precipitation over land increased as a result of strong temperature increases
in the RAD and FC simulations, with no appreciable change seen in the BGC simulation.
After 2100, the FC simulation exhibited higher than expected precipitation, likely driven
by increases in recycling attributable to gains in canopy evaporation.(b) Correspondingly,
the FC simulation exhibited larger than expect evapotranspiration. (c) Despite the lack of
increasing precipitation in the BGC simulation, net P − ET was slightly above that of the
RAD simulation. (d) The regions of significant drying in northern South America exhibited
the largest declines in P − ET.

124



|| ||

(a
)

(d
)

(g
)

− − −

↓ ↑

(b
)

(e
)

(h
)

= = =

↑ ↓

(c
)

(f
)

(i
)

F
ig

u
re

4.
12

:
C

on
tr

ib
u
ti

on
s

of
ra

d
ia

ti
ve

ly
co

u
p
le

d
(R

A
D

)
an

d
b
io

ge
o
ch

em
ic

al
ly

co
u
p
le

d
(B

G
C

)
ch

an
ge

s
in

p
re

ci
p
it

at
io

n
to

th
e

fu
ll
y

co
u
p
le

d
(F

C
)

p
re

ci
p
it

at
io

n
.

125



5 y mean  sensible heat  (1850−2300)

Year

S
H

 (W
m

2 )

1850 1900 1950 2000 2050 2100 2150 2200 2250 2300

25
30

35
40

45

25
30

35
40

45

1 − (∆RAD +  ∆BGC) ∆FC = −0.09

RAD
BGC
RAD + BGC
FC

5 y mean  latent heat  (1850−2300)

Year

LH
 (W

m
2 )

1850 1900 1950 2000 2050 2100 2150 2200 2250 2300

35
40

45
50

55

35
40

45
50

55

1 − (∆RAD +  ∆BGC) ∆FC = 3.30

RAD
BGC
RAD + BGC
FC

5 y mean  soil moisture to 1 m  (1850−2300)

Year

S
M

oi
st

 to
 1

m
 (m

m
)

1850 1900 1950 2000 2050 2100 2150 2200 2250 2300

91
92

93
94

95

91
92

93
94

95

1 − (∆RAD +  ∆BGC) ∆FC = −0.22

RAD
BGC
RAD + BGC
FC

5 y mean  total liquid runoff  (1850−2300)

Year

R
un

of
f (

m
m

/d
)

1850 1900 1950 2000 2050 2100 2150 2200 2250 2300

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1 − (∆RAD +  ∆BGC) ∆FC = −0.07

RAD
BGC
RAD + BGC
FC

Figure 4.13: (a) Sensible heat increased in all three simulations. (b) The trajectories of latent
heat corresponded well with the trajectories of ET (Figure 4.11(b)). (c) The FC and BGC
simulations exhibited similar trajectories of soil moisture to 1 m depth. (d) Trajectories of
total liquid runoff corresponded well with trajectories of P − ET (Figure 4.11(c)).

tion, which, by 2300, was about 0.5% lower than expected from the combination of the RAD

and BGC simulations due to rising maintenance respiration in the 23rd century. Since soil

moisture increases were modest globally, the trajectories of total liquid runoff for all three

simulations were very similar to the trajectories of P−ET, described above (Figure 4.13(d)).

In addition to the hydrology–GPP feedback that drove nonlinear terrestrial biosphere re-

sponses, increased soil nitrogen availability also played a significant role in fueling growing

rates of primary production. Under climate change, rising soil temperatures and rainfall

rates increased rates of N mineralization since microbial fixation is temperature and mois-

ture dependent (Figure 4.14(a)). Rates of N mineralization increased almost linearly under
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5 y mean  nitrogen mineralization  (1850−2300)
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(a) Trajectories of global net nitrogen mineraliza-
tion for the RAD, BGC, and FC simulations

(b) Spatial distribution of change in net nitrogen
mineralization in the FC simulation

Figure 4.14: (a) Increases in net nitrogen mineralization were widespread in the FC simu-
lation, driven by increases in nitrogen deposition forcing and rising soil temperatures. (b)
The spatial pattern of N mineralization reductions by 2300 in the FC simulation correspond
well with the corresponding NPP losses shown in Figure 4.9(d).

