
To the Graduate Council:

I am submitting herewith a thesis written by Forrest McCoy Hoffman entitled “Anal-
ysis of Reflected Spectral Signatures and Detection of Geophysical Disturbance Using
Hyperspectral Imagery.” I have examined the final electronic copy of this thesis for
form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Physics.

William E. Blass

Major Professor

We have read this thesis
and recommend its acceptance:

Robert N. Compton

Chia C. Shih

Stephen J. Daunt

Accepted for the Council:

Anne Mayhew

Vice Chancellor and
Dean of Graduate Studies

(Original signatures are on file with official student records.)



ANALYSIS OF REFLECTED
SPECTRAL SIGNATURES AND
DETECTION OF GEOPHYSICAL

DISTURBANCE USING
HYPERSPECTRAL IMAGERY

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knxoville

Forrest McCoy Hoffman

December 2004



Dedication

This thesis is dedicated to Joan, Nathaniel, and Bjørn-Gustaf.

ii



Acknowledgements

This research used data developed with partial support from the U.S. Depart-
ment of Energy National Petroleum Technology Office (NPTO). Resources for this
research were partially provided by the Center for Computational Sciences at Oak
Ridge National Laboratory. Oak Ridge National Laboratory is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE–AC05–
00OR22725. Site photos and information about the study area were provided by
William Hargrove, Rebecca Efroymson, Yetta Jager, and Tom Ashwood (Oak Ridge
National Laboratory, Environmental Sciences Division); Peter Earls (Oklahoma State
University, Department of Botany); Kerry Sublette (University of Tulsa, Department
of Chemical Engineering and Director of the Center for Environmental Research and
Technology); Tina Carlsen (Lawrence Livermore National Laboratory, Environmental
Restoration Division); Bryan Tapp (University of Tulsa, Department of Geosciences);
and Bob Hamilton (The Nature Conservancy, Tallgrass Prairie Preserve). Their as-
sistance is appreciated. I wish to thank my committee members: William E. Blass,
Robert N. Compton, Chia C. Shih, and Stephen J. Daunt. In particular, Dr. Blass’
sustained support as Major Professor and Dr. Shih’s recent encouragement and di-
rection are greatly appreciated.

iii

http://www.doe.gov/
http://www.doe.gov/
http://www.npto.doe.gov/
http://www.ccs.ornl.gov/
http://www.ornl.gov/
http://www.ornl.gov/
http://www.science.doe.gov/
http://www.ornl.gov/
http://www.ornl.gov/
http://www.esd.ornl.gov/


Abstract

Geophysical disturbances resulting from human activities often have significant
consequences for plants and animals, and even for entire ecosystems. Disturbances
resulting from petroleum exploration and production activities can have long term
impacts on soils, watersheds, rivers and lakes, vegetation, wildlife, and humans. These
anthropogenic disturbances are frequently the result of hydrocarbon (oil) or produced
water (brine) spills. Brine is usually produced simultaneously with oil or gas. The
ability to detect brine spills with remote sensing techniques would be valuable to
petroleum companies and industry regulators. The objectives of this research were
to 1) determine if brine spills could be detected spectroscopically, 2) determine if
spectral analysis could be performed using a statistical method to identify surface
features quickly and easily from large imaging spectroscopy data sets without mod-
eling and removing atmospheric effects or performing detailed spectral unmixing, 3)
develop a spectral signature for brine spills which could be applied at other loca-
tions, and 4) determine if brine spills could be detected using substantially fewer
spectral bands so that a smaller and cheaper instrument could be applied to detect
these disturbances. Using hyperspectral image cubes acquired by NASA’s Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) over Osage County, Oklahoma, a
multivariate statistical clustering technique successfully discerned well-documented
brine disturbances on the Tallgrass Prairie Preserve, and the resulting brine spectral
signature was applied to locate similar brine disturbances in surrounding image scenes.
While validating the prediction results by visiting the site was outside the scope of this
project, high resolution aerial photographs were used to assess the success of the pre-
dictions and attribute at least 40 of the 87 prediction regions to petroleum activities.
While a number of false positives resulted from the analysis, many of these are easily
discounted based on objects in the aerial photographs or explained by mineral/salt
accumulation. In addition, four bands from the 224-band hyperspectral imagery were
used to predict brine disturbances in one of the image cubes. Approximately 90% of
the prediction regions detected in the original analysis—which used 187 of the 224
bands—were again detected using only four spectral bands.
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Chapter 1

Introduction

Geophysical disturbances resulting from human activities often have significant conse-
quences for plants and animals, and even for entire ecosystems. Disturbances resulting
from petroleum exploration and production (E&P) activities, including drilling and
pumping, can have long term impacts on soils, watersheds, rivers and lakes, vege-
tation, wildlife, and humans. These anthropogenic disturbances are frequently the
result of hydrocarbon (oil) or produced water (brine) spills. Since hydrocarbons are
less toxic to vegetation than brine, areas affected by oil spills recover more quickly
than those affected by releases of produced water. Moreover, hydrocarbons may be
dispersed or eliminated by volatilization, solubilization, or microbial decomposition.
Brine spills, on the other hand, can have a more significant and longer-term impact
on the Earth [25]. Most oil and gas E&P operations produce formation water simul-
taneously with oil or gas. This water is piped via “gather” lines to a central separator
where oil is removed. It then travels back to unproductive wells, where it is pumped
back down into the Earth to help force up additional oil. This produced water can
have salt concentrations exceeding 100,000 mg/kg [8]. Soils affected by brine spills
are usually denuded of vegetation and are prone to compaction and erosion [24, 8].
As a result, brine spills can leave a nearly permanent mark on the landscape. Areas
which have suffered heavy erosion as a consequence of produced water releases are
often referred to as “brine scars.” Detecting and remediating such anthropogenic geo-
physical disturbances can improve ecosystem health and reduce recovery time from
decades or centuries to only years.

The ability to detect brine spills and scars with remote sensing techniques would be
valuable to both petroleum companies and industry regulators. The objectives of this
study were four-fold. First, determine if brine spills could be detected spectroscop-
ically. Second, determine if spectral analysis could be performed using a statistical
method to identify surface features quickly and easily from relatively large imaging
spectroscopy data sets without the traditional complications of modeling and remov-
ing atmospheric effects or performing detailed spectral unmixing. Third, develop a
spectral signature for brine spills and scars which could be applied at other loca-
tions to detect such geophysical disturbances. Fourth, determine if brine spills or

1



scars could be detected using substantially fewer spectral bands so that a smaller and
cheaper instrument could be applied to detect these disturbances.

The research results presented here suggest a technique for detecting brine dis-
turbances by combining remotely sensed hyperspectral imagery with a multivariate
statistical clustering technique. The technique was applied for a region in Oklahoma
where oil and gas exploration and production have occurred for more than 80 years.
The 224-band hyperspectral imagery was captured at a resolution of ∼25 m2 by
AVIRIS, the Airborne Visible/Infrared Imaging Spectrometer operated by NASA’s
Jet Propulsion Laboratory. Because of the large size of the data set, the relatively low
spatial and spectral resolution of the data, and the complexity of unmixing spectra of
surface features and removing atmospheric effects from the spectra, traditional spec-
troscopic analysis techniques cannot be easily applied to detecting surface features
over large geographic areas.

Instead, a multivariate statistical clustering technique was applied to separate and
group surface features based on their reflected spectral signatures without atmospheric
removal. As these results demonstrate, the clustering technique provides a fast, pow-
erful, and quantitative method for spectral analysis of complex hyperspectral imagery.
The clustering algorithm was originally developed by the author and collaborators on
a parallel computer constructed from surplus personal computers (PCs). Today, the
algorithm runs on Linux clusters as well as some of the fastest supercomputers in the
world, and it can be applied to very large and complex datasets [22, 19].

Located in the center of the study area is the Tallgrass Prairie Preserve, a 38,000
acre block of land set aside and managed as a natural prairie ecosystem. The mineral
rights for the Tallgrass Prairie Preserve belong to the Osage Nation, as is the case
for most of the surrounding county. Oil and gas production are the primary eco-
nomically important activities of Osage County, and production still occurs within
the boundaries of the Preserve. Because of its accessibility and the long history of
petroleum production within its borders, the Preserve represents an excellent place to
validate remote sensing of brine scars. While collecting data on the ground is outside
the scope of this project, digital georectified aerial photographs with a resolution of
1 m2 were used to visually inspect brine spill and scar sites predicted by the cluster
analysis.
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Chapter 2

Physics Foundation

2.1 Hyperspectral Imaging

In the 1960s and 1970s, sensors aboard artificial satellites orbiting Earth, like the
Thematic Mapper (TM) on LandSat, began imaging the planet through a handful of
carefully selected color filters. This technique became known as multispectral imag-
ing. It produces a small number of co-registered images from broad non-contiguous
spectral bands, seven for the TM. Since this additional spectral information proved
useful for understanding more about Earth’s environment, such spectroscopic remote
sensing was extended to the use of large numbers of contiguous and narrower spec-
tral bands spanning more of the electromagnetic spectrum: from the visible to the
near-infrared, and sometimes the ultraviolet and far-infrared regions. Called hyper-
spectral imaging, this technique produces a large number (sometimes hundreds) of
co-registered images which are usually stacked in a three-dimensional image cube with
axes of geographic position (x and y) and wavelength (λ) as shown in Figure 2.1.

The hyperspectral imaging technique was first employed in the 1980s by an in-
strument called the Airborne Imaging Spectrometer at NASA’s Jet Propulsion Labo-
ratory (JPL). Today, JPL flies a more advanced instrument called the Airborne Vis-
ible/Infrared Imaging Spectrometer or AVIRIS. The main objective of the AVIRIS
project is to identify, measure, and monitor constituents of the Earth’s surface and
atmosphere using molecular absorption and particle scattering signatures.

2.2 Airborne Visible/Infrared Imaging Spectrom-

eter (AVIRIS)

AVIRIS is a unique optical sensor that provides calibrated images of the upwelling
spectral radiance in 224 contiguous spectral bands with wavelengths from 400 to
2500 nanometers (nm) and a spectral bandwidth of approximately 10 nm. AVIRIS
is usually flown on a NASA ER–2 jet—a modified version of the U2 spy plane—

3
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Figure 2.1: A hyperspectral image cube. An image cube has axes of geographic
position (x and y) and wavelength (λ). The number 020 superimposed on the image
refers to the band number of the image shown on the top of the cube.

approximately 20 km above ground level (AGL) at about 730 km/hr. The instrument,
shown in Figure 2.2, has a 30◦ field of view and uses a scanning mirror to sweep
back and forth in “push broom” or “whisk broom” fashion producing 614 pixels
for the 224 detectors for each scan. It has a 20.4 Mbps data rate with 12 bit data
encoding. Radiation is passed through optical fibers to four separate reflective grating
spectrometers, each of which has a double-pass Schmidt optical configuration, and
silicon (Si) detectors for the visible range and indium-antimonide (InSb) detectors for
the near infrared. Detectors are cooled using liquid nitrogen (LN2). The on-board
data recorder writes to 35GB DLT tape IV media. When flown aboard the ER–2,
each pixel is approximately 20 m2 on the ground, yielding a swath about 11 km
wide. Ground data are recorded on board the instrument along with navigation and
engineering data. Every 512 scan lines, called a “scene,” produces about 140 MB of
data [2].

2.3 Imaging Spectroscopy

Hyperspectral imaging of the land surface is a passive remote sensing method since
the source radiation is not artificially produced. Instead, the Sun is the source of
emitted radiation. Solar radiation traverses the Earth’s atmosphere, reflects off of
the surface, and again traverses the lower atmosphere up to the aircraft altitude.

4



Figure 2.2: The AVIRIS instrument.

Chemical constituents of the atmosphere, differentially distributed at various alti-
tudes (see Table 2.1), absorb this radiation at particular wavelengths while chemical
constituents in surface vegetation, water, rocks, and soil absorb radiation at some
wavelengths and reflect radiation at other wavelengths. How radiation interacts with
matter depend upon the energy of the incident radiation.

Transmitted and reflected radiation from selected portions of the electromagnetic
spectrum can be measured to characterize objects of interest. The visible and infrared
regions of the spectrum are particularly good for remote sensing of the atmosphere and
land surface. In these regions, radiation interacts with valence electrons in molecules
(visible) and stimulates molecular vibrations and rotations (infrared) giving rise to
the observed absorption features in spectra [13, 32, 14, 6]. As a result, remotely
sensed hyperspectral images are snapshots of a complex and dynamic physical sys-
tem consisting of the Sun, Earth’s atmosphere, and Earth’s surface as well as the
instrument itself.

Each spatial element on the ground has a continuous spectral signature in the re-
sulting image cube, so in addition to viewing data in geographic space, hyperspectral
data can also be plotted, one cell or pixel at a time, in spectral space. These spectral
reflectance signatures can be used to classify surface features since soil, water, vegeta-
tion, and rocks and minerals all exhibit unique reflectance spectra. Figure 2.3 shows
three such spectral signatures: one typical of roads, one characteristic of vegetation,
and one representing lakes or water bodies. In this figure, the lower x-axis is in units
of wavelength and the y-axis is in units of radiance or intensity. The wavelength
of emitted radiation depends upon the speed of oscillation of an electric charge, in
this case in the photosphere of the Sun. This rate of oscillation, called frequency, is
denoted by ν and is related to the wavelength by

ν =
c

λ
(2.1)
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Table 2.1: The composition of Earth’s atmosphere. Adapted and corrected from
Goody and Yung [14] and Stephens [32].

Molecule
Volume
Fraction Comments

N2 0.7808 Photochemical dissociation high in the
ionosphere; mixed at lower levels

O2 0.2095 Photochemical dissociation above 95 km;
mixed at lower levels

H2O < 0.04 Highly variable; photodissocates above
80 km

Ar 9.34× 10−3 Mixed up to 110 km; diffusive separation
above

CO2 3.45× 10−4 Slightly variable; mixed up to 100 km;
dissociated above

CH4 1.6× 10−6 Mixed in troposphere; dissociated in
mesosphere

N2O 3.5× 10−7 Slightly variable at surface; dissociated in
stratosphere and mesosphere

CO 7× 10−8 Variable photochemical and combustion
product

O3 ∼ 10−8 Highly variable; photochemical origin

CFCl3 and
CF2Cl2

1–2× 10−10 Industrial origin; mixed in troposphere,
dissociated in stratosphere
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Figure 2.4: Atmospheric absorption spectra. (a) Black body curves for 6000 K and
250 K. (b) Atmospheric absorption spectrum for a solar beam reaching the ground.
(c) The same for a beam reaching the temperate tropopause. The areas beneath
the curves in (a) are proportional to energy fluxes. Integrated over all angles, and
averaged over time and over the globe, solar and terrestrial fluxes must balance;
for this reason the two curves in (a) are drawn with equal areas. Conditions are
appropriate to middle latitudes, with a solar elevation of about 40◦, or for diffuse
radiation. From Goody [13].

where c is the speed of light. The units of frequency are oscillations per second or
hertz. An alternative measure which does not depend on the speed of light is in terms
of wavenumber

ν̃ =
1

λ
(2.2)

which is the number of full cycles in a given unit of length, usually 1 cm. The upper
x-axis of Figure 2.3 shows the wavenumber in units of cm−1 corresponding to the
wavelength on the lower x-axis.

2.3.1 Atmospheric Absorption Spectra

The shape of the curves in Figure 2.3 is dominated by the shape of the black body
radiation curve of the Sun which peaks in the visible (350–750 nm) and decreases
asymptotically with increasing wavelength. Figure 2.4a shows the black body curve
for the Sun, which has a temperature near 6000 K, and for the Earth’s middle tropo-
sphere at approximately 250 K. The temperature distribution of the Earth’s atmo-
sphere is shown in Figure 2.5.

The large bands of absorption in all the spectra in Figure 2.3 are due to water vapor
(H2O), carbon dioxide (CO2), and other chemical constituents in the atmosphere as
noted in the figure. Spectra of individual chemical species combine when observed
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Figure 2.5: Vertical temperature structure of the atmosphere. The curve represents
the U.S. Standard Atmosphere [33].

through a column of the atmosphere as shown in Figure 2.6. The combined spectra
from important atmospheric species are also shown in Figure 2.4b for an up-looking
detector at ground level and in Figure 2.4c for an up-looking detector at 11 km AGL.
Absorption by these atmospheric molecules is even stronger in AVIRIS hyperspectral
imagery since the detector is down-looking at an altitude of 20 km AGL. In this case,
solar radiation traverses the atmosphere above 20 km, then traverses the densest
portion of the atmosphere (some 94% of its mass) twice—once before and once after
reflecting off the surface—prior reaching the detector.

The pressure and density of the atmosphere decrease exponentially with altitude
as follows

p(z) ≈ p(0) exp
(
− z

H

)
(2.3)

ρ(z) ≈ ρ(0) exp
(
− z

H

)
(2.4)

where p is the pressure, ρ is the density, z is the altitude, and H is the scale height of
the atmosphere. The scale height is taken to be approximately 7 km. This pressure
and density profile is shown in a log plot in Figure 2.7. In addition to the natural
broadening of atmospheric absorption lines due to the Heisenberg Uncertainty Prin-
ciple, significant pressure broadening results in wide bands of absorption and line
wings, particularly from H2O and CO2, over a large part of the infrared spectrum. In
fact, the complex vibrational-rotational absorption spectrum of water vapor combined
with the significant concentrations of it in the lower atmosphere produce a continuum
of absorption throughout much of the infrared region [14, 32].
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Figure 2.6: Infrared absorption spectra of atmospheric chemical species. The top
six panels contain spectra of important chemical species, and the bottom panel is a
simulated absorption spectrum of the atmosphere. From Valley [1].
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Figure 2.7: Vertical atmospheric pressure and density profile.
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2.3.2 Vegetation Reflection Spectrum

Vegetation reflects well at the short end of the visible region, hence its green ap-
pearance, but it is very strongly absorbing in most of the remaining visible spectrum
because of chlorophyll absorption. The resulting peak in the green is often referred
to as the “chlorophyll bump.” Plants on Earth are well adapted to the Sun be-
cause chlorophyll molecules absorb visible radiation in the process of photosynthesis
in which water and carbon dioxide are converted into sugar and oxygen. At the long
end of the red and the short end of the near infrared around 700 nm, plant leaves
quickly become very strongly reflective. This effect is known as the “red edge” and
is a powerful indicator of vegetation for remote sensing. Radiation partially scatters
off of leaf surfaces and internal cell walls, and partially refracts through cell walls.
Radiation may penetrate leaf surfaces through leaf stomates, and can Mie or Rayleigh
scatter off of cell organelles which have sizes on the order of visible light. Reflection
off and transmission through leaves is a complex function of cell and stomate shapes
and sizes.

