Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

- there must be a relationship between contemporary variability and future trends on longer time scales within the model, and
- it must be possible to constrain contemporary variability in the model using observations.

Example

Hall and Qu (2006) evaluated the strength of the springtime snow albedo feedback (SAF; $\Delta \alpha_s / \Delta T_s$) from 17 models used for the IPCC AR4 and compared them with the observed springtime SAF from ISCCP and ERA-40 reanalysis.

Reducing Uncertainties in Climate-Carbon Cycle Feedbacks

Hypothesis 1 – Seasonal to Annual Time Scale

A stronger climate-carbon cycle feedback will be exhibited by models with weak contemporary annual cycles of atmospheric CO_2 in the Northern Hemisphere extratropics.

Feedback may be too strong because

- *R_h* too sensitive to temperature, releasing too much carbon in winter and mid-summer and canceling out uptake from NPP; or
- GPP not sensitive enough to temperature, limiting response to spring warming and reducing mid-summer maximum.

Contemporary measurements can narrow the range of model spread and reduce the uncertainty of $\gamma_L = \Delta C_L / \Delta T_s$.

Temperature Dependence of Heterotrophic Respiration

GLOBALVIEW-CO2/TRANSCOM impulse response function (TIRF), CLM4/Mean TIRF, CLM4/TIRF bounds

Forrest M. Hoffman and James T. Randerson

Reducing Uncertainties in Climate-Carbon Cycle Feedbacks

(《圖》 《문》 《문》 - 문

Hypothesis 2 – Interannual to Decadal Time Scale

Models with excess biomass in the tropics have larger effective carbon losses due to temperature and larger effective sensitivities of carbon storage to CO_2 .

Biomass estimates from Saatchi et al. (2007) and LBA-RAINFOR Project

Over-estimates of biomass could lead to large releases of carbon during droughts and may indicate too strong an effective response to temperature (a negative feedback), possibly resulting from too strong a response to CO_2 increases (a positive feedback).

Hypothesis 3 - Interannual to Decadal Time Scale

The relationship between El Niño-Southern Oscillation (ENSO) and observed CO_2 anomalies at Mauna Loa may be exploited to evaluate ocean and terrestrial model responses.

Reducing Uncertainties in Climate-Carbon Cycle Feedbacks

< - 17 → 1

CO₂ Dependence on El Niño-Southern Oscillation (ENSO)

- Keeling and Revelle (1985) described a shutdown in upwelling and biological activity during El Niño years, resulting in a shutdown of CO₂ out-gassing.
- Many others have confirmed this response, including Rayner et al., Feeley et al., Baker et al., and others.
- They suggested the deficiency in CO₂ flux is more than compensated for by widespread forest fires and plant deaths due to drought.
- While the net effect of *natural* processes may once have been a sink, the opposite effect is observed today.
- Opportunistic burning for forest clearing is likely to strengthen the sensitivity of CO₂ to El Niño.

Reducing Uncertainties

Hypotheses

Mauna Loa Atmospheric CO, Mixing Ratio

Forrest M. Hoffman and James T. Randerson

Reducing Uncertainties in Climate-Carbon Cycle Feedbacks

æ

CO₂ Anomaly Growth Rate and Ocean Niño Index

Reducing Uncertainties in Climate-Carbon Cycle Feedbacks

Mount Pinatubo Eruption

- June 1991 on island of Luzon in the Philippines
- Second largest volcanic eruption of 20th century
- Millions of tons of sulfur dioxide discharged into atmosphere
- Gases and ash reached 34 km high and over 400 km wide
- Largest disturbance of stratosphere since Krakatau in 1883

Reducing Uncertainties in Climate-Carbon Cycle Feedbacks

Relation Between CO₂ Anomaly Growth Rate and ONI

Reducing Uncertainties

Hypotheses

References

Relation Without 1991–1995 (Pinatubo Period)

Community Earth System Model (CESM) Control Run

CESM vs. Observations

(4月) (4日) (4日)

- A. Hall and X. Qu. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. *Geophys. Res. Lett.*, 33(3): L03502, Feb. 2006. doi:10.1029/2005GL025127.
- S. S. Saatchi, R. A. Houghton, R. C. D. S. Alvalá, J. V. Soares, and Y. Yu. Distribution of aboveground live biomass in the Amazon basin. *Global Change Biology*, 13(4):816–837, Apr. 2007. doi:10.1111/j.1365-2486.2007.01323.x.

It may be possible to separate β_L into more easily digestible (testable) components:

• β_L is the carbon uptake (NECB) sensitivity to elevated levels of atmospheric CO₂

•
$$\beta_L = C \cdot \beta_{fert} \cdot NPP_0 \cdot \tau_0$$
 (4)

- Where C is a constant (units of 1/ppm) • $\beta_{fert} = \frac{(NPP_f - NPP_i) / NPP_f}{\ln(CO_{2f} / CO_{2i})}$
- *NPP*₀ is initial or steady state NPP (~ contemporary NPP)
- τ_0 is the initial or steady state turnover time of carbon in the system

Example application: Explaining model responses to FACE simulations

CASA' and CN NPP responses to elevated CO_2 were different by ~ a factor of 2 or less

Yet initial model carbon storage responses to CO_2 (β_L) were different by more than a factor of 3

Why?

Example application: Explaining model responses to FACE simulations

CASA' and CN NPP responses to elevated CO_2 were different by ~ a factor of 2 or less

Yet initial model carbon storage responses to CO_2 (β_L) were different by more than a factor of 3

Why?

NPP in CN was considerably smaller than in CASA' modifying rates of storage in plant biomass

Example application: Explaining differences in model responses to historical changes in atmospheric CO₂ and N deposition

The Y axis is a prediction of β_L based on initial NPP, residence times, and relative changes in NPP

- Transient historical runs from 1800-2004
- Each point is a biome mean
- The predictive equation explains intra- and inter model variability in β_{L}
- May work well for models in which allocation is not strongly modified by elevated CO₂ or N deposition

Using this framework for CMIP5 analysis: proposed approach for analyzing $\beta_{\rm L}$

Carbon turnover time, τ_0 (constrained using sum of vegetation and litter pool sizes)