elevated atmospheric CO2 conditions, rising 46% by 2300 due to substantial increases in litter

inputs from rising rates of primary production With both climate change and increasing CO2

acting together, N mineralization was driven up rapidly until the middle of the 22nd century,

when it began to stabilize before slightly decreasing by the middle of the 23rd century. By

2300, rates of N mineralization in the FC simulation had dropped to those exhibited in the

BGC simulation. As with GPP, the trajectory of N mineralization for the FC simulation

began to diverge from its expected trajectory at 2100 due to higher-than-expected precipi-

tation increases, resulting from intensified precipitation recycling and due to enhanced GPP

that yielded increased litter substrate, intensifying soil decomposition. The spatial pattern

of changes in rates of N mineralization suggests a strong relationship with both productiv-

ity and precipitation changes (Figure 4.14(b)). Rates increased in tropical and subtropical

regions, except those areas dominated by significant drying due to atmospheric circulation

changes.

The feedbacks between hydrology, productivity, and nutrient availability under warming-

induced climate change and rising anthropogenic atmospheric CO2 mole fractions were the
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source of nonlinear terrestrial ecosystem responses. The most significant drivers of the hy-

drological and ecological changes from all three simulations were quantified for the 451 y

simulation time period in Figure 4.15 and Table 4.3. The climate change contributions,

∆RAD, and the elevated CO2 change contributions, ∆BGC, to the changes in the fully

coupled simulation, ∆FC, are shown in red, green, and blue, respectively, in the table and

figure. The nonlinear metric for each variable is listed in Table 4.3, and is colored either in

red, if climate change was the dominant driver, or in green, if elevated CO2 was the dominant

driver. In the upper panel of Figure 4.15, the relative strengths of the contributing influences

of climate change or elevated CO2 are shown, with the remaining gray bar representing the

nonlinear component in the variable, constituting 100% of the FC simulation result. The

lower panel shows the relative size and direction of the changes in each variable from the

RAD, BGC, and FC simulations at 2300, summarizing the results discussed above.

4.4 Discussion

4.4.1 Comparison of climate–carbon cycle feedback parameters

with prior studies

Arora et al. (2013) analyzed idealized 1% y−1 increasing CO2 simulations for nine CMIP5

models, including the model used here, that were run for 140 y. They calculated concentration–

carbon sensitivities from BGC simulations and chose to use climate–carbon sensitivities

calculated from RAD simulations. Arora et al. (2013) reported the multi-model mean

(and standard deviation) of βL to be 0.92 (0.44) Pg C ppm−1, respectively. They found

CESM1(BGC) to have the second weakest land sensitivity to elevated CO2, βL, estimated at

0.24 Pg C ppm−1, which was only slightly stronger than the other model that incorporated

terrestrial N limitation. That value is 43% weaker than the 0.42 Pg C ppm−1 estimated from
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Figure 4.15: Shown are the most significant drivers of hydrological and ecological changes
exhibited by the RAD, BGC, and FC simulations. The upper panel shows the strength
of the RAD and BGC results for each variable in the FC simulation, with the difference
attributed to nonlinear effects (NL). The lower panel shows the strengths of each driving
variable relative to that of the strongest contributor, both positively and negatively. The
variables listed as labels along the x-axis are defined in Table 4.3.
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the BGC simulation of RCP 8.5 at 2100 found here. This weak response, relative to most

other CMIP5 models is likely caused by N limitation in the CESM1(BGC) land model, which

serves to constrain the productivity-enhancing effects of CO2 fertilization. Due to large un-

certainties regarding the effective strength of CO2 fertilization on the terrestrial biosphere

and the extent to which nutrient limitation regulates carbon uptake, it is not clear that this

weaker βL is the result of a model bias. Moreover, recent work suggested that lack of nutri-

ent limitation in most CMIP5 models led to projections that overestimated the strength of

land carbon uptake in response to elevated atmospheric CO2 (Wieder et al., 2015). Wieder

et al. (2015) further postulated that phosphorus limitation may ultimately constrain NPP,

especially in tropical ecosystems. For the land carbon uptake sensitivity to temperature, γL,

Arora et al. (2013) calculated the multi-model mean (and standard deviation) from the RAD

simulations to be −58.4 (28.5) Pg C K−1, respectively. For CESM1(BGC) they found γL to

be −21.3 Pg C K−1, which is very close to the −21.09 Pg C K−1 value at 2100 we calculated

from the RAD simulation of RCP 8.5 at 2100.