Because of the characteristic properties of the reflection spectra of vegetation, an
index of biospheric activity is often computed as follows

NDVI =
Inir − Ivis

Inir + Ivis

(2.5)

where Inir is the intensity at a near-infrared wavelength and Ivis is the intensity
at a visible wavelength. Referred to as the normalized difference vegetation index
(NDVI), this quantity is an indicator of the amount of live vegetation in the field of
view of an optical sensor [32]. Since it is normalized, NDVI from various satellite and
suborbital platforms can be compared. Moreover, remote sensing can be applied to
the determination of plant species and in some cases to the detection of canopy cover,
plant health, stress, and senescence [31]. In addition, the “red edge” spectroscopic
feature has been studied in Earthshine experiments and is proposed as a surface
biomarker in the search for Earth-like extra-solar planets [30].

2.3.3 Spectral Mixing

Included in Figure 2.3 is the reflection spectra for a water body. Surface water tends
to be brighter than vegetation in the visible, but darker than any other feature in the
infrared since it is a strong absorber of energy. Also included in the figure is a spectral
curve for a road surrounded by grassy vegetation. This spectral trace is brighter than
vegetation in the visible and is much brighter in the infrared region; however, it also
exhibits a somewhat diminished “red edge” feature indicative of vegetation. Both
the roadway and the vegetation are contained in the hyperspectral image pixel used
to plot this spectral curve. This sort of “spectral mixing” is common in remote
sensing, and a number of “spectral unmixing” techniques have been developed in an
effort to discriminate between sub-pixel surface features [7]. Such techniques are not
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applied here since the objective is to determine if disturbances can be found in the
hyperspectral imagery without applying any corrections to the data.

Seven calibrated AVIRIS scenes extracted from two ER–2 flight lines were obtained
from the U.S. Geological Survey EROS Data Center for this analysis. The data are
in radiance units of microwatts per square centimeter per nanometer per steradian,
or µW/(cm2 × nm × sr). All seven scenes are from an over-flight performed in
July 1999. The scenes cover the entire Tallgrass Prairie Preserve and some of the
surrounding area in Osage County, Oklahoma. This area has both retired and active
oil and gas wells and has been used for petroleum production for over 80 years.

Traditional spectral and hyperspectral analyses employ models of atmospheric
transmission (e.g., MODTRAN [4]) and databases of molecular absorption (e.g., HI-
TRAN [29]) to simulate the effects of atmospheric composition and structure on
remotely sensed spectra. Once modeled, these effects are removed, with varying de-
grees of success. Software packages like ATREM (ATmospheric REMoval) [11, 12],
FLAASH (Fast Line-of-site Atmospheric Analysis of Spectral Hypercubes) [27], and
others will automatically perform atmospheric correction on hyperspectral imagery.
The resulting spectra may then be compared to catalogs of spectra from surface
rocks and minerals like the Splib05a of the U.S. Geological Survey [9]. Radiometric
calibration and spectral unmixing are usually required to match cataloged spectra,
particularly in highly heterogeneous landscapes.

Figure 2.8 shows reflection spectra for four common minerals from the Splib05a
spectral library. These spectra were collected in the laboratory under controlled
conditions and are in terms of reflectance. Brine disturbances are expected to have
a spectrum very much like the halite (NaCl) spectrum shown in the figure. While
kaolinite is almost as reflective from 700–1200 nm, halite is far more reflective than
all the other three minerals across the entire spectral range. As a result, brine spills
and scars should be strongly reflective in the visible and the near infrared.

Traditional strategies for spectroscopic analysis are of limited utility over large
geographic areas because of the large size of the hyperspectral data, the relatively
low spatial and spectral resolution of the data, the expensive on-the-ground radio-
metric calibrations that are required, and the complexity of unmixing surface features
and removing atmospheric effects from the spectra. An alternative strategy, like the
statistical clustering technique described here, may be more practical for some classes
of spectral analysis problems using large, complex hyperspectral imagery over a large
geographic area.
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halite (NaCl) goethite (αFeO(OH))

kaolinite (Al2Si2O5(OH)4) olivine (Mg2SiO4-Fe2SiO4 Fo89)

Figure 2.8: Sample mineral reflectance spectra from the Splib05a library [9].
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Chapter 3

Multivariate Geographic
Clustering (MGC)

Multivariate statistical clustering techniques are frequently used in data mining ap-
plications because of their ability to categorize or group a large number of objects
based on the similarity of many object properties. The resultant groupings typically
define a smaller number of super-objects with properties similar to the objects as-
signed to each group. Hargrove and Hoffman have pioneered the use of clustering
multivariate geophysical properties from maps in a geographic information system
(GIS), called Multivariate Geographic Clustering (MGC), as a means of objectively
and quantitatively delineating ecoregions from map stacks of 9 and 25 geophysical
characteristics or variables for the conterminous U.S. at a 1 km2 resolution [17, 15].
Ecoregions are land areas having similar characteristics important to plant and animal
species. The resulting regionalizations have been used to quantify the representative-
ness of the AmeriFlux sampling network [18, 16]. More recently, a variant of the tech-
nique has been applied to categorize land areas with properties which change through
time, notably, modeled global climate conditions evolving over decades to centuries.
This methodology, called Multivariate Spatio-Temporal Clustering (MSTC), yields
temporally-varying climate regimes which can be used to diagnose model behavior
and inherent model climate variability and to understand and interpret model pre-
dictions [23].

Originally developed on a custom-built Beowulf-style parallel computer constructed
from surplus personal computers (PCs) [19], the clustering algorithm employs a dy-
namic load balancing scheme with fault tolerance and restart capabilities. The code
is written in the C language and uses a master-slave parallel scheme employing MPI
(the Message Passing Interface) for interprocess communication on distributed mem-
ory parallel supercomputers [22]. The algorithm has been used to successfully analyze
large data sets on a wide variety of multi-processor supercomputers from small Linux
clusters to some of the largest commercial supercomputers available. The same al-
gorithm has also been used as a metacomputing or grid application to analyze very
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Figure 3.1: The Multivariate Geographic Clustering (MGC) procedure.

large datasets by coupling four supercomputers together across the U.S. via the In-
ternet [26].

The MGC technique, based on the iterative k-means clustering algorithm of Har-
tigan [21], is outlined in Figure 3.1. The left side of the figure (green) represents
geographic space, while the right side (cyan) illustrates the same map cells or obser-
vations in a multi-dimensional data space. The N characteristics of each map cell
(left top panel) are used as N coordinates for that observation in the N -dimensional
data space (right top panel). In Figure 3.1, N is three: temperature, organic matter,
and rainfall. Having no information about the geographic coordinates of each ob-
servation, the iterative clustering algorithm finds k groups of observations based on
their proximity, by simple Euclidean distance, in the N -dimensional data space (right
bottom panel). Reassembling the map cells in geographic space and coloring them
according to their cluster assignment yields a new map (left bottom panel) showing
regions of approximately equal variance with respect to the N characteristics used in
the clustering process.

3.1 Data Standardization

Since physical characteristics may be in any units and have any distribution, all input
data are standardized prior to the clustering procedure. The standardization process
computes the mean and standard deviation of each characteristic or data space axis,
then subtracts the mean from each data point and divides by the standard deviation.
If xij represents the value of each characteristic j for each data point i, then the mean
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is

x̄ =
N∑

j=1

x̄j êj (3.1)

where

x̄j =

∑n
i=1 xij

n
, (3.2)

N is the number of characteristics or data space axes, n is the number of data points
or observations, and the êj are orthogonal unit vectors which form the Euclidean data
space. The standard deviation is then given by

σ =
N∑

j=1

σj êj (3.3)

where

σj =

√∑n
i=1 (xij − x̄j)

2

n− 1
. (3.4)

New data values are computed for use in clustering as follows

yi =
xi − x̄

σ
=

N∑
j=1

yij êj (3.5)

where

yij =
xij − x̄j

σj

. (3.6)

Standardization results in a normalized data set where each characteristic has a mean
of zero and a standard deviation of one.

The means and standard deviations are saved so that centroid locations resulting
from the clustering procedure can be unstandardized to produce mean values in the
original units of the observations. If zkj represents the value for each axis j of each
resulting centroid k, then the unstandardized centroid values are

ck =
N∑

j=1

ckj êj (3.7)

where

ckj = (zkj × σj) + x̄j. (3.8)

The program used to perform data standardization and unstandardization is called
standardize. The C source code for this program is contained in Appendix A.1.
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3.2 The MGC Algorithm

The MGC algorithm starts with a set of k initial seed centroids, one for each of the
desired k cluster groups requested by the user. The locations of these initial centroids
in data space is determined from the entire collection of input maps using a fast
parallel algorithm called the “best of the best.” These initial centroids (or seeds) are
chosen to be the k most widely distributed observations in data space. On a parallel
computer this is accomplished by dividing up the total number of observations among
a number of computer processes, p. Each process begins by finding the k best seeds
from its portion of the observations. Then half the processes participating in the
computation send their k candidate seeds to the other half of the processes. Next,
the processes which have 2k seeds find the best k seeds from that set. This cycle
repeats with the number of active processes reducing by half in each generation until
only a single process must find the best k seeds from the best 2k candidates, the best
of the best.

In the iterative part of the algorithm, each observation is assigned to the centroid
to which it is closest by simple Euclidean distance in the N -dimensional data space.
In effect, each standardized observation yi is assigned to the cluster centroid ck which
minimizes the function

Eik = |ck − yi| =

√√√√ N∑
j=1

(ckj − yij)
2 (3.9)

where ck and yi are N -dimensional vectors. In the cluster code implementation, the
square Euclidean distance is used in order to avoid the high computational costs of
taking the square root.

At the end of each iteration, once all observations are assigned to a centroid, the
N coordinates of all observations assigned to each group are averaged to produce new
centroid locations for each cluster

ck =

∑nk

i=1{yi ∈ ck}
nk

=
N∑

j=1

∑nk

i=1{yij ∈ ck}
nk

êj (3.10)

where nk is the number of observations assigned to the cluster ck in the previous
iteration and yi ∈ ck refers to those nk observations.

After the centroid locations are computed, another iteration assigning observa-
tions to these new centroids begins. The iterative process of classifying observations
and adjusting centroid locations continues until fewer than a pre-determined num-
ber of observations (or a percentage of the total number of objects) change cluster
assignments during an iteration. After the process has converged on a particular clas-
sification or grouping, the N coordinates of the k centroids quantitatively define the
average characteristics or synoptic conditions for each cluster produced. The nomi-
nal stopping rule used is based on the number of observations which change cluster
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Figure 3.2: Error from sequential univariate analysis. As a true multivariate tech-
nique, clustering finds the actual, realized portion of data space.

assignment in a single iteration. When this number drops below 0.5%, clustering
iterations stop and the final cluster assignments and centroid locations are saved.

3.3 Examples of Cluster Features

One of the great advantages of clustering techniques is that they are multivariate.
That is, they consider all characteristics simultaneously. Some researchers make the
mistake of analyzing their data in a sequential univariate way believing they have
performed a multivariate analysis. Figure 3.2 illustrates the effect of such an analysis.
If some plant or animal can survive within some range of temperatures and some range
of humidity values, it is incorrect to assume that all combinations within those ranges
are safe. In fact, it could be that this species can withstand temperature extremes
only when humidity levels are low. The actual multivariate survival range could be
much smaller than that obtained by considering each variable in turn. MGC and
other multivariate clustering techniques consider all characteristics simultaneously
and would, as a result, yield clusters only within the actual multivariate range.

To better understand how the clustering algorithm partitions data multi-variance,
consider the sample data set shown in Figure 3.3. This data set represents some ob-
servations projected into a two-dimensional data space, and it has a Gaussian-like
appearance similar to many types of geophysical data. Once the data are standard-
ized, as described above, and seed centroid locations are found, it may be clustered
at any level of division less than the number of observations. If clustered at a level of
division of 15, the data points are grouped into 15 distinct clusters as shown in Fig-
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Figure 3.3: An example data set in a two-dimensional data space.

ure 3.4. Here, the data points are colored randomly by their cluster assignment. The
centroid locations are represented by the large colored disks which sit at the center
of the like-colored observations. Centroids can be considered to form a “skeleton” in
the body of observations.

At this level of division, the central data core—the densely populated region of
data space—is divided into seven distinct clusters while the sparsely populated re-
gions are divided into eight clusters. In general, centroids are distributed evenly
throughout data space; however, their distribution may be rather uneven in more
sparsely populated regions. This property is evident in Figure 3.4.

The “radius” of a cluster is often considered to further describe the “fit” of a
cluster result. While clusters do not actually have radii, since they would overlap each
other in almost any definition, a circular or hyperspherical radius is a natural concept
given the Euclidean distance calculations used in k-means clustering techniques. In
fact, clusters can be considered to have both inner and outer radii defined to be the
distance from the cluster centroid to the nearest and farthest observations assigned
to that cluster respectively. Such inner and outer radii are also shown in Figure 3.4.

The outer radii of clusters in the densely populated regions of data space are usu-
ally nearly equal; such clusters partition the data variance in an equal fashion. Mean-
while, in sparsely populated regions of data space, outer radii tend to be larger, highly
variable, and strongly dependent on the chosen level of division. In the densely popu-
lated region of data space, the inner radius of a cluster is usually small or zero, while
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Figure 3.4: Centroid locations and inner and outer radii for 15 clusters. The data
points are colored by their cluster assignment.

clusters in the sparsely populated regions of data space are likely to have non-trivial
inner radii. Grouping outliers into a few large clusters while equally partitioning the
majority of the data makes clustering valuable for scientific analysis.

In a sense, the number of clusters defines the “resolution” at which the multivari-
ance of the data is “sampled.” The magnification of a microscope can serve as analogy
to this “resolution.” When the magnification is low, only the largest features of an
object are visible. When the magnification is increased, much more of the detail of an
object becomes visible. When a complex object is viewed at a single magnification,
that magnification must be sufficiently high to expose the finest level of detail desired,
even if the detail of interest is isolated in a particular region of the object. The rest
of the object may be homogeneous and not warrant such a high magnification.

Choosing too few clusters will result in clusters with very large outer radii (and
very broad regimes when projected back into geographic space) which will likely
cause the researcher to miss salient features. Choosing too many clusters will cause
very small details and the effects of outliers to be amplified in the analysis. Desired
is an adequate sampling of the data multivariance which exposes sought-after fea-
tures. A suitable number of clusters is usually chosen—just like the magnification
of a microscope—by trying a few different orders of magnitude. The exact number,
however, is not particularly important.

20



The results from clustering the example data set at other levels of division are
shown in Figure 3.5. Some of the general features of clustering described above do
not hold at all levels of division. It is unlikely that choosing 2, 3, 4, or 5 levels of
division will produce a useful result. Similarly, choosing 25 or 30 clusters is probably
overkill. Instead, requesting between 10 and 20 clusters in this case should produce
reasonable results, but the exact number is usually not significant.

MGC has been shown to produce useful clues to plant and animal habitats when
certain geophysically-relevant variables are chosen as data space coordinates, and
the same technique can be applied to feature detection since almost any set of
geographically-coincident properties may be used as a data space coordinates to char-
acterize a map cell. In this study, the intensities of reflected radiation at different
wavelengths obtained from hyperspectral imagery serve as the characteristics for iden-
tifying surface features or patterns. The clusters uniquely classify land surface areas
based on their spectral properties.

Hyperspectral imagery can be considered in geographic space (one layer or wave-
length at a time), in spectral space (on cell or pixel at a time), and in N -dimensional
data space (all cells in the Euclidean space formed by using each wavelength as an or-
thogonal axis). In the analysis which follows, this imagery will be shown in geographic
and spectral space.

21



Figure 3.5: Clustering results for example data at various levels of division. The
levels of division shown here are 2, 3, 4, 5, 10, 20, 25, and 30.
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Chapter 4

Study Area

The Tallgrass Prairie Preserve (TPP) was created in 1989 when The Nature Con-
servancy (TNC) purchased the 30,000 Barnard Ranch north of Pawhuska in Osage
County, Oklahoma. See map in Figure 4.1. Now spanning over 38,000 acres, the
TPP partially fulfills TNC’s goal to recreate a functioning tallgrass prairie ecosystem.
Tallgrass prairie once covered over 142 million acres and was one of North America’s
major ecosystems supporting bison and many other animal and plant species. To-
day, large tracts of tallgrass prairie exist only in the Flint Hills of Oklahoma and
Kansas. The TPP is managed through a series of “prescribed” burns conducted at
different times of the year to mimic the original seasonality of presettlement fires. Fire
removes dead vegetation, controls encroaching woody vegetation, and increases the
vigor and flowering of many plant species. In 1993, TNC reintroduced a herd of 300
bison to the prairie and established the Adopt-a-Bison program to support and pre-
serve their habitat in the Preserve. The tallgrasses—big bluestem, Indiangrass, and
switchgrass—can grow as tall as eight feet in moist, deep soils reaching maximum
height in August and September. The TPP and surrounding area consist of large
watersheds which extend into cross-timber forests composed primarily of post and
blackjack oak. A diversity of grassland and forest habitats support a wide variety of
wildlife including the lesser and greater prairie chickens, numerous other bird species,
white-tailed deer, bobcats, armadillos, beavers, woodchucks, badgers, and coyotes1.