Arora et al. (2013) estimated the CESM1(BGC) ocean concentration–carbon sensitivity, βO,

to be 0.72 Pg C ppm−1, as compared to a value of 0.80 Pg C ppm−1, which was exhibited by

the BGC simulation of RCP 8.5 at 2100. The multi-model mean (and standard deviation)

of βO they computed were 0.80 (0.07) Pg C ppm−1, respectively. For the ocean climate–

carbon sensitivity, γO, they estimated the multi-model mean (and standard deviation) as

−7.8 (2.9) Pg C K−1, respectively, and for CESM1(BGC) as −2.4 Pg C K−1, weaker than

any other model in their study. That value was also 41% weaker than the γO estimate of

−4.06 Pg C K−1 found for the RAD simulation of RCP 8.5 at 2100. This weak response is

likely caused by biases in the CESM1(BGC) ocean model that result in weak intermediate

water formation and North Atlantic Deep Water (NADW) and Antarctic Bottom Water

(AABW) formation (Long et al., 2013). The similarity of the feedback parameters found

here with those Arora et al. (2013) found for the 1% y−1 increasing CO2 simulations suggests

that the feedback analysis methodology can be reasonably applied to scenario simulations
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that incorporate transient non-CO2 greenhouse gas mole fractions, aerosol loadings, and N

deposition.

4.4.2 Reducing effects of nonlinearity on feedback gains

Despite nonlinear ocean and land model responses exhibited by these simulations, the gain,

g, of the climate–carbon cycle feedback increases as temperatures rise in response to ra-

diative forcing. At 2100, the nonlinear ocean and land responses among the RAD, BGC,

and FC simulations resulted in γRAD
O and γRAD

L differences that nearly compensated for each

other (±6–7 Pg C K−1), producing a climate–carbon cycle feedback gain (Equations (4.9) and

(4.10)) that corresponded well with the gain computed from compatible emissions (Equa-

tion (4.17)) or computed using climate–carbon sensitivities derived from FC and BGC sim-

ulations, γFC−BGC
O and γFC−BGC

L (Equation (4.16)). Because of compensating short-term

ocean and land responses to climate change, these results appear to confirm the conclu-

sion of Gregory et al. (2009) that γ may be estimated consistently from either a radiatively

coupled simulation or the combination of a biogeochemically coupled and a fully coupled

simulation. Their reasoning is that γ is less sensitive to scenario differences than is β since

both global temperature and carbon uptake lag the radiative and atmospheric CO2 forcing.

However, nonlinear response characteristics are likely to interact and grow over time, as

demonstrated by the bifurcating gains in Figure 4.8(b) and Table 4.4, which led to rather

different climate–carbon cycle feedback gains in the long term.

At 2300, the overall climate–carbon cycle feedback gain was 28% lower when estimated from

climate–carbon sensitivities derived from the RAD simulation than when derived from the

difference between the FC and BGC simulations. Since nonlinear ocean and land responses

led to the lower gain and the gain estimated from compatible emissions calculations corre-

sponded well with the gain estimated from FC−BGC climate–carbon sensitivity parameters,
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we suggest that the larger gain is valid. This difference has direct implications for carbon

management and energy policies because underestimating the climate–carbon cycle feedback

gain would result in allowable emissions estimates that would be too low to meet climate

change targets. These results suggest that useful and comparable estimates of the climate–

carbon cycle feedback gain should be calculated from temperature sensitivity parameters

derived from the combination of FC and BGC simulations to best account for nonlinear

responses of the ocean and land in the feedback analysis framework. An important next

step is to derive the climate–carbon feedback sensitivities, γFC−BGC
O and γFC−BGC

L , for the

CMIP5 ESMs previously analyzed by Arora et al. (2013) to determine the strength of any

nonlinear responses in those models that were expressed over the relatively shorter 140 y

time period and to minimize the effects of those nonlinearities on estimates of the climate–

carbon cycle feedback gains. Alternative feedback gains calculated using these sensitivities

should provide for a more rigorous comparison between C4MIP, CMIP5, and CMIP6 carbon

cycle simulations.