The Osage Reservation in Indian Territory was confirmed by Congress in 1872
and later became known as Osage County, Oklahoma. Being too difficult to till,
most of the Osage land is used for cattle ranching and oil and gas production.
During the “Oil Boom” of the 1920’s, the Osage nation became the richest na-
tive people in the United States. While oil exploration and production in this area
has declined in the intervening years, according to the website of the Osage Nation
(http://www.osagetribe.com/), the Osage presently have 13,251 actively producing
oil and gas wells yielding 11,738 barrels of oil per day and 15,200 million cubic feet

1Description of the Tallgrass Prairie Preserve adapted from The Nature Conservancy website at
http://nature.org/wherewework/northamerica/states/oklahoma/preserves/tallgrass.html

23



Figure 4.1: Map and driving directions to the Tallgrass Prairie Preserve.
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of gas per day. Over 100 active oil wells, out of some 300 wells drilled, are located
within the boundaries of the Tallgrass Prairie Preserve. These wells produce 15 to
20 barrels of oil per day and ten times that volume of brine [25], and the brine may
have salt concentrations exceeding 100,000 mg/kg [8]. This produced water forms
naturally with oil and gas. When it is extracted with the petroleum, it is piped via
“gather” lines to a central separator where oil is removed. It then travels back to
unproductive wells, where it is pumped back down into the Earth to help force up
additional oil. Oil and brine spills resulting from drilling and pumping, referred to as
“upstream petroleum activities,” present environmental risk to the prairie ecosystem.
Brine spills can have a more significant and longer-term impact on the Earth than
hydrocarbon spills [25]. Brine spills in this area usually kill all vegetation in the af-
fected area resulting in top soil erosion, soil compaction, and a significant geophysical
disturbance referred to as a “brine scar.” Recovery from loss of top soil and brine
contamination can take decades to centuries if the affected site is not remediated.
Remediation usually consists of application of gypsum and hay to the soil; however,
significant soil contamination may require leaching and draining strategies while to-
tal top soil loss may necessitate complete top soil replacement. Although ecologists
have attempted to assess and quantify the risk of spills to wildlife in this region [10],
remediation of brine scars remains a topic of current environmental research [24].
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Chapter 5

Methods

Since the objective of this study was to detect brine spills and scars from hyperspectral
imagery, some independent means of verification was needed. Although ORNL staff
visited the TPP for a related project, funding was not available for travel to the
site to verify brine scar predictions. Fortunately, 1 m orthophotos for Osage County
were found, and loaded into a Geographic Information System (GIS) for storage,
display, and manipulation. Since these orthophotos contained geographic coordinate
information, they served as the basis for georectification of the AVIRIS hyperspectral
imagery as well as a means for visually verifying some brine disturbance predictions.

5.1 Hyperspectral Imagery

Seven AVIRIS scenes from two flight lines over Osage County, Oklahoma, were
obtained from the U.S. Geological Survey EROS Data Center for this investiga-
tion. Scenes 3, 4, 5, and 6 from flight line Tallgrass Prairie Preserve 4 (labeled
f990719t01p03 r05) and scenes 4, 5, and 6 from Tallgrass Prairie Preserve 6 (labeled
f990719t01p03 r06) were obtained since they cover almost the entire TPP and some
of the surrounding county. These data were acquired by AVIRIS flying on the ER–2
aircraft on 19 July 1999, under clear sky conditions. Their spatial and temporal co-
ordinates are shown in Table 5.1. Quicklooks of the flight lines, which were flown in
opposite directions, are shown in Figure 5.1. In the discussion which follows, scenes
will be referred to as r0Xsc0Y where X is the flight line number (5 or 6) and Y is
the scene number (3, 4, 5, or 6 for flight line 5 or 4, 5, or 6 for flight line 6).

Table 5.1: AVIRIS flight lines used for analysis

Flight Line
Latitude Longitude Time

Start Stop Start Stop Start Stop
f990719t01p03 r05 +36◦42’54” +36◦54’30” −96◦12’48” −96◦36’36” 17:02:00 17:09:00
f990719t01p03 r06 +37◦00’06” +36◦48’48” −96◦36’36” −96◦12’48” 17:13:00 17:21:00

26



Scene 3

Scene 4

Scene 6

Scene 5
Scene 4

Scene 5

Scene 6

f990719t01p03_r05

Preserve 4
Tallgrass Prairie

10 km

Tallgrass Prairie
Preserve 6

f990719t01p03_r06

Figure 5.1: The AVIRIS scenes from two flight lines used for analysis.
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The AVIRIS data were stored as 16 bit big endian binary integer band-interleaved
files, one for each scene. A program called read data was written to extract the data
from the scene files into band-interleaved ASCII files for clustering and into separate
band files (224 for each scene) for loading into the GIS. The GIS files are written as
16 bit big endian binary 2s complement unsigned integers. Since this conversion was
performed on a little endian system, the program performed byte swapping for reading
and writing binary files. The source code for read data is listed in Appendix A.2.

5.2 Digital Orthophoto Quadrangles

A digital orthophoto quadrangle (DOQ) is a computer-generated image produced
from an aerial photograph. A DOQ has been orthorectified: altered pixel by pixel to
produce an image with the geometric features of a map with true geographic positions.
The U.S. Geological Survey (USGS) produces standard quads as gray-scale or color-
infrared images covering 7.5 minutes longitude by 7.5 minutes latitude. A digital
orthophoto quarter quadrangle (DOQQ) covers one quarter of the full 7.5 minute
quad. DOQQs have identification numbers, and the last digit is a number from one
through four identifying its position in the full DOQ.

While the USGS sells DOQQs via its EarthExplorer system and through its busi-
ness partners, links to 1-meter resolution DOQQs for Osage County, Oklahoma, were
found on the Geo Information Systems website at http://geo.ou.edu/ run by the Uni-
versity of Oklahoma. The files were downloaded from a File Transfer Protocol (FTP)
server operated by the Oklahoma State GIS Council. Fifty-two DOQQs were loaded
into a GIS where they were used to georectify the AVIRIS hyperspectral scenes and
visually identify geophysical features observed in the 25 meter resolution hyperspec-
tral imagery. Scripts used for downloading the DOQQs and loading them into the
GIS are listed in Appendix A.4. The source aerial photographs were all taken in
February, March, or April 1995 and were produced in August 1998.

5.3 Geographic Information System

The Geographic Resources Analysis Support System (GRASS) GIS was used to store,
manage, georectify, and display the hyperspectral imagery. Originally developed by
the U.S. Army Corps of Engineers Construction Engineering Research Laboratories
(CERL) to support land management and environmental planning by the military,
GRASS is now an Open Source1 software package released under the GNU General
Public License (GPL) [28, 3]. Widely used by researchers in academia and government
laboratories, it provides raster and vector capabilities, an image processing system,
and a graphics production system. GRASS is written in the C language and runs
on a variety of computer platforms including Linux and most Unix variants. GRASS

1For the Open Source Definition, see http://www.opensource.org/
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continues to be developed as a community project. It’s development is organized
primarily in Europe, and the official GRASS website is in Italy at http://grass.itc.it/.
It is also distributed as a part of the FreeGIS Project at http://freegis.org/.

DOQQs were loaded into GRASS using the r.in.doq command. A number of the
files containing the DOQQs were truncated by a few bytes. When r.in.doq encoun-
tered the end of the file before it was expected, it printed an error and exited. Since
only a few bytes were missing in the last raster line of the affected DOQQs, it would
have been preferable for the r.in.doq program to fill in the missing data and complete
the loading of the imagery into GRASS. To solve this problem, the source code for
r.in.doq was modified to fill in the value 255 for the missing cells. In main.c, the loop
which reads the DOQ data, shown in Algorithm 1, was modified to report an error
and pad the missing cells as shown in Algorithm 2. If GRASS were not an Open
Source package, loading the slightly truncated DOQQs would not have been possible
without modifying each affected binary file. The entire set of DOQQs obtained for
this study is shown in Figure 5.2.

Hyperspectral scenes were georectified against the DOQQs in GRASS using the
i.group, i.points , and i.rectify commands following the procedure described by Har-
mon and Shapiro [20]. All of the 224 images for each scene, one per band as output
by read data, were imported into the GIS. They were grouped together by scene using
the i.group command. Next, i.points was run on each scene to pick points in common
between the DOQQs and the AVIRIS imagery. This laborious process results in a
set of calculated coefficients for a second order least squares transformation which
projects groups of images into the geographic space of a corresponding map in the
GIS. Road intersections were the easiest features to match in this rural area. Imagery
of AVIRIS band 200 in which roads are strongly visible was used to match points
in the 1 m DOQQs. Approximately two scenes were georectified per eight hour day.
Since the resolutions were different by a factor of 25, selecting high quality points in
the two sets of images was a challenge. It was often necessary to drop previously-
selected points to reduce the error in the transformation model. Once a desired set of
points was selected, the i.rectify command was used to transform all imagery from all
bands simultaneously. The rectification model was saved by the GIS so that future
rectification of the same AVIRIS images could be performed. Since the cluster analy-
sis was performed on the raw AVIRIS imagery, the cluster results were later rectified
using the stored model for each scene.

Additional GIS coverages of roads, oil wells, and rivers and streams were obtained
from files originally compiled by Tom Ashwood for a related project [5], but these
were not used in the analysis. These coverages contained no metadata, and the roads
and streams coverages had a lower resolution than that of the DOQQs. The TPP
boundary was also obtained from Ashwood’s files and was used to determine which
brine scar prediction regions were located within the borders of the TPP. The seven
AVIRIS scenes (outlined in yellow) are shown overlain onto the full set of DOQQs
(outlined in green) along with roads (gray) and rivers and streams (blue) in Figure 5.3.
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Since more DOQQs were obtained than were needed, a new region was defined
in the GIS which just encapsulated the seven AVIRIS scenes, and the unnecessary
DOQQs were eliminated from display. Figure 5.4 shows this new region with the
AVIRIS scenes overlain on the relevant DOQQs with the TPP boundary outlined in
red.

Algorithm 1 This loop reads DOQ data in r.in.doq .

for (row = 0; row < nrows; row++)
{

if (fread((char *) bcell,1,ncols,fd) != ncols) {
char msg[100];
sprintf(msg,"error in reading row %d",row);
G_fatal_error (msg);
exit(1);
}

for (i=0;i<ncols;i++) {
cell[i] = (CELL)bcell[i];
if (max < cell[i]) max = cell[i];
}

G_put_raster_row (cf, cell, CELL_TYPE);
}

Algorithm 2 This modified loop reads DOQ data and pads missing cells in r.in.doq .

for (row = 0; row < nrows; row++)
{

if ((got_cols = fread((char *) bcell,1,ncols,fd)) != ncols) {
fprintf(stderr, "Error reading row %d; got %d columns; \

padding remaining %d cells with 255\n", row, got_cols,
(ncols - got_cols));

for (i = got_cols; i < ncols; i++)
bcell[i] = 255;

}
for (i=0;i<ncols;i++) {

cell[i] = (CELL)bcell[i];
if (max < cell[i]) max = cell[i];

}
G_put_raster_row (cf, cell, CELL_TYPE);

}
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Figure 5.4: The geographic region encapsulating the AVIRIS scenes. The scenes
(yellow) and relevant DOQQs (green) are shown with the TPP boundary (red).
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5.4 Cluster Analysis

Scene r05sc05 was chosen for an initial cluster analysis because it was known to
contain large, well-documented brine scars within the borders of the TPP. This area
had been visited by ORNL and LLNL staff, and boundaries of these two brine scars
were recorded by Bill Hargrove using a Global Positioning System (GPS) during that
site visit.

Scene r05sc05 was clustered at a few different levels of division, and all of the
results showed cohesive geographic regions which appeared to be individual surface
features. Next, intensity maps of each of the 224 AVIRIS bands for this scene were
visually inspected to understand the contribution of each to the clustering results.
A stack of such intensity maps is shown in Figure 2.1 with band 20 exposed on the
top of the image cube. As expected, the intensity maps for bands at wavelengths of
strong water vapor absorption (see Figure 2.3) showed no significant deviation from
zero. Most of these maps contained only random or instrumental noise; however,
some linear patterns in the noise were visible. Since noise in these bands should
not contribute to feature detection, these bands were removed from all the data sets
used for subsequent cluster analyses, reducing the number of characteristics or data
space axes from 224 to 187. All of the 224 calibrated instrument channels and their
uncertainties are shown in Table A.1. Notice that bands 33–35 are out of order with
respect to increasing wavelength; as a result, all spectra plots of AVIRIS data were
sorted by wavelength. The 187 bands retained for subsequent cluster analysis are
denoted in the table by a check (X) in the sixth column.

Using the 187 remaining bands, all seven AVIRIS scenes were clustered indepen-
dently at integral levels of division from 13 to 22. The clustering results for a level
of division of 16 for all seven scenes after being georectified are shown as randomly
colored maps overlain onto the DOQQs in Figure 5.5. As is evident in this figure,
interesting surface patterns are extracted by the clustering algorithm; however, be-
cause each scene was clustered independently, cluster numbers and definitions (and
therefore map colors) are different across all the scenes. Since the extents of two brine
scars in scene r05sc05 were known, a method for using the spectral signature informa-
tion from those disturbances to find additional spills across all the scenes was desired.
While all the scenes could have been clustered simultaneously, the fact that each
scene was calibrated independently with different absolute intensities compromises
the results of this method.

To achieve the desired result, it was first necessary to find a suitable level of
division for only the r05sc05 scene. This scene was clustered at every level of division
from 13 to 32, and at each level of division, the cluster representing the known
brine scars was determined from the resulting cluster maps after georectification.
Figure 5.6 shows a histogram of brine scar predictions in terms of the number of cells
(after georectification) for the entire scene at all levels of division. In this figure,
each group of cells is colored uniquely so that each group can be identified across
all the levels of division shown. As expected, as the level of division is increased,

34



Figure 5.5: All scenes clustered independently into 16 pieces and georectified.
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Figure 5.6: Histogram of brine scar prediction cells in r05sc05.

the cluster becomes more unique or tightly defined in data space. Therefore, it’s
cell membership is correspondingly reduced. However, this is not strictly true as the
histogram demonstrates. The same data are presented in tabular form in Table 5.2.

All of the cluster results predict the same 119 cells as brine scars (shown in red
on the left in Figure 5.6). At a level of division of 13, far too many cells, 1520 in
total, are included as brine scar predictions, but at all other levels of division, the
brine scar cell membership is 233 or fewer. At 30 clusters, brine scar cell membership
is the lowest at 120. It would appear that this cluster defines a unique and rather
stable set of observations in data space across many levels of division. The number of
cells defined as brine scars will not depend significantly on the exact level of division
chosen between 17 and 32. Based on the stability of the brine scar predictions for
this scene and the analysis of brine scar prediction maps which follow, the clustering
result for a level of division of 18 was selected. At this level of division, the brine scar
cluster consists of 135 cells or 0.043% of the total number of cells in the entire scene.
Maps of brine scar predictions for two well-known brine scars were analyzed to verify
predictions at all of these levels of division.
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Table 5.2: Map statistics across levels of division for scene r05sc05.

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Cells

X X X X X X X X X X X X X X X X X X X X 119
X X X X X X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X X X 2
X X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X X X 1
X X X X X X X X X X X X X X 5
X X X X X X X X X X X X X 1
X X X X X X X X X X X X X 1
X X X X X X X X X X X X 1
X X X X X X X X X X 1
X X X X X X X X X 1
X X X X X X X X 8
X X X X X X 1
X X X X X 14
X X X X 43
X X X 10
X X 20
X 1287

312848
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The two large, well-documented brine scars in r05sc05 are easily visible in the
DOQQs in Figure 5.7. The red line is the TPP boundary and the white lines connect
the GPS points collected by Hargrove during a site visit in 13 June 2001. The brine
scar on the left is a result of a leaking produced water tank north of the roadway.
That tank is no longer standing. The path which follows the arc of the TPP boundary
on the left then passes south of the brine scar on the right is an old railroad bed which
no longer contains tracks. The brine scar on the right is a very old and heavily eroded
area which is bisected by a fence which follows the TPP boundary. Hargrove did not
cross the fence, so the GPS points follow the fence line. This scar is often referred to
as Site 5, and it appears in aerial photographs as far back as 19372. A photograph
taken within the interior of this brine scar in 1999 is shown in Figure 5.8. A 2001
photograph of the portion of this scar which extends beyond the TPP boundary is
shown in Figure 5.9.

Contained in Figures 5.10 and 5.11 are the brine scar predictions produced from
the cluster analysis of r05sc05 at levels of division from 13 to 30. While at 13 clusters
too many spots are included in the predictions, all the other figures show very similar
results. There are 86 cells common to all the predictions. The same 90 cells are
“turned on” in both the 18 and the 23 clusters maps for this area. Aside from
the prediction for 13 clusters, all the other levels of division predict the same three
discrete brine spills: the two large ones described above and another one alongside
the bare railroad bed in between the other two. Consistent with the histogram shown
in Figure 5.6, the choice of the level of division between 17 and 30 produced brine
scar predictions which were not significantly different from each other.

Brine scar prediction maps for the entire r05sc05 scene were inspected to ensure
that roads and other bare ground areas were not substantially included in the pre-
dictions. Figure 5.12 shows four such maps for 13, 17, 18, and 30 clusters. The map
for 13 clusters shows that many roadways and bare ground areas are included in the
cluster representing brine scars. As concluded twice above, this level of division is
too low to generate meaningful predictions. However, the predictions from the cluster
analyses with levels of division of 17, 18, and 30 are not substantially different.

Figures 5.13 and 5.14 show images of some of the individual clusters which are
easily recognizable in the r05sc05 scene at a level of division of 18. Main roads appear
in cluster 11; gravel roads and driveways, main road shoulders, and bare ground areas
appear in cluster 9; shallow water, including streams and creeks, shallow ponds, and
pond edges, appear in cluster 18; deeper water and pond centers appear in cluster 5;
shrubs and more woody vegetation, including cross-timbers which tends to lie along
the stream and river banks, appear in cluster 3; cluster 17 appears to capture one
species or life stage of a grass; and cluster 15 constitutes the brine scar predictions.
The dense pattern and hard edge seen in cluster 17 follows the north-south border
of the TPP and is due to the managed burns which take place on the Preserve. The
last panel in Figure 5.14 shows only these recognizable clusters on the same image.

2Kerry Sublette, personal communication.
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Figure 5.7: Two large, well-documented brine scars near the TPP boundary. The
red line is the TPP boundary and the white lines are the brine scar boundaries as
determined from Hargrove’s GPS points.
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Figure 5.8: Part of the interior of the oldest and largest brine scar on the TPP. Photo
courtesy of Kerry Sublette (1999).
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Figure 5.9: Portion of Site 5 brine scar outside the TPP boundary fence. Photo
courtesy of Tina Carlsen (June 13, 2001).

41



13 Clusters 14 Clusters 15 Clusters

16 Clusters 17 Clusters 18 Clusters

19 Clusters 20 Clusters 21 Clusters

Figure 5.10: Well-known brine scars clustered at levels of division 13–21.

42



22 Clusters 23 Clusters 24 Clusters

25 Clusters 26 Clusters 27 Clusters

28 Clusters 29 Clusters 30 Clusters

Figure 5.11: Well-known brine scars clustered at levels of division 22–30.
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13 Clusters 17 Clusters

18 Clusters 30 Clusters

Figure 5.12: Brine scar predictions for 13, 17, 18, and 30 levels of division.
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Cluster 11: Main Roads Cluster 9: Gravel

Cluster 18: Shallow Water Cluster 5: Deep Water

Figure 5.13: Recognizable features in r05sc05 when divided into 18 clusters.
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Cluster 3: Woody Vegetation Cluster 17: Grass A

Cluster 15: Brine Scars Clusters 11, 9, 18, 5, 3, 17, and 15

Figure 5.14: More recognizable features in r05sc05 when divided into 18 clusters.
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Clearly this cluster analysis was successful in extracting surface features from AVIRIS
hyperspectral imagery without spectral unmixing or rigorous line-by-line spectral
analysis methods.

The second step in extending this statistical model to other scenes was to “classify”
the six remaining scenes using the final cluster centroids from the cluster analysis
of r05sc05 at the chosen level of division. This classification process amounts to a
“single-pass” clustering in which each cell is assigned to the nearest centroid in data
space and the process stops immediately after this single iteration of assignment. The
centroid locations are not recomputed based on assigned observations. This technique
effectively extends knowledge of brine scar spectral signatures from one scene to all
others.

Since all the scenes were individually calibrated and had different effective expo-
sures, they have different ranges in data space. As a result, it was not possible to
simply use the final centroids from the cluster analysis of r05sc05 as seed centroids for
the single-pass classification of the other six scenes. As a part of data standardization,
it was necessary to transform each of the six scene data sets to the inference space of
the r05sc05 scene or to transform the resulting seed centroids from the r05sc05 cluster
analysis to each of the six new inference spaces. Since each scene had to be standard-
ized prior to cluster analysis, it was faster to transform the 18 final unstandardized
centroids from the inference space of the r05sc05 scene to the inference space of each
of the other six scenes in turn using the means and standard deviations output from
each scene standardization process.

The centroids used for the single-pass classification, c′k, were computed from the
unstandardized centroids output by the cluster analysis of r05sc05 with 18 levels of
division, ck, as follows

c′k =
ck − x̄

σ
(5.1)

where x̄ and σ are the means and standard deviations calculated for the scene to be
classified.

After transforming the centroids and clustering each of the six remaining scenes,
new maps were generated showing cohesive geographic clusters across scenes. As
shown in Figure 5.15, when all the scenes were classified using transformed centroids
and the resulting cluster images were georectified, they fit together seamlessly with
a consistent set of random colors across the entire study area. Given the consistent
cluster definition, it was now possible to analyze brine scar predictions across all the
hyperspectral scenes.
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Figure 5.15: All scenes classified using the 18 centroids from r05sc05.
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Chapter 6

Results

6.1 Brine Scar Predictions

All of the cells in the seven AVIRIS hyperspectral scenes which were assigned by the
single-pass clustering procedure to the cluster which overlies the known brine scars
in the cluster analysis of scene r05sc05 were considered predictions of brine scars.
Maps of all of the brine scar predictions projected onto the DOQQs from all seven
AVIRIS scenes are contained in Appendix A.6. Each of these 87 maps represents a
named region in the GIS. The same regions are listed in Table 6.1 along with a short
description, the probable cause of the brine scar prediction, the AVIRIS scene in
which it is contained, a check (X) if the region is located within the TPP, the number
of brine scar cells (after georectification), and the minimum number of discrete brine
spills if the cells are obviously attributable to petroleum activities. The geographic
coordinates for the regions are contained in Table A.2.

Of the 87 prediction regions, 40 are attributable to petroleum activities based
on objects visible in the DOQQs. Of those 40 petroleum regions, 9 of them are
on or within the TPP boundary. That leaves 47 regions which may contain false
positives. Due to the differences in time between when the DOQQs were acquired
and when the AVIRIS hyperspectral overflights occurred, it is not always possible
to see matching features in the DOQQs. Many of these regions may not actually
be false positives. The 40 petroleum regions represent at least 65 obviously discrete
brine spills; 14 of which are on or within the TPP boundary. The brine scar cluster
accounts for approximately 1365 non-overlapping georectified map cells. Of those,
223 are in petroleum regions, and 109 are within the TPP. That leaves some 1142
cells attributable to possible false positives. While that is a large proportion of the
total brine scar cells, 845 of those cells are in a single prediction region.

Nearly all of the possible false positives can be explained, and in some cases
they should not be considered false positives since they represent similar geophysical
disturbances. The region containing the largest contiguous patches of brine scar cells,
the 845 cells mentioned above, represents three agricultural fields (see Figure A.30).
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Table 6.1: Clustered brine scar predictions.

Region
Name

Description Probable Cause
AVIRIS
Scene

In
TPP Cells Spills

arm ef12 site

TPP bison paddocks and the
U.S. Department of Energy’s
Atmospheric Radiation
Measurement (ARM)
Extended Facility #12
located near the Tallgrass
Prairie Preserve
Headquarters. Figure A.1.

Mineral gravel or
salt contamination
from ice control

r05sc05 X 1

tpp hq
Tallgrass Prairie Preserve
(TPP) Headquarters.
Figure A.2.

Mineral gravel or
salt contamination
from ice control

r05sc05 X 5

bigscar

Two of the largest known
brine scars in the entire
study area the boundaries of
which were recorded using a
GPS. Figure A.3.

Multiple brine
spills

r05sc05 X 90 4

lower
disturbance

Single brine scar associated
with a well near the two
large brine scars. Figure A.4.

Brine spill r05sc05 1 1

bottom tanks
Brine scar near collection of
tanks south of two large
brine scars. Figure A.5.

Brine spill r05sc05 1 1

upper well N
scar

Medium-sized brine scar just
north of the TPP boundary.
Figure A.6.

Brine spill r05sc05 2 1

upper well
tank farm

Tanks just north of the TPP
boundary. Figure A.7. Brine spill r05sc05 1 1

upper well
roadside
pump

Road-side jackpump just
north of TPP boundary.
Figure A.8.

Brine spill r05sc05 1 1

upper well
main road

Area near main road but
just northwest of an active
well just within the TPP
boundary. Figure A.9.

Brine spill r05sc05 X 1 1

upper well big
scar

Old, large brine scar between
a number of wells.
Figure A.10.

Brine spill r05sc05 X 4 1

left upper
well scar

Multiple brine scars among a
collection of wells and tanks.
Figure A.11.

Brine spill
r05sc05

and
r05sc06

11 4

tanks Collection of tanks.
Figure A.12. Brine spill r05sc05 1 1
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Table 6.1: Continued
Region
Name

Description Probable Cause
AVIRIS
Scene

In
TPP Cells Spills

roadside
tanks

Road-side tanks just within
TPP western boundary.
Figure A.13.

Brine spill r05sc05 X 4 1

middle
disturbance

Old, large brine scar.
Figure A.14. Brine spill r05sc05 X 1 1

erosion7
Eroded area with no obvious
wells or tanks nearby.
Figure A.15.

Unknown r05sc05 1

ranch
A ranch with two large
buildings and a parking area.
Figure A.16.

Metal roofs,
mineral gravel, or
salt contamination
from ice control

r05sc05 8

ranch2 Big ranch with large
driveways. Figure A.17.

Metal roof, mineral
gravel, or salt
contamination
from ice control

r05sc05 5

intersection5 Highway intersection.
Figure A.18.

Road debris or salt
contamination
from ice control

r05sc05 X 1

intersection6 Highway intersection.
Figure A.19.

Road debris or salt
contamination
from ice control

r05sc05 X 1

intersection7
Highway intersection (same
pixel in both scenes).
Figure A.20.

Road debris or salt
contamination
from ice control

r05sc05
and

r06sc05
X 1

erosion2 Eroded area on a back road.
Figure A.21. Unknown r05sc06 7

intersection2 Intersection of roads.
Figure A.22.

Road debris or salt
contamination
from ice control

r05sc06 5

intersection8
Highway intersection and
eroded area nearby.
Figure A.23.

Road debris or salt
contamination
from ice control

r05sc06 4

junction2 Highway interchange.
Figure A.24.

Road debris or salt
contamination
from ice control

r05sc06 2

farm3 Ranch area with large
turnaround. Figure A.25.

Mineral gravel or
salt contamination
from ice control

r05sc06 1

smallfacility Road-side facility with
parking area. Figure A.26.

Metal roof, mineral
gravel, or salt
contamination
from ice control

r05sc06 3
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Table 6.1: Continued
Region
Name

Description Probable Cause
AVIRIS
Scene

In
TPP Cells Spills

disturb7
Brine scar around a well
(same pixel in two scenes).
Figure A.27.

Brine spill
r05sc04

and
r06sc06

X 1 1

oilarea Brine scars at two wells and
a tank area. Figure A.28. Brine spill r05sc04 X 6 3

hilltop
Object on riverbank beside
roadway near agricultural
area. Figure A.29.

Unknown r05sc04 2

bigfields
Three very large agricultural
fields and farm area.
Figure A.30.

Application of
mineral fertilizer or
other soil
amendment

r05sc04
and

r05sc03
845

strip
Gravel road or strip of
agricultural field in area with
tanks. Figure A.31.

Unkown r05sc04 5

farm2 Farm or ranch with large
driveway. Figure A.32.

Mineral gravel or
salt contamination
from ice control

r05sc04 X 9

compound3

Building and large field lot
near highway and bright
shoulders on the highway
nearby. Figure A.33.

Unknown r05sc04 X 5

roadside2 Bright areas on highway.
Figure A.34. Unknown r05sc04 X 2

intersection9 Highway intersection.
Figure A.35.

Road debris or salt
contamination
from ice control

r05sc04 X 1

road Bridge and highway
turnaround. Figure A.36.

Road debris or salt
contamination
from ice control

r05sc04 X 3

tank cluster Large tank farm.
Figure A.37. Brine spill r05sc03 6 1

tank group A collection of tanks near
wells. Figure A.38. Metal roof r05sc03 0

waterfront Ag field near waterfront.
Figure A.39.

Mineral fertilizer or
other soil
amendment

r05sc03 1

facility
intersection

Some kind of facility at a
large intersection.
Figure A.40.

Road debris,
mineral gravel, salt
contamination
from ice control, or
brine spill

r05sc03 3
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Table 6.1: Continued
Region
Name

Description Probable Cause
AVIRIS
Scene

In
TPP Cells Spills

compound4 Facility situated among
various wells. Figure A.41. Brine spill r05sc03 2 1

ag
intersection

Large roadway intersection.
Figure A.42.

Road debris or salt
contamination
from ice control

r05sc03 3

farm4 Farm house and barn area.
Figure A.43.

Metal roof, mineral
gravel, or salt
contamination
from ice control

r05sc03 1

disturb1 new Brine scar around well.
Figure A.44. Brine spill r05sc03 2 1

disturb2 new

Two obvious brine scars; one
near holding tanks and the
other at a well site.
Figure A.45.

Brine spill r05sc03 2 2

disturb3
Brine scar on road
surrounded by wells.
Figure A.46.

Brine spill r05sc03 1 1

tank station Tank depot in well area.
Figure A.47. Brine spill r05sc03 3 1

agriculture Agricultural field.
Figure A.48.

Mineral fertilizer or
other soil
amendment

r05sc03 1

agriculture2
Multiple spots on
agricultural fields.
Figure A.49.

Mineral fertilizer or
other soil
amendment

r05sc03 57

erosion1 Bright eroded area near
road. Figure A.50. Unknown r05sc03 1

roadshoulder1 Bright road shoulders.
Figure A.51.

Mineral gravel,
road debris, or salt
contamination
from ice control

r05sc03 3

junction

Highway junction and a
large building and fenced
compound near wells.
Figure A.52.

Metal roof, road
debris, or salt
contamination
from ice control

r05sc03 19

intersection1 Major road intersection.
Figure A.53.

Road debris or salt
contamination
from ice control

r05sc03 1

farm1 Large ranch. Figure A.54.

Metal roof, mineral
gravel, or salt
contamination
from ice control

r05sc03 11
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Table 6.1: Continued
Region
Name

Description Probable Cause
AVIRIS
Scene

In
TPP Cells Spills

compound2 Fenced-off compound with
parking area. Figure A.55.

Mineral gravel or
salt contamination
from ice control

r05sc03 2

disturb4 Well site. Figure A.56. Brine spill r06sc06 X 1 1

disturb5
Large area of erosion in
wooded area with wells and
tanks nearby. Figure A.57.

Brine spill r06sc06 11 1

disturb6 Well site, tank farm, or new
feature. Figure A.58. Brine spill r06sc06 1 1

disturb10 Tank or well site near road.
Figure A.59. Brine spill r06sc06 2 1

wells in 66 Brine scars at many well and
tank sites. Figure A.60. Brine spill r06sc06 21 14

group of spills Brine scars at three
well/tank sites. Figure A.61. Brine spill r06sc06 7 1

ranch3 Ranch with large driveway.
Figure A.62.

Mineral gravel or
salt contamination
from ice control

r06sc06 6

erosion8
Runoff from pond and
nearby well site.
Figure A.63.

Brine spill r06sc06 4 2

runoff
Highly eroded area and pond
downstream of well site.
Figure A.64.

Brine spill r06sc05 11 1

intersection10 Road intersection.
Figure A.65.

Road debris or salt
contamination
from ice control

r06sc05 1

disturb11 Tanks and well site.
Figure A.66. Brine spill

r06sc05
and

r06sc04
2 2

disturb12 Spot near well and tank
areas. Figure A.67. Brine spill r06sc05 3 1

creek to creek
spill

Spill from one well drained
to and eroded the bank of a
secondary stream.
Figure A.68.

Brine spill r06sc05 X 1 1

tank wash
Runoff from tank which may
have fed larger area in region
possible runoff. Figure A.69.

Brine spill r06sc05 2 1

puka
Runoff from possible well
(also contained in possible
runoff). Figure A.70.

Brine spill r06sc05 1 1

lower stream

Sandbars, two bridges, and
erosion/outcrop spots (also
contained in possible runoff).
Figure A.71.

Unknown r06sc05 41
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Table 6.1: Continued
Region
Name

Description Probable Cause
AVIRIS
Scene

In
TPP Cells Spills

disturb13 Large tank or well facility.
Figure A.72. Brine spill r06sc05 5 1

erosion6 Two bright spots near river.
Figure A.73. Unknown r06sc05 2

spill drainage Drainage from wells or
tanks. Figure A.74. Brine spill r06sc05 3 1

by river spot Spot near river. Figure A.75. Unknown r06sc05 1

compound6 Compound with multiple
driveways. Figure A.76.

Metal roofs,
mineral gravel, or
salt contamination
from ice control

r06sc05 4

jackpump1
new Well area. Figure A.77. Brine spill r06sc05 2 1

sandbars new

A bridge, many sandbars,
and erosion/outcrops with
possible old well site north of
river. Figure A.78.

Unknown r06sc05 59

erosion3 Drainage area into pond.
Figure A.79. Unknown r06sc04 3

erosion4 Erosion or drainage near
back road. Figure A.80. Unknown r06sc04 1

erosion5 Erosion area near back road
intersection. Figure A.81. Unknown r06sc04 1 1

erosion9 Area near small shack or
tank. Figure A.82. Brine spill r06sc04 1 1

intersection3 Long building at multi-way
intersection. Figure A.83.

Metal roof, road
debris, mineral
gravel, or salt
contamination
from ice control

r06sc04 1

intersection4 Major roadway intersection.
Figure A.84.