4.4.3 Nonlinearity in terrestrial uptake responses

These simulation experiments showed that terrestrial carbon sinks were more efficient when

exposed to the combined effect of climate change and elevated CO2 than to the two effects

separately. In contrast, Zickfeld et al. (2011) found reduced land uptake under the combined

conditions of elevated CO2 and climate change than in the sum of the responses from the

two effects applied separately for their EMIC simulations. Differences in modeled vegetation

responses to climate change are likely the cause of these contrasting results. Zickfeld et al.

(2011) allowed dynamic conversion of vegetation types in their model, and observed that

climate change, in the absence of the ameliorating effects of CO2 fertilization, induced a

dieback of tropical forests and replacement by C4 grasses. While these tropical grasslands

stored less carbon as biomass than the forests they replaced, they were more productive
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and associated with higher soil carbon. To avoid confounding effects of land use change,

we enforced a static, pre-industrial distribution of vegetation and found that climate change

effects in isolation caused a collapse of tropical forests.

In the fully coupled simulation presented here, an unexpectedly large increase in gross pri-

mary production was fueled by the interactions of rising water availability and increasing

N mineralization in soil under the combined effects of increased atmospheric CO2 and con-

sequent climate change. Increased N mineralization was driven by a transient and globally

increasing N deposition forcing and accelerated decomposition due to rising temperatures

and water availability, resulting from the net radiative forcing of increasing atmospheric CO2,

other greenhouse gases, and aerosols. Increased water availability was the result of rising pre-

cipitation due to atmospheric circulation changes and increased evaporation from the oceans

that were driven by increasing temperatures, and a strong reduction in canopy transpiration,

resulting from stomatal closure under elevated atmospheric CO2 levels. Throughout the 22nd

and the early 23rd centuries, excess plant productivity moderately intensified positive feed-

backs in N mineralization through additional substrate inputs and in precipitation through

additional moisture recycling that was driven by larger than expected transpiration and

canopy evaporation resulting from a larger leaf area. These mechanisms formed a positive

feedback that served to drive up overall net land carbon storage in the FC simulation after

2100. However, as the atmospheric CO2 mole fraction stabilized and temperatures continued

to rise during the latter half of the 23rd century, heat and water stress began to set in, driv-

ing up maintenance respiration and weakening this positive feedback. Nevertheless, net land

carbon storage in the FC simulation was 309 Pg C by the end of the 23rd century, as opposed

to the 257 Pg C expected from a linear combination of the RAD and BGC simulation results.
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4.4.4 Symbiosis of experiments and modeling

Improving our knowledge of carbon cycle feedbacks with Earth’s climate system and re-

ducing ESM uncertainties associated with land and ocean responses requires a coordinated

program of in situ measurements, remote sensing observations, and manipulative field exper-

iments; modular and extensible model development; carefully crafted simulation experiments

designed to mimic historical conditions and manipulative field experiments; and comprehen-

sive and routine model assessment. Laboratory and manipulative field experiments have

been conducted in an attempt to disentangle terrestrial and marine ecosystem responses to

climate change and elevated atmospheric CO2, together and in isolation, and the influence

of nutrient availability on those responses (e.g., Reich and Hobbie, 2013). Free Air CO2

Enrichment (FACE) experiments, designed to measure the response of vegetation to ele-

vated atmospheric CO2 in isolation from any changes in climate, have been conducted in a

variety landscapes, hosting different vegetation types with various soil, water, and nutrient

constraints (Norby et al., 2005, 2010). Corresponding model experiments, employing a suite

of state-of-the-art terrestrial ecosystem models, have been performed to synthesize obser-

vational results and determine how well models capture vegetation responses to elevated

atmospheric CO2 with the objective of reducing model uncertainties (Walker et al., 2014;

Zaehle et al., 2014; Walker et al., 2015). However, large-scale FACE experiments have all

been carried out at mid-latitudes, while responses of tropical ecosystems are likely to have

the largest implications for the global carbon cycle. Fortunately, a new Amazon FACE ex-

periment has been designed and is under construction in a tropical forest site near Manaus,

Brazil (Tollefson, 2013). Similarly, air and soil warming experiments have been widely con-

ducted, but only recently have these been extended to high and low latitudes, where the

largest terrestrial carbon stores are located (Natali et al., 2012; Cavaleri et al., 2015).

Ocean manipulation experiments are more difficult to perform; however, iron fertilization

experiments and ongoing long-term geochemical monitoring campaigns, designed to gauge
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the response of the solubility pump and the biological pump to climate change, have produced

valuable data for constraining ocean carbon cycle models (Coale et al., 1996; Buesseler

et al., 2004; Boyd et al., 2007; Buesseler et al., 2008; Smith et al., 2009). More extensive

coordination between the modeling and experimental communities is needed to facilitate

design of measurement campaigns that best inform model development and to maximize the

utility of observations for assessing model performance. In addition, continued development

of free and open databases of observations is required to advance our scientific understanding,

drive improvement of process representations in models, and support detailed evaluation of

model results for informing mitigation and adaptation decision-making and planning.

4.5 Conclusions

Standard sensitivities of feedbacks between the global carbon cycle and Earth’s climate sys-

tem assume the response of carbon uptake to changes in atmospheric CO2 (the concentration–

carbon feedback or β) and changes in climate (the climate–carbon feedback or γ) combine

linearly for the ocean and land. Our long-term simulations from the CESM1(BGC) Earth

system model indicated that the degree to which these two feedback sensitivities combine

linearly is dependent upon how they are derived from simulation experiments. Radiatively

coupled (RAD) simulations produced a net ocean carbon storage climate sensitivity (γO)

that is weaker and a net land carbon storage climate sensitivity (γL) that is stronger than

those diagnosed from the fully coupled (FC) minus the biogeochemically coupled (BGC)

simulations. For the ocean, this nonlinearity was associated with warming-induced weak-

ening of ocean circulation and mixing that limited exchange of carbon between surface and

deeper water masses, consistent with the results of Schwinger et al. (2014). For the land,

this nonlinearity was associated with strong gains in vegetation productivity in the FC sim-

ulation that were driven by enhancements in the hydrological cycle and increased nutrient
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availability. We developed a nonlinearity metric for individual variables, which can be used

to rank nonlinear responses and drivers in a suite of radiatively coupled, biogeochemically

coupled, and fully coupled simulations.

Our experimental design enabled an assessment of nonlinear responses of ocean and land

carbon uptake to increasing temperature and elevated CO2, following the CMIP5 historical,

RCP 8.5, and ECP 8.5 protocol. Analysis of these experiments demonstrates that climate–

carbon cycle feedback analysis can be successfully applied to non-idealized climate change

scenario simulations that include transient non-CO2 greenhouse gases, aerosols, and N de-

position. For these simulations, the overall climate–carbon cycle feedback gain at 2300 was

28% lower when estimated from climate–carbon sensitivities derived from the RAD simula-

tion than when derived from the difference between the FC and BGC simulations. The gain

estimated from compatible emissions calculations corresponded well with the gain estimated

from FC−BGC climate–carbon sensitivity parameters, confirming the validity of the larger

gain. This difference has direct implications for carbon management and energy policies

because underestimating the climate–carbon cycle feedback gain would result in allowable

emissions estimates that would be too low to meet climate change targets.

Our results suggest that comparable estimates of the climate–carbon cycle feedback gain

should be calculated from temperature sensitivity parameters, γ, derived from the com-

bination of fully coupled and biogeochemically coupled simulations to best account for

nonlinear marine and terrestrial responses. In order to further reduce uncertainties asso-

ciated with these responses, coordinated campaigns of observations, modeling, and system-

atic assessment—involving close collaboration between the modeling, measurements, and

data management communities—are required. Next steps include assessment of nonlinear

responses in CMIP5 models and derivation of climate–carbon feedback sensitivities to esti-

mate climate–carbon cycle feedback gains for a more rigorous comparison between C4MIP,

CMIP5, and CMIP6 carbon cycle simulations.
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Chapter 5

Conclusions

5.1 Computational Climate Research

The research presented here demonstrated the utility of rigorous statistical methods and com-

putational experiments designed to elucidate differences between models and across model

configurations. I found a powerful emergent constraint on atmospheric CO2 and used it

to remove biases from a collection of model results, thereby reducing uncertainty in future

projections. To reduce biases in individual models, a systematic and rigorous campaign of ex-

tensive and multi-faceted model assessment must be routinely performed. Community-based

benchmarking, employing open source community-developed software like that created for

the International Land Model Benchmarking (ILAMB) activity, is one promising direction

for improving model structure and optimizing model parameters.