Road debris or salt
contamination
from ice control

r06sc04 1

bridge and
farm river

Bridge over river with
sandbars and ranch with
large driveways. Figure A.85.

Road debris, metal
roof, mineral
gravel, or salt
contamination
from ice control

r06sc04 2

two spills Two obvious brine scars
around wells. Figure A.86. Brine spill r06sc04 2 2

set of tanks Cluster of holding tanks.
Figure A.87. Brine spill r06sc04 1 1
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Kerry Sublette, professor of Chemical Engineering at the University of Tulsa, specu-
lated that these fields may have been fertilized just prior to acquisition of the AVIRIS
hyperspectral imagery1. It is reasonable to assume that mineral fertilizer might have
a similar spectral signature to mineral produced water on bare soil. Additional pos-
sible explanations include saline-seep, which can occur when vegetation is removed
and groundwater in the area subsequently rises, or irrigation with high salinity water.
In areas with a near-surface water table, like these fields which are near a river, high
salinity conditions can build up each time vegetation is suddenly removed [8].

In addition to features which are very likely brine scars, other surface features
which occasionally appear as brine scar predictions include portions of some gravel
driveways, major road intersections where dirt and gravel form piles, a few road shoul-
ders, some metal rooftops, large sand bars in rivers, and heavily eroded areas which
may or may not be attributable to petroleum activities. Examples of many such
predictions are contained in Appendix A.6. Metal rooftops are real false positives;
however, many of the other surface features may be included as brine scar predictions
because they represent similar, often anthropogenic, geophysical disturbances. Bat-
teries of tanks used for petroleum activities are not considered false positives, but in
cases where large white tanks are clustered together, brine scar predictions may actu-
ally be the result of their high spectral reflectance. It would be important to perform
chemical analyses around these tanks to disprove brine disturbance predictions.

It is speculated that some gravels may have a mineral composition consistent with
that of the produced water extracted in the region. Moreover, some driveways and
parking lots are known to be salted to control ice in the winter, and residual salt
contamination is likely to have a spectral signature very similar to actual brine scars.
Some road intersections probably appear as brine scars because of the large piles of
rocks, dirt, dust, and minerals which accumulate in such urban intersections. These
areas, along with road shoulders, may also be contaminated by chemicals applied to
control salt or from produced water spilled from trucks during transport. Sand bars
on river banks probably collect mineral crusts, including those resulting from spilled
produced water, salt used for ice control on bridges, and fertilizers which run off into
creeks and streams in the area.

Given these reasonable explanations for many of the brine scar predictions, one
may not consider many of them to be false positives. It is easy to use the DOQQs
to identify the probable cause for most brine scar predictions. Without visiting these
locations and performing chemical analyses of rocks and soils, it is not possible to
absolutely discount clustered brine scar predictions. While permission could likely
be obtained from the Nature Conservancy to sample locations on the TPP, the sur-
rounding land is private property and getting such permission in those areas could
be difficult. Collecting data on the ground is outside the scope of this study.

Nevertheless, based on visual verification using the DOQQs, 65 or more brine scars
associated with wells or tanks were successfully detected using cluster analysis. Some

1Kerry Sublette, personal communication.
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of these spill areas were considerably smaller than the size of a single AVIRIS pixel,
yet the hyperspectral data captured enough reflected radiation for the analysis to
detect these disturbances. In many cases, only a single well or tank location would be
associated with a brine scar prediction even though it was surrounded by many other
wells or tanks which appear in the DOQQs to be the same. This is not a surprising
result since produced water is often piped from neighboring wells to a single collection
of tanks for separation and storage or to a single well for re-injection into the ground.

6.2 Cluster Spectral Signatures

Since the centroids resulting from cluster analysis represent the average combination
of conditions (or spectra) of their membership, they can be viewed as representative
spectra. Figure 6.1 shows spectral traces or signatures for each of the 18 clusters de-
rived from the r05sc05 scene which were used in classifying the other six hyperspectral
scenes. The curves are discontinuous because the hyperspectral data were subset, as
described above, reducing the number of bands from 224 to 187. The curves for clus-
ters 3, 5, 9, 11, 15, 17, and 18 match the images presented in Figures 5.13 and 5.14.

As one would expect, cluster 5 (deep water) has the lowest intensity throughout
the near infrared. Cluster 18 (shallow water) is the next darkest in the near infrared,
and cluster 3 (woody or shrubby vegetation) is the third darkest in the near infrared.
This shrubby vegetation also exhibits the strongest chlorophyll bump, i.e., it was
very green in mid-July. Since this form of vegetation tends to grow primarily along
streams, creeks, and around other water sources, as seen in Figure 5.14, it is more
likely to remain green and well-hydrated throughout the summer months. It may also
be spectrally mixed with shallow water.

The brine scar cluster (cluster 15) has the strongest intensity in the visible and
the long near infrared. This unique spectral signature explains why the brine scar
cluster is so stable across many levels of division. Moreover, only the brine scar
cluster exhibits no significant red edge effect from vegetation. The next brightest
surface features in the visible and the long near infrared are main roads (cluster 11)
and gravel (cluster 9). This explains why some of the road intersections and bare
ground areas appear in what would otherwise be a brine scar cluster at low levels of
division; they have similar spectral signatures.

Interestingly, cluster 17 (grass A) has the strongest intensity in the short near
infrared. This is a very strong red edge effect which uniquely identifies an individual
grass species or life stage. It may be possible to distinguish vegetation types using
hyperspectral imagery, even at the relatively low spatial resolution of AVIRIS.
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6.3 Brine Scar Representativeness

After a spectral signature for brine scars has been quantitatively determined using
cluster analysis, it is useful to investigate the degree to which predictions are repre-
sented by this signature. This representativeness measure provides an indication of
the similarity between a brine scar prediction and the mean of the collection of all
brine scar predictions. It is calculated as the Euclidean distance from each observa-
tion or brine scar cell to the brine scar centroid in data space. Based on the radius
definitions in Chapter 3, the brine scar prediction cell most closely represented by the
brine scar centroid will be nearest to the centroid in data space, and that distance
will be the “inner radius” of the brine scar cluster. The prediction cell least-well
represented by the brine scar centroid will be the farthest from the centroid in data
space, and its position will determine the “outer radius” of the brine scar cluster.

Maps were produced showing the same brine scar predictions as in Appendix A.6,
but with each georectified prediction cell colored according to how well it was repre-
sented by the brine scar cluster centroid. These representativeness colors vary from
green (highly representative and short data space distance) to yellow to red to white
(poorly representative and large data space distance). Inset on the maps included
below are randomly colored spectral traces of each of the original AVIRIS image pix-
els from the same brine scar predictions. The number of map cells is often different
from the number of AVIRIS pixels (and therefore spectral curves) because georecti-
fication warps the image onto the DOQQs. Nevertheless, these spectral curves show
the scatter characteristic of patches of prediction map cells which are mapped in rep-
resentativeness colors. Each of the spectral plots includes the spectral signature of
the brine scar cluster centroid in black for comparison. For maps of the DOQQs in
each region without the overlying brine predictions, see the corresponding figures in
Appendix A.6.

As expected for the two well-known brine scars, their spectra match that of the
brine scar cluster centroid very well. Figure 6.2 shows both of these brine scars,
along with the third scar in that region bordering the old railroad bed, as green to
green-yellow map cells. For all three scars, the largest variance is in the visible and
short near infrared. The scar on the right (Site 5) has a few rather bright pixels in
the visible. In the long near infrared, all three scars have a similar spread around the
centroid curve. Most pixels are slightly stronger than the centroid in the long near
infrared.

Figure 6.3 is a photograph of another well-known brine scar on the TPP. The map
of this scar is shown in representativeness colors in Figure 6.4. In this region, all the
brine scar map cells are green, reflecting the strong similarity between the spectral
signature of the pixels and the cluster centroid representing brine scars. The spectral
plot details this similarity for each pixel. While there is some spread in the visible
and short near infrared, there is nearly complete overlap in the long near infrared.
Similarly, the scar shown in Figure 6.5 is well represented by the brine scar cluster
centroid; however, its intensity in the visible is mostly below that of the centroid.
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Figure 6.2: The two large, well-documented brine scars shown in representativeness
colors. All three brine scars include spectra comparing each original AVIRIS pixel
against the brine scar cluster centroid. Region: bigscar, Scene: r05sc05. Corresponds
to Figure A.3.
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Figure 6.3: Photo of another well-known brine scar on the TPP. Photo courtesy of
Tina Carlsen (June 13, 2001).
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Figure 6.4: Another well-known brine scar on the TPP shown in representativeness
colors. Region: upper well big scar, Scene: r05sc05. Corresponds to Figure A.10.
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Figure 6.5: A brine scar outside the TPP shown in representativeness colors. Region:
upper well N scar, Scene: r05sc05. Corresponds to Figure A.6.
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Figure 6.6 shows a representativeness map for the large agricultural fields thought
to have been freshly tilled or fertilized prior to the AVIRIS overflight. While some
cells are a reasonably close match to the brine scar cluster centroid (green), many of
them deviate enough to appear yellow to orange. In the spectral plot, the original
pixels appear to have a large spread around the brine scar centroid in the visible,
and the intensity in the near infrared for many pixels is significantly stronger. The
pixel or pixels corresponding to the cell over the farm buildings on the right of the
figure is not included in the spectral plot. The intensity in the long near infrared and
the short near infrared around 1 µm is uniquely strong. This may be an indicator of
the condition of these fields or the soil amendments which may have been recently
applied.

The TPP Headquarters are shown in Figure 6.7 using representativeness colors.
The cells are very close to green, so they are well represented by the brine scar cluster
centroid even though they probably are not actually the result of spilled produced
water. This suggests that gravel in the parking area has a brine-like spectral signature
or that residual contamination from repeated application of salt or other chemicals
used to control ice on parking and walking surfaces in winter shows up strongly even
in the summer.

Figure 6.8 shows a ranch with two parallel barns and a parking area in between.
Large animal pens can be seen just south of the barns. While the parking area appears
as two green cells (closely matching the brine scar cluster centroid), the south barn
contains a green cell, a yellow cell, and an orange cell indicating a significant devia-
tion from the brine scar cluster centroid. The north barn contains a pink cell which,
in this color scheme, indicates an even larger deviation from the centroid. It is likely
that these rooftops are painted a bright color and are reflecting significant amounts of
visible radiation and reasonably significant amounts of near infrared radiation which
appear similar to the brine scar spectral signature. While these structures are under-
standably generating false positive brine scar predictions, they are easy to discount
based on visual inspection of the DOQQs. The spectral signatures and representa-
tiveness colors also provide clues that some of these cells are poor matches with the
brine scar cluster centroid to which they were assigned in the MGC procedure. In
any case, the parking area shows up probably because of the gravel mineral content
or because of salt contamination.

Figure 6.9 shows a group of buildings and driveways in representativeness colors.
The white cell is the result of direct reflection of solar radiation from a metal roof.
This cell deviates the farthest of any cell assigned to the brine scar cluster, and it
defines the “outer radius” of that cluster. The corresponding pixels in the AVIRIS
imagery has the highest intensity of any other pixel across the entire spectrum. This
roof is probably unpainted, and it acts nearly as a perfect reflector. The relative
positions of the sun and the aircraft were such that significant solar radiation was
directed toward the AVIRIS instrument. The spectral trace of these pixels, shown as
a cyan and green curves, are off the scale in the visible and very strong throughout
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Figure 6.6: The large agricultural fields shown in representativeness colors. Region:
bigfields, Scene: r05sc04 and r05sc03. Corresponds to Figure A.30.
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Figure 6.7: The TPP Headquarters shown in representativeness colors. Region:
tpp hq, Scene: r05sc05. Corresponds to Figure A.2.
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Figure 6.8: Ranch buildings and parking area shown in representativeness colors.
Region: ranch, Scene: r05sc05. Corresponds to Figure A.16.
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Figure 6.9: A group of buildings and driveways shown in representativeness colors.
Region: compound6, Scene: r06sc05. Corresponds to Figure A.76.
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the near infrared. The cyan spectral trace approximates the exact solar spectrum
without the atmosphere removed. The red cell probably represents a mixture of the
edge of the roof and nearby vegetation since it exhibits very strong visible intensity
and a strong red edge effect. The green cells are much more closely represented by the
brine scar cluster centroid spectrum. Their spectral curves indicate they are likely
the driveway in front of the middle building and that vegetation is mixed in the same
pixel because of the strong red edge effect.

Figure 6.10 shows one of the brine scar prediction regions for which no corre-
sponding surface feature appears in the DOQQs. Shown in representativeness colors,
it appears the prediction cells have a measurable deviation from the brine scar cluster
centroid. From the spectral plot, it appears that the object, which must have ap-
peared at this location between the time the DOQQs were taken and the time of the
AVIRIS overflight, reflects strongly in the visible, but corresponds well to the brine
scar cluster centroid in the long near infrared. Based on the similarity of the cells
and spectra with that of the buildings contained in Figure 6.8, it is hypothesized that
a building with a painted metal roof was constructed at this location between 1995
and 1999.

6.4 Complete Convergence

Since the MGC algorithm is frequently applied to the analysis of extremely large
data sets, it uses a convergence criterion of 0.5%. That is, the procedure stops once
less than 0.5% of the observations change cluster assignment between iterations. This
avoids time-consuming and expensive computation spent fine tuning the statistical fit
for an insignificant number of observations. This “close is close enough” philosophy
is not necessary for smaller data sets like the hyperspectral scenes. To test the effect
of this stopping rule on the brine scar predictions, a second cluster analysis of scene
r05sc05 was started using the 18 centroids from the original analysis, which had
converged to 0.5% in 34 iterations, as seed centroids. This second analysis was run
until no observations changed cluster assignment from one iteration to the next. This
complete convergence of the fit, which ran for 23 iterations, resulted in two cells being
added to the brine scar cluster in scene r05sc05. Those two cells are shown in yellow
in the two regions in Figure 6.11. The cells are merely edge cells on brine scars already
predicted by the original analysis. In this case, close was close enough.

6.5 Four Band Subset Analysis

Another objective of this study was to determine if a significantly smaller subset of
bands could be used, instead of all 224 or 187 bands, to find brine scars with similar
skill. Based on inspection of the spectra of the 18 cluster centroids, four bands
were chosen to serve as characteristics for new cluster analyses of the r05sc05 scene.
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Figure 6.10: A brine scar prediction with no corresponding surface feature in the
DOQQs shown in representativeness colors. Region: erosion2, Scene: r05sc06. Cor-
responds to Figure A.21.
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Region: bigscar, Scene: r05sc05.
Corresponds to Figure A.3.

Region: upper well N scar, Scene: r05sc05.
Corresponds to Figure A.6.

Figure 6.11: Two cells added to the brine scar cluster after complete convergence.
The cells added are shown in yellow.
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Spectral Signatures of Cluster Centroids
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Figure 6.12: The four wavelengths chosen for a second subset superimposed on the
18 original cluster centroids.

The four selected bands—at 468, 566, 1564, and 2141 nm—were chosen because the
intensity of the brine scar cluster centroid at those wavelengths was significantly
different from that of all other centroids at 18 levels of division. Figure 6.12 shows
the locations and intensities of these bands for the brine scar cluster. The same four
bands are denoted in Table A.1 by a check (X) in the seventh column. Many other
combinations of bands are possible, and it is recognized that this choice may not be
optimal. Nevertheless, these seem to be reasonable choices for discriminating brine
scars from other surface features. This much smaller data subset was clustered at
every level of division between 10 and 32. These analyses were not seeded with a four
band subset of the resulting centroids from the original 187 band analysis. Table 6.2
shows the map statistics for levels of division 10–28 as compared with the original
cluster analysis result at a level of division of 18 (left-most column).

The four band subset at a level of division of 18 has 111 cells in common with
the original cluster analysis which used 187 bands. The original analysis contained
24 additional cells in its brine scar cluster; however, the 18 cluster four band subset
did not include in its brine scar cluster any cells which were not included in the
predictions of the original analysis. A better match to the original results can be
found at a level of division of 12. At this level of division, the four band subset has
120 cells in common with the original analysis which used 187 bands. The original
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Table 6.2: Map statistics for 10–28 clusters in the four band subset. Comparison can
be made with the original 187 band analysis with 18 clusters (first column).

18 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Cells

X X X X X X X X X X X X X X X X X X X X 76
X X X X X X X X X X X X X X X X X X X 6
X X X X X X X X X X X X X X X X 12
X X X X X X X X X X X X X 1
X X X X X X X X X X X X 2
X X X X X X X X X X X 8
X X X X X X X X X X 6
X X X X X X X X 6
X X X X X X X 1
X X X X X X 1
X X X X 1
X X X 7
X 8

X X X X X X X 1
X X X X X X 2
X X 16

314214
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analysis has 15 cells which were not included in the brine scar predictions of the four
band analysis, and the four band analysis has three cells which were not included in
the original predictions.