Similarly, systematic sampling strategies are useful for understanding ecosystem responses

to climate change and informing model improvements. This is particularly important in

harsh, often under-sampled environments like the Arctic and the tropics, where climate

change is most likely to have the strongest effects. In order for models to capture important
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processes and feedbacks, a rich body of unbiased and representative observational data is

required for parameterizing and evaluating model structures. Large-scale analytical meth-

ods, like multivariate spatiotemporal clustering, offer a quantitative means for optimizing

sampling networks and characterizing the representativeness of measurements across space

and through time at multiple scales. If performed correctly with adequate data, domains

stratified in this way provide a framework for up-scaling and extrapolating measurements to

regions within and beyond sampling locations, and they supply a quantitative measure of

uncertainty. Resulting data products can be used to initialize models, to constrain model

projections, or to evaluate model fidelity.

Long-term coupled climate–carbon cycle simulation experiments, incorporating different cou-

pling strategies, are useful for isolating individual processes and for quantifying feedbacks

between the global carbon cycle and Earth’s climate system. As shown here, slowly changing

carbon cycle processes may not express the impacts of climate change or elevated CO2 in

simulations that extend only for 100 years into the future, like those commonly performed

for Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. Moreover,

nonlinear biosphere and ocean responses to increasing temperature and rising atmospheric

CO2 levels challenge traditional methods for disentangling and quantifying individual feed-

back effects. Such feedback nonlinearities can lead to errors in estimates of terrestrial and

marine carbon sequestration potentials, affecting emissions and energy policies.

5.2 Future Research

The analytical tools and methods developed and applied in the studies presented here have

wide applicability for computational Earth science research. The emergent constraint ap-

proach applied here to reduce model spread in future projections by removing contemporary

biases in atmospheric CO2 predictions is not expected to apply for arbitrary model vari-
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ables or processes. However, a key objective of future research is to evaluate where and to

what degree emergent constraints may be usefully applied to reduce uncertainties in future

model projections. This assessment is likely to be connected with on-going research to iden-

tify metrics of land and ocean model fidelity that will support the development of an open

source benchmarking software system, which will be deployed to evaluate the performance

of the next generation of ESMs contributing to the sixth phase of the Coupled Model Inter-

comparison Project (CMIP6). This research will draw upon a growing body of in situ and

remotely sensed data. Data originating from the U.S. Department of Energy’s Next Genera-

tion Ecosystem Experiments (NGEE) for the Arctic and the tropics, locations already noted

as under-sampled and carbon-rich critical environments, are expected to provide unique con-

straints for model parameters and projections. Step change experiments, designed to mimic

field manipulations, will be designed and performed to test the transient behavior of models

while perturbing a small number of variables. For example, doubling or quadrupling atmo-

spheric CO2 mole fractions will mimic Free Air CO2 Enrichment experiments; increasing N

or P deposition in simulations will replicate field N or P addition experiments that have been

conducted under a variety of environmental conditions.

The representativeness methodology developed here helped inform site selection for the

NGEE Arctic project, which is presently making in situ measurements in the Barrow En-

vironmental Observatory. Field studies in the second phase of the project will transition to

the Seward Peninsula partially because this study indicated that current conditions on the

Seward Peninsula are likely to be representative of conditions on the coastal North Slope in

the future. The same approach was used to characterize the representativeness of the Cen-

ter for Tropical Forest Science CTFS-ForestGEO network (Anderson-Teixeira et al., 2015)

and will be further developed to inform site selection for the NGEE Tropics project. Since

existing CTFS-ForestGEO, RAINFOR, and Fluxnet monitoring sites may be candidates for

future NGEE Tropics sampling locations, an initial analysis was performed to show their

multi-network representativeness globally (Figure 5.1). Additional research is needed to
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Figure 5.1: This map indicates which sampling network offers the most representative cover-
age at any location on Earth. Every location is made up of a combination of three primary
colors for Fluxnet (red), CTFS-ForestGEO (green), and RAINFOR (blue). Light-colored
regions are well represented and dark-colored regions are poorly represented by one or more
of these sampling networks.

make maps of partitioned gradients like this useful for specific applications. For example,

some measure of ecoregion importance, represented by vegetation productivity or biodiver-

sity or biomass, may be used to adjust the weighting or to scale the color intensity to better

identify areas that warrant additional sampling sites. The multivariate spatiotemporal clus-

tering method used for defining ecoregions can also be applied to evaluate and compare

model results. An initial study comparing temperature, precipitation, and soil moisture

from 500-y business as usual simulation ensemble members was previously conducted and

published (Hoffman et al., 2005). Future research will extend this method by adding more

variables and introducing observational data sets into the analysis. These same techniques

may be applied to explore how landscapes are expected to transition as existing ecoregions

shift or vanish and as alternative ecoregions immigrate under climate change scenarios. One

possible next step is to investigate how zones disappear over time as a function of area within

the ECP 8.5 scenario out to 2300. Is there a predictable relationship between temperature

increase and areal extent for individual biomes?
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The third study presented here identified mechanisms in the terrestrial biosphere and in ocean

circulation that drove nonlinear ESM responses to increasing temperature and elevated CO2.

In the 22nd and 23rd centuries, these nonlinearities were expressed in feedback parameters

calculated from different simulations, leading climate–carbon cycle feedback gain trajectories

to diverge over time. This study showed, in particular, that using the RAD simulation to

calculate climate–carbon feedback sensitivities yielded lower carbon cycle gains due primarily

to the underestimate of land carbon sequestration potential from increased GPP, driven

by hydrological changes and increased nitrogen mineralization. Since Arora et al. (2013)

employed RAD simulations in the characterization of feedback responses for CMIP5 models,

one important next step is to derive the climate–carbon feedback sensitivities, γL and γO,

from the FC and BGC simulations instead. This will enable a more rigorous comparison

between C4MIP, CMIP5, and CMIP6 model results. While the differences in gain may not

be large at 2100, particularly if nonlinear responses in the ocean and on land compensate for

each other in the short term as they did here, this research indicated a preferred approach

for deriving γ for long-term carbon cycle simulations.
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(2013a), Carbon and other biogeochemical cycles, in Stocker et al. (2013b), pp. 465–570.

145

http://dx.doi.org/10.1175/JCLI-D-12-00365.1
http://dx.doi.org/10.1016/j.enpol.2007.08.039
http://dx.doi.org/10.1126/science.1131669
http://dx.doi.org/10.1029/2009GL037543
http://dx.doi.org/10.1126/science.1086895
http://dx.doi.org/10.1126/science.1154305
http://dx.doi.org/10.1038/425365a
http://dx.doi.org/10.1111/gcb.12860
http://dx.doi.org/10.1139/X10-074


Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries,
J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R. B. Myneni, S. Piao, and P. Thornton
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Freitas, E. Gloor, N. Higuchi, E. Jiménez, G. Lloyd, P. Meir, C. Mendoza, A. Morel,
D. A. Neill, D. Nepstad, S. Patiño, M. C. Peñuela, A. Prieto, F. Ramı́rez, M. Schwarz,
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Bréon, J. A. Church, U. Cubasch, S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J. M.
Gregory, D. L. Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. K. Kumar, P. Lemke,
J. Marotzke, V. Masson-Delmotte, G. A. Meehl, I. I. Mokhov, S. Piao, V. Ramaswamy,
D. Randall, M. Rhein, M. Rojas, C. Sabine, D. Shindell, L. D. Talley, D. G. Vaughan,
and S.-P. Xie (2013a), Technical summary, in Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner,
M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, pp.
33–115, Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA.

159

http://dx.doi.org/10.1111/j.1461-0248.2004.00694
http://dx.doi.org/10.1890/1540-9295(2007)5[59:NAHDNE]2.0.CO;2
http://dx.doi.org/10.1890/1540-9295(2007)5[59:NAHDNE]2.0.CO;2
http://dx.doi.org/10.1641/B580807
http://dx.doi.org/10.1175/JCLI-D-13-00452.1
http://dx.doi.org/10.1073/pnas.0908322106


Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels,
Y. Xia, V. Bex, and P. M. Midgley (Eds.) (2013b), Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA.

Sturm, M., C. Rachine, and K. Tape (2001), Climate change: Increasing shrub abundance
in the Arctic, Nature, 411 (6837), 546–547, doi:10.1038/35079180.