Selected maps comparing brine scar predictions from the two different hyperspec-
tral subsets (187 bands versus 4 bands) are included in Figures 6.13 and 6.14. In
these figures, cells predicted as brine scars by both analyses are colored green, cells
predicted as brine scars only by the four band analysis are colored yellow, and cells
predicted as brine scars only by the original analysis are colored red. While some
cells are missed in the four band analysis as compared with the 187 band analysis,
88% of the cell predictions are the same and 90% of the same prediction regions con-
tain brine scar predictions using the much smaller data set. Two prediction regions,
arm ef12 site (Figure A.1) and bottom tanks (Figure A.5) were not included in the
predictions from the four band analysis. Two of the three cells which were added as
brine scar predictions in the four band analysis are shown in Figure 6.14. These cells
are connected to objects found by both analyses. The third cell added in the four
band analysis is shown in Figure 6.15. This cell in r05sc05 was not predicted as a
brine scar in the original 187 band analysis. However, it overlaps with other scenes,
and it was predicted as a brine scar in scene r06sc04 in the 187 band analysis. It
corresponds to the brine scar prediction on the left of Figure A.66.
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Figure 6.13: Brine scar predictions for the bigscar region using four bands. The green
cells appear in both brine scar clusters while red cells are included only in predictions
from the original analysis using 187 bands. Corresponds to Figure A.3.
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Region: upper well N scar Region: upper well big scar

Region: roadside tanks Region: ranch2

Figure 6.14: Other brine scar predictions using four bands. The green cells appear
in both brine scar clusters, the yellow cells appear in predictions from the four band
analysis, and red cells are included only in predictions from the original analysis using
187 bands. The maps correspond to Figure A.6 (top left), Figure A.10 (top right),
Figure A.13 (bottom left), and Figure A.17 (bottom right).
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Figure 6.15: New brine scar prediction from four band analysis. This cell in r05sc05
was not predicted as a brine scar in the original 187 band analysis. However, it
overlaps with other scenes, and it was predicted as a brine scar in scene r06sc04 in
the 187 band analysis. Corresponds to Figure A.66.
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Chapter 7

Conclusions

The four objectives of this research were to 1) determine if brine spills could be
detected spectroscopically, 2) determine if spectral analysis could be performed using
a statistical method to identify surface features quickly and easily from hyperspectral
imagery without removing atmospheric effects from the spectra or performing spectral
unmixing, 3) develop a spectral signature for brine spills and scars which could be
applied at other locations, and 4) determine if brine spills or scars could be detected
using substantially fewer spectral bands so that a smaller and cheaper instrument
could be applied to detect such disturbances.

An area in Osage County, Oklahoma, centered over the Tallgrass Prairie Preserve
was studied using available hyperspectral imagery from AVIRIS. Oil and gas explo-
ration and production have occurred in this area for more than 80 years. While site
visits for verifying brine scar predictions were not possible, 1 m orthophotos were
used to check prediction results.

As these research results indicate, brine disturbances have a fairly unique spectral
signature which is particularly bright in the visible and the long near infrared. Using
hyperspectral imagery, it was possible to locate probable brine disturbances. Clus-
ter analysis proved to be a powerful method for extracting surface features from the
AVIRIS imaging spectroscopy data sets over a wide geographic area. MGC’s ability
to find brine scars and other similar geophysical disturbances without removing at-
mospheric effects or performing complicated spectral unmixing could prove useful in
quickly locating areas for remediation or further study by more traditional means.
Identification of brine disturbances using remote sensing, as successfully demonstrated
here, should help petroleum companies and industry regulators in managing resources
for cleanup and remediation.

One of the significant benefits of cluster analysis is its ability to sample and
group data sets in a true multivariate fashion and define centroids representing mean
conditions in the resulting data space region occupied by relevant observations. For
spectral data, this means signatures can be quickly and easily defined and applied to
similar data sets for object identification or classification. In this study, a spectral
signature for brine spills and scars was developed using MGC by tuning the level of
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division for a single scene of AVIRIS data containing known brine scars. This spectral
signature was then applied to other AVIRIS scenes to identify other candidate brine
disturbances.

As explained herein, some areas classified as brine scar predictions were attributable
to other features using the DOQQs. Some of these predications—bright roof reflec-
tions in particular—are rightly considered to be false positives. These strong reflec-
tions appear in the brine scar cluster because its centroid has the highest radiance
across the entire spectral range. However, many other predictions constitute geophys-
ical disturbances not unlike brine scars. Freshly plowed or fertilized fields, parking
lots, gravel driveways, road shoulders, road intersections, and large sandbars are occa-
sionally identified as possible brine scars because of their similar spectral signatures.
Many of these areas are likely to collect mineral crusts from human activities. Rep-
resentativeness analysis using maps with cells colored by their similarity to the brine
scar centroid (spectral) definition along with spectral plots help to further refine the
analysis, and high resolution DOQQs make eliminating false positive straightforward
in most cases. Applying a similarity constraint on data space distances could also
significantly reduce the number of actual false positives.

A total of 87 regions were predicted as containing brine spills or scars, and 40 were
attributable to petroleum activities based on objects visible in the DOQQs. Nine of
these petroleum regions are contained within the TPP boundary. Petroleum predic-
tion regions represent at least 65 discrete brine spills, 14 of which occurred on the
TPP. As many as 47 prediction regions may represent false positives or anthropogenic
disturbances which may not be the result of produced water releases. Since the DO-
QQs were acquired in 1995 and the AVIRIS overflight occurred in 1999, it was not
always possible to identify features in the DOQQs which corresponded to predictions
derived from the hyperspectral imagery.

Since the MGC algorithm is frequently applied to the analysis of extremely large
data sets, it uses a convergence criterion of 0.5%. That is, the procedure stops
once less than 0.5% of the observations change cluster assignment between iterations.
To test the sensitivity of this criterion, data from an AVIRIS scene were clustered
until no observations changed cluster assignment between iterations. This complete
convergence of the clustering fit is probably not necessary in most cases, and since it
resulted in only two cells being added to the brine scar cluster, it was not necessary
here. Those two cells were part of brine scars which had already been identified with
0.5% convergence.

In order to determine if brine disturbances could be detected with fewer bands,
four bands were chosen, based on the spectra of cluster centroids from the original
analysis, to serve as characteristics for new cluster analyses of an AVIRIS scene.
While 15 cells were missed in the four band analysis with 12 clusters as compared
with the 187 band analysis with 18 clusters, 90% of the same regions contained brine
scar predictions using the much smaller data set. Three cells were added to the
predictions in the four band analysis. Two of these cells are merely extensions of
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objects found by both analyses, and the third corresponds to a prediction cell from
another scene. A multispectral remote sensing instrument which looked only at these
four bands of the spectrum could be constructed and operated much more cheaply
than the AVIRIS instrument for detecting these geophysical disturbances at petroleum
areas all over the Earth. Moreover, other nearby bands may be even better indicators
for brine scars. Since they were chosen by inspecting the spectra of centroids obtained
in the original analysis, the four bands chosen for this study may not be the optimal
wavelengths for brine scar detection. Coefficients of a discriminant analysis trained
using the MGC results could be used to identify the four best bands for brine scar
discrimination. Nevertheless, a large proportion of the original predictions were found
again with the four bands used here while only two objects (one of which may be a
false positive) were missed.
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A.1 The standardize Program

The following is the C source code, standardize.c, which was used to standardize data
sets prior to cluster analysis, unstandardize cluster centroids following cluster analysis,
and transform data to the inference space of other data sets using stored means and
standard deviations. The program reads ASCII data files and writes out either ASCII
or native binary files suitable for use by the parallel clustering algorithm. It will save
means and standard deviations to files, and can read them for unstandardizing or
transforming data sets.

#ifdef linux
#define _LARGEFILE_SOURCE
#define _LARGEFILE64_SOURCE

#endif /* linux */

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <error.h>

void usage(char *name)
{

fprintf(stderr, "Usage: %s [-v] [-b] [-h] -r num_obs \
-c num_coord [-o output.dat] [-m mean.out] [-s stddev.out] [-t] \
[-u] [-M mean.in -S stddev.in] input.dat\n", name);

fprintf(stderr, "where options are:\n");
fprintf(stderr, " -b\t\twrite binary output file (defaults to \

ASCII)\n");
fprintf(stderr, " -c num_coord\tnumber of coordinates (or \

fields)\n");
fprintf(stderr, " -h\t\tprints this help information\n");
fprintf(stderr, " -M mean.in\tthe name of a file from which \

to read the means (in ASCII)\n");
fprintf(stderr, " -m mean.out\tthe name of a file in which \

to write the means (in ASCII)\n");
fprintf(stderr, " -o output.dat\tthe name of the output file \

(defaults to stdout)\n");
fprintf(stderr, " -r num_obs\tnumber of observations \

(or records)\n");
fprintf(stderr, " -S stddev.in\tthe name of a file from \

which to read the standard deviations\n \t\t(in ASCII)\n");
fprintf(stderr, " -s stddev.out\tthe name of a file in \

which to write the standard deviations\n \t\t(in ASCII)\n");
fprintf(stderr, " -t\t\tcauses the program to transform \

the input data using the mean\n \t\tand standard deviations \
provided (requires use of -M and -S\n \t\targuments)\n");

fprintf(stderr, " -u\t\tcauses the program to \
unstandardize the input data (requires\n \t\tuse of -M \
and -S arguments)\n");

fprintf(stderr, " -v\t\tprints means, variances, and \
standard deviations to stdout when\n \t\tstandardizing\n");
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fprintf(stderr, " input.dat\tthe name of the ASCII input \
data file (cannot be stdin)\n");

fprintf(stderr, "Setting any output file name to - causes \
the program to use stdout.\n");

fprintf(stderr, "Because two passes are made through the \
input file when standardizing, the\ninput file cannot be stdin. \
For consistency, the input data file can never be\nstdin.\n");

fprintf(stderr, "Using -v in combination with -m - would be \
redundant.\n");

fprintf(stderr, "Using -v in combination with -s - would be \
redundant.\n");

fprintf(stderr, "Using -v and/or -m - and/or -s - \
(without specifying an output file or with\n-o -) could be \
confusing.\n");

fprintf(stderr, "Using -v and/or -m - and/or -s - \
in combination with -b (without specifying an\noutput file \
or with -o -) is usually a bad idea.\n");

fprintf(stderr, "The -m and -s arguments cannot be \
used when unstandardizing (i.e., in\nconjunction with -u).\n");

fprintf(stderr, "The -m and -s arguments cannot be \
used when transforming (i.e., in\nconjunction with -t).\n");

fprintf(stderr, "When unstandardizing or transforming, \
the input means and standard\ndeviations may be in the same \
file. The means are read first.\n");

fprintf(stderr, "Using -u in combination with -t is \
impossible.\n");

fprintf(stderr, "Using -M requires the use of -S, and \
vice versa.\n");

fprintf(stderr, "Using -v in combination with -u \
affects nothing.\n");

fprintf(stderr, "Using -v in combination with -t \
affects nothing.\n");

exit(0);
}

int main(int argc, char **argv)
{

FILE *fobs, *fout, *fsout, *fmout, *fsin, *fmin;
register int i, j, c;
char *ifile, *ofile, *sfile, *mfile, *sifile, *mifile;
char bin_flag, verbose, unstd, tform;
int num_obs, num_coord, warn;
float std_obs;
double *data, *sq_sum, *sum, *var, *std_dev, *mean, *s, *m;

bin_flag = verbose = unstd = tform = 0;
num_obs = num_coord = 0;
fmout = fsout = fmin = fsin = NULL;
ifile = ofile = mfile = sfile = mifile = sifile = NULL;

/* Check command-line flags and switches */
while ((c = getopt(argc, argv, "bc:hM:m:o:r:S:s:tuv")) != EOF) {

switch (c) {
case ’b’:

bin_flag = 1;
break;
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case ’c’:
num_coord = atoi(optarg);
break;

case ’h’:
usage(argv[0]);
break;

case ’M’:
mifile = strdup(optarg);
break;

case ’m’:
mfile = strdup(optarg);
break;

case ’o’:
ofile = strdup(optarg);
break;

case ’r’:
num_obs = atoi(optarg);
break;

case ’S’:
sifile = strdup(optarg);
break;

case ’s’:
sfile = strdup(optarg);
break;

case ’t’:
tform = 1;
break;

case ’u’:
unstd = 1;
break;

case ’v’:
verbose = 1;
break;

}
}

if (!ofile)
ofile = "-";

if (optind < argc)
ifile = strdup(argv[optind]);

else
usage(argv[0]);

for (optind++; optind < argc; optind++)
fprintf(stderr, "Argument %s ignored.\n", argv[optind]);

/* Error checking */
if (num_obs == 0) {

fprintf(stderr, "Number of observations must be \
greater than zero.\n");

usage(argv[0]);
}
if (num_coord == 0) {

fprintf(stderr, "Number of coordinates must be \
greater than zero.\n");
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usage(argv[0]);
}
if (unstd && tform) {

fprintf(stderr, "Using -u in combination with -t is \
impossible.\n");

usage(argv[0]);
}
if ((mifile && !sifile) || (!mifile && sifile)) {

fprintf(stderr, "Using of the -M argument requires \
use of the -S argument, and vice versa.\n");

usage(argv[0]);
}
if (unstd || tform) {

if (!mifile) {
fprintf(stderr, "A file of means must be provided \

using the -M argument when unstandardizing or transforming.\n");
usage(argv[0]);

}
if (!sifile) {

fprintf(stderr, "A file of standard deviations must \
be provided using the -S argument when unstandardizing or \
transforming.\n");

usage(argv[0]);
}
if (mfile) {

fprintf(stderr, "Means cannot be output when \
unstandardizing or transforming.\n");

usage(argv[0]);
}
if (sfile) {

fprintf(stderr, "Standard deviations cannot be output \
when unstandardizing or transforming.\n");

usage(argv[0]);
}

}

/* Open input file and output files. We open them all up front
so that the user does not get half-way through before
discovering there may be a problem with the output files. */

if (!(fobs = fopen64(ifile, "r"))) {
perror(ifile);
exit(2);

}
if (strcmp("-", ofile)) {

if (!(fout = fopen64(ofile, "w"))) {
perror(ofile);
exit(3);

}
}
else {

fout = stdout;
}
if (mfile) {

if (strcmp("-", mfile)) {
if (!(fmout = fopen64(mfile, "w"))) {

perror(mfile);
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exit(3);
}

}
else {

fmout = stdout;
}

}
if (sfile) {

if (strcmp("-", sfile)) {
if (!(fsout = fopen64(sfile, "w"))) {

perror(sfile);
exit(3);

}
}
else {

fsout = stdout;
}

}
if (mifile) {

if (strcmp("-", mifile)) {
if (!(fmin = fopen64(mifile, "r"))) {

perror(mifile);
exit(3);

}
}
else {

fmin = stdin;
}

}
if (sifile) {

if (strcmp("-", sifile)) {
if (strcmp(sifile, mifile)) {

if (!(fsin = fopen64(sifile, "r"))) {
perror(sifile);
exit(3);

}
}
else {

fsin = fmin;
}

}
else {

fsin = stdin;
}

}

/* Allocate memory for data, sq_sum, and sum variables */
if (!(data = (double *)malloc(num_coord * sizeof(double)))) {

perror("data");
exit(4);

}
if (!unstd && !tform) {

if (!(sq_sum = (double *)malloc(num_coord *
sizeof(double)))) {
perror("sq_sum");
exit(4);
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}
if (!(sum = (double *)malloc(num_coord *

sizeof(double)))) {
perror("sum");
exit(4);

}
if (!(var = (double *)malloc(num_coord *

sizeof(double)))) {
perror("var");
exit(4);

}
if (!(mean = (double *)malloc(num_coord *

sizeof(double)))) {
perror("mean");
exit(4);

}
if (!(std_dev = (double *)malloc(num_coord *

sizeof(double)))) {
perror("std_dev");
exit(4);

}
}
else {

sq_sum = sum = var = mean = std_dev = NULL;
}
if (!(s = (double *)malloc(num_coord * sizeof(double)))) {

perror("s");
exit(4);

}
if (!(m = (double *)malloc(num_coord * sizeof(double)))) {

perror("m");
exit(4);

}

/* Read in means and standard deviations if desired;
otherwise just initialize */

if (mifile && sifile) {
for (j = 0; j < num_coord; j++)

fscanf(fmin, " %lg ", &m[j]);
for (j = 0; j < num_coord; j++)

fscanf(fsin, " %lg ", &s[j]);
if (fsin == fmin) {

if (fmin != stdin)
fclose(fmin);

}
else {

if (fmin != stdin)
fclose(fmin);

if (fsin != stdin)
fclose(fsin);

}
}
else {

for (j = 0; j < num_coord; j++) {
m[j] = (double)0.0;
s[j] = (double)1.0;

92



}
}

/* UNSTANDARDIZING */
if (unstd) {

/* Read observations, unstandardize data, and write
it to the output file. Only a couple lines are
different, but I duplicate the entire look here
because I’m after SPEED. */

if (bin_flag) {
fprintf(stderr, "Reading %d observations with %d \

coordinates from ASCII input file and\nwriting %d unstandardized \
observations to binary output file\n", num_obs, num_coord, num_obs);

for (i = 0; i < num_obs; i++) {
for (j = 0; j < num_coord; j++) {

fscanf(fobs, " %lg ", &data[j]);
std_obs = (float)((data[j]*s[j])+m[j]);
fwrite(&std_obs, sizeof(float),1,fout);

}
}

}
else {

fprintf(stderr, "Reading %d observations with %d \
coordinates from ASCII input file and\nwriting %d unstandardized \
observations to ASCII output file\n", num_obs, num_coord, num_obs);

for (i = 0; i < num_obs; i++) {
for (j = 0; j < num_coord; j++) {

fscanf(fobs, " %lg ", &data[j]);
std_obs = (float)((data[j]*s[j])+m[j]);
fprintf(fout, " %f", std_obs);

}
fprintf(fout, "\n");

}
}

}
/* TRANSFORMING */
else if (tform) {

/* Read observations, transform data, and write
it to the output file. Only a couple lines are
different, but I duplicate the entire look here
because I’m after SPEED. */

if (bin_flag) {
fprintf(stderr, "Reading %d observations with %d \

coordinates from ASCII input file and\nwriting %d transformed \
observations to binary output file\n", num_obs, num_coord, num_obs);

for (i = 0; i < num_obs; i++) {
for (j = 0; j < num_coord; j++) {

fscanf(fobs, " %lg ", &data[j]);
std_obs = (float)((data[j]-m[j])/s[j]);
fwrite(&std_obs, sizeof(float),1,fout);