Sturm, M., T. Douglas, C. Racine, and G. E. Liston (2005), Changing snow and shrub
conditions affect albedo with global implications, J. Geophys. Res., 110 (G1), G01,004,
doi:10.1029/2005JG000013.

Tans, P. (2009), An accounting of the observed increase in oceanic and atmospheric CO2

and an outlook for the future, Oceanography, 22 (4), 26–35, doi:10.5670/oceanog.2009.94.

Tape, K., M. Sturm, and C. Racine (2006), The evidence for shrub expansion in North-
ern Alaska and the Pan-Arctic, Global Change Biol., 12 (4), 686–702, doi:10.1111/j.1365-
2486.2006.01128.x.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the
experiment design, Bull. Am. Meteorol. Soc., 93 (4), 485–498, doi:10.1175/BAMS-D-11-
00094.1.

The Arctic Climate Impact Assessment (ACIA) (2005), Arctic Climate Impact Assessment,
Cambridge University Press.

Thompson, M. V., J. T. Randerson, C. M. Malmström, and C. B. Field (1996), Change
in net primary production and heterotrophic respiration: How much is necessary to
sustain the terrestrial carbon sink?, Global Biogeochem. Cycles, 10 (4), 711–726, doi:
10.1029/96GB01667.

Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald (2007), Influence
of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate
variability, Global Biogeochem. Cycles, 21 (4), GB4018, doi:10.1029/2006GB002868.

Tjiputra, J. F., C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Se-
land, and C. Heinze (2013), Evaluation of the carbon cycle components in the Norwegian
Earth System Model (NorESM), Geosci. Model Dev., 6 (2), 301–325, doi:10.5194/gmd-6-
301-2013.

Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G.
Schuur, and S. D. Allison (2013), Causes of variation in soil carbon simulations from
CMIP5 Earth system models and comparison with observations, Biogeosci., 10 (3), 1717–
1736, doi:10.5194/bg-10-1717-2013.

Tollefson, J. (2013), Experiment aims to steep rainforest in carbon dioxide, Nature,
496 (7446), 405–406, doi:10.1038/496405a.

160

http://dx.doi.org/10.1038/35079180
http://dx.doi.org/10.1029/2005JG000013
http://dx.doi.org/10.5670/oceanog.2009.94
http://dx.doi.org/10.1111/j.1365-2486.2006.01128.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01128.x
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1029/96GB01667
http://dx.doi.org/10.1029/2006GB002868
http://dx.doi.org/10.5194/gmd-6-301-2013
http://dx.doi.org/10.5194/gmd-6-301-2013
http://dx.doi.org/10.5194/bg-10-1717-2013
http://dx.doi.org/10.1038/496405a


van Vuuren, D., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G. Hurtt,
T. Kram, V. Krey, J.-F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S. Smith,
and S. Rose (2011), The representative concentration pathways: An overview, Clim.
Change, 109 (1), 5–31, doi:10.1007/s10584-011-0148-z.

Volodin, E., N. Dianskii, and A. Gusev (2010), Simulating present-day climate with the
INMCM4.0 coupled model of the atmospheric and oceanic general circulations, Izv. Atmos.
Ocean. Phys., 46 (4), 414–431, doi:10.1134/S000143381004002X.

Walker, A. P., P. J. Hanson, M. G. De Kauwe, B. E. Medlyn, S. Zaehle, S. Asao, M. Dietze,
T. Hickler, C. Huntingford, C. M. Iversen, A. Jain, M. Lomas, Y. Luo, H. McCarthy,
W. J. Parton, I. C. Prentice, P. E. Thornton, S. Wang, Y.-P. Wang, D. Warlind, E. Weng,
J. M. Warren, F. I. Woodward, R. Oren, and R. J. Norby (2014), Comprehensive ecosys-
tem model–data synthesis using multiple data sets at two temperate forest free-air CO2

enrichment experiments: Model performance at ambient CO2 concentration, J. Geophys.
Res. Biogeosci., 119 (5), 2169–8961, doi:10.1002/2013JG002553.

Walker, A. P., S. Zaehle, B. E. Medlyn, M. G. De Kauwe, S. Asao, T. Hickler, W. Parton,
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