}
}

}
else {

fprintf(stderr, "Reading %d observations with %d \
coordinates from ASCII input file and\nwriting %d transformed \
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observations to ASCII output file\n", num_obs, num_coord, num_obs);
for (i = 0; i < num_obs; i++) {

for (j = 0; j < num_coord; j++) {
fscanf(fobs, " %lg ", &data[j]);
std_obs = (float)((data[j]-m[j])/s[j]);
fprintf(fout, " %f", std_obs);

}
fprintf(fout, "\n");

}
}

}
/* STANDARDIZING */
else {

/* Initialize sq_sum and sum to zero */
for (j = 0; j < num_coord; j++)

sq_sum[j] = sum[j] = (double)0.0;

fprintf(stderr, "Pass 1: Reading %d observations with %d \
coordinates from ASCII input file\n", num_obs, num_coord);

/* Pass 1: Read observations and compute squared sum
and sum in order to compute variance */

for (i = 0; i < num_obs; i++) {
for (j = 0; j < num_coord; j++) {

fscanf(fobs, " %lg ", &data[j]);
sq_sum[j] += data[j] * data[j];
sum[j] += data[j];

}
}

warn = 0;
/* Compute mean, variance, and standard deviation

for each coordinate */
for (j = 0; j < num_coord; j++) {

mean[j] = sum[j] / (double)num_obs;
var[j] = (sq_sum[j] - (sum[j] * sum[j] /

(double)num_obs)) / ((double)num_obs-(double)1);
std_dev[j] = sqrt((double)var[j]);
if (std_dev[j] == (double)0.0)

++warn;
}

if (verbose) {
printf("Means:\n");
for (j = 0; j < num_coord; j++) {

printf(" %f", mean[j]);
}
printf("\n");
printf("Variances:\n");
for (j = 0; j < num_coord; j++) {

printf(" %f", var[j]);
}
printf("\n");
printf("Standard Deviations:\n");
for (j = 0; j < num_coord; j++) {

printf(" %f", std_dev[j]);
}
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printf("\n");
}

/* Output means and standard deviations to files,
if desired */

if (mfile) {
for (j = 0; j < num_coord; j++)

fprintf(fmout, " %f", mean[j]);
fprintf(fmout, "\n");
if (fmout != stdout)

fclose(fmout);
}
if (sfile) {

for (j = 0; j < num_coord; j++)
fprintf(fsout, " %f", std_dev[j]);

fprintf(fsout, "\n");
if (fsout != stdout)

fclose(fsout);
}

if (warn)
fprintf(stderr, "WARNING: %d standard deviations are \

zero!\n", warn);

/* Move back to the beginning of the input file for pass 2 */
rewind(fobs);

/* Write binary or ASCII output depending on
command-line flag. Only a couple of lines are
different, but I duplicate the entire loop here
because I’m after SPEED. */

if (bin_flag) {
fprintf(stderr, "Pass 2: Writing %d standardized \

observations with %d coordinates to binary output \
file\n", num_obs, num_coord);

/* Pass 2: Read observations, standardize data,
and write it to the output file */

for (i = 0; i < num_obs; i++) {
for (j = 0; j < num_coord; j++) {

fscanf(fobs, " %lg ", &data[j]);
std_obs = (float)((s[j] * (data[j] -

mean[j]) / std_dev[j]) + m[j]);
fwrite(&std_obs, sizeof(float),1,fout);

}
}

}
else {

fprintf(stderr, "Pass 2: Writing %d standardized \
observations with %d coordinates to ASCII output \
file\n", num_obs, num_coord);

/* Pass 2: Read observations, standardize data,
and write it to the output file */

for (i = 0; i < num_obs; i++) {
for (j = 0; j < num_coord; j++) {

fscanf(fobs, " %lg ", &data[j]);
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std_obs = (float)((s[j] * (data[j] -
mean[j]) / std_dev[j]) + m[j]);

fprintf(fout, " %f", std_obs);
}
fprintf(fout, "\n");

}
}

}

/* Close data files */
if (fobs != stdin)

fclose(fobs);
if (fout != stdout)

fclose(fout);

/* Free memory */
free(data);
if (!unstd && !tform) {

free(sq_sum);
free(sum);
free(var);
free(mean);
free(std_dev);

}
free(s);
free(m);

exit(0);
}
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A.2 The read data Program

The following is the C source code, read data.c, written to extract the AVIRIS hyper-
spectral data from the big endian binary band-interleaved files provided by JPL. This
program was run against all seven scene files to create band-interleaved ASCII files
for clustering and separate band files for loading into the GIS. When compiled with
MAKE GIS FILES defined, the program creates 224 individual files (one for each wave-
length) as big endian binary 2s complement unsigned integers which can be loaded
directly into the GRASS GIS.

#include <stdio.h>
#include <limits.h>
#include <endian.h>
#include <sys/param.h>

/*
* Read the band-interleaved AVIRIS hyperspectral image files,
* and write out layers for each wavelength as 2s complement
* unsigned integers for loading directly into the GRASS GIS
* and send band-interleaved raw ASCII file to stdout for
* use in clustering. AVIRIS data are in BIG ENDIAN so byte
* swapping is required on LITTLE ENDIAN machines.
*/

#undef MAKE_GIS_FILES /* If defined, the GIS files are made;
otherwise, only the ASCII data is output */

#define NCHANNELS 224
#define NSAMPLES 614
#define NLINES 512

#define BSWAP16(x) \
( (((x) & 0xff00) >> 8) | (((x) & 0x00ff) << 8) )

#define BSWAP32(x) \
( (((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) | \

(((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24) )

int main(int argc, char **argv)
{

FILE *fp;
int i, j;
short int ival, oval;

#ifdef MAKE_GIS_FILES
FILE *gfp[NCHANNELS];
unsigned short int gval;
char fname[MAXPATHLEN];

#endif /* MAKE_GIS_FILES */

if (!(fp = fopen(argv[1], "r"))) {
perror(argv[1]);
exit(1);
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}

#ifdef MAKE_GIS_FILES
for (i = 0; i < NCHANNELS; i++) {

sprintf(fname, "%s.%03d.gis", argv[1], i);
if (!(gfp[i] = fopen(fname, "w"))) {

perror(fname);
exit(2);

}
}

#endif /* MAKE_GIS_FILES */

for (j = 0; j < NSAMPLES*NLINES; j++) {
for (i = 0; i < NCHANNELS && fread(&ival, sizeof(short int),

1, fp); i++) {
#if __BYTE_ORDER == __LITTLE_ENDIAN

oval = BSWAP16(ival);
#endif /* __BYTE_ORDER == __LITTLE_ENDIAN */

printf(" %hd", oval);
#ifdef MAKE_GIS_FILES
#if __BYTE_ORDER == __LITTLE_ENDIAN

gval = BSWAP16((unsigned short)(oval < 0 ?
(SHRT_MAX - oval + 1) : oval));

#else /* __BYTE_ORDER == __LITTLE_ENDIAN */
gval = (unsigned short)(oval < 0 ?

(SHRT_MAX - oval + 1) : oval);
#endif /* __BYTE_ORDER == __LITTLE_ENDIAN */
#endif /* MAKE_GIS_FILES */

}
printf("\n");

}
fprintf(stderr, "Read %d values from %s\n", (i*j), argv[1]);

#ifdef MAKE_GIS_FILES
for (i = 0; i < NCHANNELS; i++)

fclose(gfp[i]);
#endif /* MAKE_GIS_FILES */

fclose(fp);
return 0;

}
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A.3 AVIRIS Spectral Calibration

Table A.1: AVIRIS spectral calibration.

Band

Wavelength
Center
[nm]

Uncertainty in
Wavelength

Center

FWHM for
Equivalent

Gaussian [nm]
Uncertainty in

FWHM

Included
in Clus-
tering

Included
in Small
Subset

1 370.43 0.45 9.17 0.30
2 380.26 0.30 9.16 0.30
3 390.09 0.22 9.15 0.30
4 399.92 0.09 9.13 0.19 X
5 409.75 0.07 9.12 0.11 X
6 419.58 0.06 9.12 0.08 X
7 429.41 0.06 9.11 0.06 X
8 439.23 0.06 9.10 0.05 X
9 449.06 0.05 9.10 0.05 X

10 458.89 0.05 9.10 0.05 X X
11 468.71 0.05 9.09 0.05 X
12 478.54 0.05 9.09 0.05 X
13 488.37 0.05 9.09 0.04 X
14 498.19 0.05 9.09 0.04 X
15 508.02 0.05 9.10 0.04 X
16 517.84 0.05 9.10 0.04 X
17 527.67 0.05 9.11 0.04 X
18 537.49 0.05 9.12 0.04 X
19 547.32 0.05 9.12 0.04 X
20 557.14 0.05 9.13 0.04 X X
21 566.96 0.05 9.14 0.04 X
22 576.79 0.05 9.16 0.04 X
23 586.61 0.05 9.17 0.04 X
24 596.43 0.05 9.18 0.04 X
25 606.25 0.05 9.20 0.04 X
26 616.08 0.06 9.22 0.04 X
27 625.90 0.05 9.24 0.04 X
28 635.72 0.05 9.26 0.04 X
29 645.54 0.05 9.28 0.04 X
30 655.36 0.05 9.30 0.04 X
31 665.18 0.05 9.33 0.04 X
32 675.00 0.07 9.35 0.06 X
33 654.17 0.06 9.27 0.05 X
34 663.71 0.06 9.26 0.05 X
35 673.25 0.06 9.25 0.05 X
36 682.79 0.06 9.25 0.05 X
37 692.33 0.06 9.26 0.05 X
38 701.87 0.06 9.27 0.05 X
39 711.41 0.06 9.30 0.05 X
40 720.95 0.06 9.33 0.05 X
41 730.49 0.06 9.36 0.05 X
42 740.03 0.07 9.41 0.05 X
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Table A.1: Continued

Band

Wavelength
Center
[nm]

Uncertainty in
Wavelength

Center

FWHM for
Equivalent

Gaussian [nm]
Uncertainty in

FWHM

Included
in Clus-
tering

Included
in Small
Subset

43 749.57 0.06 9.46 0.05 X
44 759.12 0.06 9.52 0.05 X
45 768.66 0.07 9.58 0.04 X
46 778.20 0.06 9.65 0.05 X
47 787.75 0.07 9.73 0.04 X
48 797.29 0.06 9.82 0.05 X
49 806.84 0.06 9.92 0.05 X
50 816.39 0.07 10.02 0.05 X
51 825.93 0.06 10.13 0.05 X
52 835.48 0.06 10.24 0.05 X
53 845.03 0.06 10.37 0.05 X
54 854.58 0.06 10.50 0.05 X
55 864.12 0.06 10.64 0.05 X
56 873.67 0.06 10.78 0.05 X
57 883.22 0.06 10.94 0.05 X
58 892.77 0.06 11.10 0.05 X
59 902.33 0.06 11.26 0.05 X
60 911.88 0.06 11.44 0.05 X
61 921.43 0.06 11.62 0.05 X
62 930.98 0.06 11.81 0.05 X
63 946.35 0.06 9.72 0.06 X
64 955.76 0.06 9.72 0.06 X
65 965.17 0.06 9.72 0.06 X
66 974.58 0.06 9.72 0.06 X
67 983.99 0.06 9.72 0.06 X
68 993.39 0.06 9.72 0.06 X
69 1002.80 0.06 9.72 0.06 X
70 1012.21 0.09 9.72 0.06 X
71 1021.62 0.06 9.72 0.06 X
72 1031.03 0.06 9.72 0.06 X
73 1040.44 0.06 9.72 0.06 X
74 1049.84 0.06 9.72 0.06 X
75 1059.25 0.08 9.72 0.06 X
76 1068.66 0.06 9.72 0.06 X
77 1078.06 0.06 9.72 0.06 X
78 1087.47 0.06 9.73 0.06 X
79 1096.88 0.06 9.73 0.06 X
80 1106.28 0.06 9.73 0.06 X
81 1115.69 0.06 9.73 0.06 X
82 1125.10 0.06 9.73 0.06 X
83 1134.50 0.06 9.74 0.06 X
84 1143.91 0.06 9.74 0.06 X
85 1153.31 0.06 9.74 0.06 X
86 1162.72 0.10 9.74 0.07 X
87 1172.12 0.06 9.74 0.06 X
88 1181.52 0.06 9.75 0.06 X
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Table A.1: Continued

Band

Wavelength
Center
[nm]

Uncertainty in
Wavelength

Center

FWHM for
Equivalent

Gaussian [nm]
Uncertainty in

FWHM

Included
in Clus-
tering

Included
in Small
Subset

89 1190.93 0.06 9.75 0.06 X
90 1200.33 0.06 9.75 0.06 X
91 1209.73 0.06 9.75 0.06 X
92 1219.14 0.06 9.76 0.06 X
93 1228.54 0.06 9.76 0.06 X
94 1237.94 0.06 9.76 0.06 X
95 1247.35 0.06 9.77 0.06 X
96 1256.75 0.06 9.77 0.06 X
97 1255.57 0.09 10.50 0.07 X
98 1265.54 0.09 10.52 0.07 X
99 1275.51 0.09 10.54 0.07 X

100 1285.48 0.09 10.57 0.07 X
101 1295.46 0.09 10.59 0.07 X
102 1305.43 0.09 10.61 0.07 X
103 1315.40 0.09 10.63 0.07 X
104 1325.37 0.09 10.64 0.07 X
105 1335.34 0.09 10.66 0.07 X
106 1345.30 0.09 10.67 0.07 X
107 1355.27 0.09 10.69 0.07
108 1365.24 0.09 10.70 0.07
109 1375.21 0.09 10.71 0.07
110 1385.17 0.09 10.72 0.07
111 1395.14 0.09 10.73 0.07
112 1405.10 0.09 10.74 0.07
113 1415.07 0.09 10.75 0.07
114 1425.03 0.09 10.76 0.07
115 1434.99 0.09 10.76 0.07
116 1444.96 0.09 10.77 0.07
117 1454.92 0.09 10.77 0.07 X
118 1464.88 0.09 10.77 0.07 X
119 1474.84 0.09 10.77 0.07 X
120 1484.80 0.09 10.77 0.07 X
121 1494.76 0.09 10.77 0.07 X
122 1504.72 0.09 10.77 0.07 X
123 1514.68 0.09 10.76 0.07 X
124 1524.64 0.10 10.76 0.08 X
125 1534.59 0.09 10.75 0.07 X
126 1544.55 0.11 10.74 0.09 X
127 1554.51 0.10 10.74 0.08 X X
128 1564.46 0.10 10.73 0.08 X
129 1574.42 0.10 10.72 0.08 X
130 1584.37 0.10 10.70 0.08 X
131 1594.32 0.10 10.69 0.08 X
132 1604.28 0.10 10.68 0.08 X
133 1614.23 0.09 10.66 0.07 X
134 1624.18 0.10 10.65 0.08 X
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Table A.1: Continued

Band

Wavelength
Center
[nm]

Uncertainty in
Wavelength

Center

FWHM for
Equivalent

Gaussian [nm]
Uncertainty in

FWHM

Included
in Clus-
tering

Included
in Small
Subset

135 1634.13 0.09 10.63 0.07 X
136 1644.09 0.10 10.61 0.08 X
137 1654.04 0.10 10.59 0.08 X
138 1663.99 0.09 10.57 0.07 X
139 1673.94 0.10 10.55 0.08 X
140 1683.88 0.09 10.53 0.07 X
141 1693.83 0.11 10.50 0.09 X
142 1703.78 0.12 10.48 0.10 X
143 1713.73 0.12 10.45 0.11 X
144 1723.67 0.12 10.42 0.12 X
145 1733.62 0.11 10.40 0.08 X
146 1743.56 0.09 10.37 0.07 X
147 1753.51 0.10 10.34 0.08 X
148 1763.45 0.11 10.30 0.09 X
149 1773.40 0.12 10.27 0.10 X
150 1783.34 0.09 10.24 0.07 X
151 1793.28 0.09 10.20 0.07 X
152 1803.22 0.09 10.17 0.07
153 1813.16 0.09 10.13 0.07
154 1823.11 0.09 10.09 0.07
155 1833.05 0.09 10.05 0.07
156 1842.98 0.09 10.01 0.07
157 1852.92 0.09 9.97 0.07
158 1862.86 0.10 9.92 0.08
159 1872.80 0.09 9.88 0.09
160 1882.74 0.09 9.84 0.07
161 1880.96 0.06 10.85 0.06
162 1891.03 0.06 10.86 0.07
163 1901.09 0.06 10.86 0.06
164 1911.15 0.07 10.87 0.06
165 1921.21 0.06 10.87 0.06
166 1931.27 0.06 10.87 0.06
167 1941.32 0.06 10.87 0.06
168 1951.37 0.07 10.87 0.06
169 1961.42 0.06 10.87 0.06 X
170 1971.47 0.07 10.87 0.06 X
171 1981.51 0.07 10.86 0.07 X
172 1991.55 0.07 10.86 0.06 X
173 2001.59 0.07 10.86 0.07 X
174 2011.63 0.07 10.85 0.07 X
175 2021.66 0.07 10.85 0.06 X
176 2031.69 0.07 10.84 0.07 X
177 2041.72 0.07 10.84 0.07 X
178 2051.75 0.07 10.83 0.07 X
179 2061.77 0.07 10.82 0.07 X
180 2071.79 0.06 10.81 0.06 X
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Table A.1: Continued

Band

Wavelength
Center
[nm]

Uncertainty in
Wavelength

Center

FWHM for
Equivalent

Gaussian [nm]
Uncertainty in

FWHM

Included
in Clus-
tering

Included
in Small
Subset

181 2081.81 0.07 10.80 0.06 X
182 2091.82 0.07 10.79 0.06 X
183 2101.83 0.07 10.78 0.06 X
184 2111.84 0.07 10.77 0.06 X
185 2121.85 0.06 10.76 0.06 X
186 2131.86 0.06 10.75 0.06 X X
187 2141.86 0.07 10.73 0.07 X
188 2151.86 0.07 10.72 0.06 X
189 2161.85 0.07 10.70 0.07 X
190 2171.85 0.06 10.69 0.06 X
191 2181.84 0.07 10.67 0.07 X
192 2191.83 0.07 10.65 0.07 X
193 2201.81 0.07 10.63 0.07 X
194 2211.80 0.07 10.62 0.07 X
195 2221.78 0.07 10.60 0.07 X
196 2231.76 0.07 10.58 0.07 X
197 2241.73 0.07 10.55 0.07 X
198 2251.71 0.07 10.53 0.07 X
199 2261.68 0.07 10.51 0.07 X
200 2271.65 0.07 10.49 0.07 X
201 2281.61 0.07 10.46 0.07 X
202 2291.57 0.07 10.44 0.07 X
203 2301.53 0.08 10.41 0.07 X
204 2311.49 0.07 10.39 0.07 X
205 2321.45 0.07 10.36 0.07 X
206 2331.40 0.08 10.33 0.07 X
207 2341.35 0.08 10.31 0.06 X
208 2351.30 0.07 10.28 0.07 X
209 2361.24 0.07 10.25 0.07 X
210 2371.18 0.07 10.22 0.07 X
211 2381.12 0.07 10.19 0.07 X
212 2391.06 0.07 10.16 0.07 X
213 2400.99 0.07 10.12 0.07 X
214 2410.93 0.07 10.09 0.07 X
215 2420.85 0.07 10.06 0.07 X
216 2430.78 0.07 10.02 0.07 X
217 2440.71 0.06 9.99 0.07 X
218 2450.63 0.07 9.95 0.07
219 2460.55 0.07 9.91 0.07
220 2470.46 0.07 9.88 0.07
221 2480.37 0.06 9.84 0.07
222 2490.29 0.06 9.80 0.07
223 2500.19 0.06 9.76 0.07
224 2510.10 0.06 9.72 0.06
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A.4 Scripts for Manipulating GIS Data

Script 1 This script was used to download the DOQQs, contained in the band
interleaved (.bil) files, from the Oklahoma State GIS Council’s FTP site.

#!/bin/bash
NUM=36096
URL=ftp://okmaps.onenet.net/doq/${NUM}
for i in f43 f44 f33 f34 f23 f24 f13 f14 \

f51 f42 f41 f32 f31 f22 f21 f12 \
g53 g54 g43 g44 g33 g34 g23 g24 g13 \
g61 g52 g51 g42 g41 g32 g31 g22 g21 \
h64 h53 h54 h43 h44 h33 h34 h23 h24 \
h61 h52 h51 h42 h41 h32 h31 h22 h21; do
wget -nv ${URL}/${NUM}${i}.bil
wget -nv ${URL}/${NUM}${i}.hdr.NAD27
wget -nv ${URL}/${NUM}${i}.hdr.NAD83
wget -nv ${URL}/${NUM}${i}.hdr
wget -nv ${URL}/${NUM}${i}.RawHeader

done

Script 2 After the DOQQs were downloaded and the r.in.doq program was modified,
this script was used to load the DOQQs into the GRASS GIS.

#!/bin/bash
for i in *.bil; do

MAPNAME=‘echo ${i} | awk -F. ’{print substr($1,6,3);}’‘
echo "---------------------------------------------------------"
echo "Now loading ${i} into ${MAPNAME}"
r.in.doq -s input=${i} output=${MAPNAME}

done
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Script 3 Once the DOQQs were loaded into the GIS, this script was used to generate
vector outlines of each DOQQ.
for i in *.bil; do

MAPNAME=‘echo ${i} | awk -F. ’{print substr($1,6,3);}’‘
echo "---------------------------------------------------------"
echo "Creating vector outline for ${MAPNAME}"
g.region rast=${MAPNAME}
r.mapcalc << EOF

junk = if(${MAPNAME})
exit
EOF

r.poly input=junk output=${MAPNAME}
done
g.remove rast=junk
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A.5 Brine Scar Prediction Locations

Table A.2: Brine scar prediction locations. Coordinates are in UTM meters.

Region Name North South West East In TPP
arm ef12 site 4080457 4079802 728826 729581 X

tpp hq 4081037 4080412 729394 730266 X
bigscar 4077178 4076245 724771 726073 X

lower disturbance 4077076 4076249 723980 725094
bottom tanks 4074784 4073758 727270 728272

upper well N scar 4082139 4081823 725474 725877
upper well tank farm 4082143 4081750 725069 725491

upper well roadside pump 4081784 4081468 724425 724794
upper well main road 4081220 4080991 724261 724505 X
upper well big scar 4081502 4080575 724974 726160 X
left upper well scar 4081279 4080174 721999 723282

tanks 4078299 4078035 724017 724328
roadside tanks 4078034 4077708 724351 724681 X

middle disturbance 4078811 4078152 724671 725445 X
erosion7 4079561 4079018 722511 723132
ranch 4079069 4078741 722399 722774
ranch2 4078861 4078236 723283 723927

intersection5 4077417 4076653 727945 728841 X
intersection6 4080594 4079353 727017 728331 X
intersection7 4082655 4082081 729618 730352 X

erosion2 4086016 4085139 715620 716627
intersection2 4085907 4085069 718215 719077
intersection8 4083304 4082813 723189 723748

junction2 4083343 4082894 721540 722284
farm3 4080593 4079967 714892 715610

smallfacility 4082053 4081185 716794 717501
disturb7 4080862 4080325 734466 735116 X
oilarea 4079616 4078333 732806 734381 X
hilltop 4075730 4075269 739008 739543

bigfields 4074787 4071758 737456 740676
strip 4070699 4069691 731613 732654
farm2 4069399 4068814 736327 736978 X

compound3 4072503 4071888 732629 733349 X
roadside2 4073240 4072392 732177 733168 X

intersection9 4074316 4073869 732077 732623 X
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Table A.2: Continued
Region Name North South West East In TPP

road 4075748 4075375 730539 730936 X
tank cluster 4072708 4071899 748351 749371
tank group 4070577 4069723 747114 748326
waterfront 4074425 4073798 746295 747053

facility intersection 4071885 4070849 747785 748975
compound4 4071777 4071135 744236 745051

ag intersection 4069534 4068835 740721 741504
farm4 4073316 4072561 739299 740336

disturb1 new 4065613 4065021 741102 741816
disturb2 new 4064436 4063781 742817 743516

disturb3 4073055 4071282 742438 744379
tank station 4066375 4065580 740559 741590
agriculture 4069429 4069207 741464 741712
agriculture2 4070348 4069398 739793 741021

erosion1 4069268 4069006 742301 742564
roadshoulder1 4070614 4070180 742831 743423

junction 4066463 4065306 739579 740700
intersection1 4069248 4069060 741879 742036

farm1 4068800 4068374 742374 742867
compound2 4068239 4067729 743202 743819

disturb4 4084211 4083469 737439 738304 X
disturb5 4087212 4086393 741585 742389
disturb6 4088447 4087805 738258 739070
disturb10 4084719 4084093 741978 742628
wells in 66 4085117 4082454 744878 747323

group of spills 4081658 4080384 742515 744164
ranch3 4079776 4078707 741925 743071
erosion8 4079232 4077756 740196 741904
runoff 4088170 4087189 731306 732435

intersection10 4086573 4085695 728685 729705
disturb11 4085081 4084347 726422 727443
disturb12 4088535 4087626 732628 733819

creek to creek spill 4085859 4085322 731627 732325 X
tank wash 4086364 4085766 736553 737217

puka 4085179 4084211 735864 736815
lower stream 4086072 4084576 734327 735627

disturb13 4086282 4085819 733103 733629
erosion6 4089796 4089514 730543 730812
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Table A.2: Continued
Region Name North South West East In TPP
spill drainage 4090704 4090318 735048 735468
by river spot 4091284 4090800 734691 735403
compound6 4091344 4090610 732890 733835

jackpump1 new 4090896 4090046 732331 733626
sandbars new 4092861 4090687 729913 732717

erosion3 4090892 4090233 724197 724871
erosion4 4093986 4093452 724901 725472
erosion5 4094721 4094370 725849 726163
erosion9 4090965 4090100 724923 725901

intersection3 4088521 4087960 721295 721913
intersection4 4089427 4088675 728491 729273

bridge and farm river 4091481 4090606 729073 730159
two spills 4087237 4086373 726797 727843

set of tanks 4085036 4084064 725756 727031
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A.6 Regions Containing Brine Scar Predictions
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Figure A.1: Region: arm ef12 site, Scene: r05sc05. TPP bison paddocks and the
U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Extended
Facility #12 located near the Tallgrass Prairie Preserve Headquarters.
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Figure A.2: Region: tpp hq, Scene: r05sc05. Tallgrass Prairie Preserve (TPP) Head-
quarters.
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Figure A.3: Region: bigscar, Scene: r05sc05. Two of the largest known brine scars
in the entire study area the boundaries of which were recorded using a GPS.
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Figure A.4: Region: lower disturbance, Scene: r05sc05. Single brine scar associated
with a well near the two large brine scars.
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Figure A.5: Region: bottom tanks, Scene: r05sc05. Brine scar near collection of
tanks south of two large brine scars.
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Figure A.6: Region: upper well N scar, Scene: r05sc05. Medium-sized brine scar just
north of the TPP boundary.
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Figure A.7: Region: upper well tank farm, Scene: r05sc05. Tanks just north of the
TPP boundary.
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Figure A.8: Region: upper well roadside pump, Scene: r05sc05. Road-side jackpump
just north of TPP boundary.
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Figure A.9: Region: upper well main road, Scene: r05sc05. Area near main road but
just northwest of an active well just within the TPP boundary.
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Figure A.10: Region: upper well big scar, Scene: r05sc05. Old, large brine scar
between a number of wells.
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Figure A.11: Region: left upper well scar, Scene: r05sc05 and r05sc06. Multiple
brine scars among a collection of wells and tanks.
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Figure A.12: Region: tanks, Scene: r05sc05. Collection of tanks.
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Figure A.13: Region: roadside tanks, Scene: r05sc05. Road-side tanks just within
TPP western boundary.
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Figure A.14: Region: middle disturbance, Scene: r05sc05. Old, large brine scar.
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Figure A.15: Region: erosion7, Scene: r05sc05. Eroded area with no obvious wells or
tanks nearby.
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Figure A.16: Region: ranch, Scene: r05sc05. A ranch with two large buildings and a
parking area.
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Figure A.17: Region: ranch2, Scene: r05sc05. Big ranch with large driveways.
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Figure A.18: Region: intersection5, Scene: r05sc05. Highway intersection.
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Figure A.19: Region: intersection6, Scene: r05sc05. Highway intersection.
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Figure A.20: Region: intersection7, Scene: r05sc05 and r06sc05. Highway intersection
(same pixel in both scenes).
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Figure A.21: Region: erosion2, Scene: r05sc06. Eroded area on a back road.
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Figure A.22: Region: intersection2, Scene: r05sc06. Intersection of roads.
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Figure A.23: Region: intersection8, Scene: r05sc06. Highway intersection and eroded
area nearby.
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Figure A.24: Region: junction2, Scene: r05sc06. Highway interchange.
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Figure A.25: Region: farm3, Scene: r05sc06. Ranch area with large turnaround.
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Figure A.26: Region: smallfacility, Scene: r05sc06. Road-side facility with parking
area.
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Figure A.27: Region: disturb7, Scene: r05sc04 and r06sc06. Brine scar around a well
(same pixel in two scenes).
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Figure A.28: Region: oilarea, Scene: r05sc04. Brine scars at two wells and a tank
area.
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Figure A.29: Region: hilltop, Scene: r05sc04. Object on riverbank beside roadway
near agricultural area.
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Figure A.30: Region: bigfields, Scene: r05sc04 and r05sc03. Three very large agricul-
tural fields and farm area.
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Figure A.31: Region: strip, Scene: r05sc04. Gravel road or strip of agricultural field
in area with tanks.
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Figure A.32: Region: farm2, Scene: r05sc04. Farm or ranch with large driveway.
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Figure A.33: Region: compound3, Scene: r05sc04. Building and large field lot near
highway and bright shoulders on the highway nearby.
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Figure A.34: Region: roadside2, Scene: r05sc04. Bright areas on highway.
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Figure A.35: Region: intersection9, Scene: r05sc04. Highway intersection.
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Figure A.36: Region: road, Scene: r05sc04. Bridge and highway turnaround.
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Figure A.37: Region: tank cluster, Scene: r05sc03. Large tank farm.
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Figure A.38: Region: tank group, Scene: r05sc03. A collection of tanks near wells.
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Figure A.39: Region: waterfront, Scene: r05sc03. Ag field near waterfront.
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Figure A.40: Region: facility intersection, Scene: r05sc03. Some kind of facility at a
large intersection.
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Figure A.41: Region: compound4, Scene: r05sc03. Facility situated among various
wells.
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Figure A.42: Region: ag intersection, Scene: r05sc03. Large roadway intersection.
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Figure A.43: Region: farm4, Scene: r05sc03. Farm house and barn area.
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Figure A.44: Region: disturb1 new, Scene: r05sc03. Brine scar around well.
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Figure A.45: Region: disturb2 new, Scene: r05sc03. Two obvious brine scars; one
near holding tanks and the other at a well site.
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Figure A.46: Region: disturb3, Scene: r05sc03. Brine scar on road surrounded by
wells.
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Figure A.47: Region: tank station, Scene: r05sc03. Tank depot in well area.
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Figure A.48: Region: agriculture, Scene: r05sc03. Agricultural field.
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Figure A.49: Region: agriculture2, Scene: r05sc03. Multiple spots on agricultural
fields.
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Figure A.50: Region: erosion1, Scene: r05sc03. Bright eroded area near road.
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Figure A.51: Region: roadshoulder1, Scene: r05sc03. Bright road shoulders.
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Figure A.52: Region: junction, Scene: r05sc03. Highway junction and a large building
and fenced compound near wells.
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Figure A.53: Region: intersection1, Scene: r05sc03. Major road intersection.
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Figure A.54: Region: farm1, Scene: r05sc03. Large ranch.
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Figure A.55: Region: compound2, Scene: r05sc03. Fenced-off compound with parking
area.
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Figure A.56: Region: disturb4, Scene: r06sc06. Well site.
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Figure A.57: Region: disturb5, Scene: r06sc06. Large area of erosion in wooded area
with wells and tanks nearby.
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Figure A.58: Region: disturb6, Scene: r06sc06. Well site, tank farm, or new feature.
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Figure A.59: Region: disturb10, Scene: r06sc06. Tank or well site near road.
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Figure A.60: Region: wells in 66, Scene: r06sc06. Brine scars at many well and tank
sites.
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Figure A.61: Region: group of spills, Scene: r06sc06. Brine scars at three well/tank
sites.
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Figure A.62: Region: ranch3, Scene: r06sc06. Ranch with large driveway.
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Figure A.63: Region: erosion8, Scene: r06sc06. Runoff from pond and nearby well
site.
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Figure A.64: Region: runoff, Scene: r06sc05. Highly eroded area and pond down-
stream of well site.
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Figure A.65: Region: intersection10, Scene: r06sc05. Road intersection.
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Figure A.66: Region: disturb11, Scene: r06sc05 and r06sc04. Tanks and well site.
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Figure A.67: Region: disturb12, Scene: r06sc05. Spot near well and tank areas.
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Figure A.68: Region: creek to creek spill, Scene: r06sc05. Spill from one well drained
to and eroded the bank of a secondary stream.

177



Figure A.69: Region: tank wash, Scene: r06sc05. Runoff from tank which may have
fed larger area in region possible runoff.
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Figure A.70: Region: puka, Scene: r06sc05. Runoff from possible well (also contained
in possible runoff).
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Figure A.71: Region: lower stream, Scene: r06sc05. Sandbars, two bridges, and
erosion/outcrop spots (also contained in possible runoff).
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Figure A.72: Region: disturb13, Scene: r06sc05. Large tank or well facility.
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Figure A.73: Region: erosion6, Scene: r06sc05. Two bright spots near river.
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Figure A.74: Region: spill drainage, Scene: r06sc05. Drainage from wells or tanks.
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Figure A.75: Region: by river spot, Scene: r06sc05. Spot near river.
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Figure A.76: Region: compound6, Scene: r06sc05. Compound with multiple drive-
ways.
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Figure A.77: Region: jackpump1 new, Scene: r06sc05. Well area.
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Figure A.78: Region: sandbars new, Scene: r06sc05. A bridge, many sandbars, and
erosion/outcrops with possible old well site north of river.
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Figure A.79: Region: erosion3, Scene: r06sc04. Drainage area into pond.
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Figure A.80: Region: erosion4, Scene: r06sc04. Erosion or drainage near back road.
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Figure A.81: Region: erosion5, Scene: r06sc04. Erosion area near back road intersec-
tion.
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Figure A.82: Region: erosion9, Scene: r06sc04. Area near small shack or tank.
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Figure A.83: Region: intersection3, Scene: r06sc04. Long building at multi-way
intersection.
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Figure A.84: Region: intersection4, Scene: r06sc04. Major roadway intersection.
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Figure A.85: Region: bridge and farm river, Scene: r06sc04. Bridge over river with
sandbars and ranch with large driveways.
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Figure A.86: Region: two spills, Scene: r06sc04. Two obvious brine scars around
wells.
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Figure A.87: Region: set of tanks, Scene: r06sc04. Cluster of holding tanks.
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