4th Carbon from Space Workshop

Forrest M. Hoffman, Nathan Collier, Mingquan Mu, Min Xu, Gretchen Keppel-Aleks, David M. Lawrence, Charles D. Koven, Weiwei Fu, William J. Riley, James T. Randerson October 27, 2022

Evaluating Land Carbon Cycle Processes in Earth System Models: Have Models Improved Over Time?

- A benchmark is a quantitative test of model function achieved through comparison of model results with observational data
- Acceptable performance on a benchmark is a necessary but not sufficient condition for a fully functioning model
- Functional relationship benchmarks offer tests of model responses to forcings and yield insights into ecosystem processes
- Effective benchmarks must draw upon a broad set of independent observations to evaluate model performance at multiple scales

.....

Models often fail to capture the amplitude of the seasonal cycle of atmospheric CO₂

Models may reproduce correct responses over only a limited range of forcing variables

- To **quantify and reduce uncertainties** in carbon cycle feedbacks to improve projections of future climate change (Eyring et al., 2019; Collier et al., 2018)
- To **quantitatively diagnose impacts of model development** on hydrological and carbon cycle process representations and their interactions
- To **guide synthesis efforts**, such as the Intergovernmental Panel on Climate Change (IPCC), by determining which models are broadly consistent with available observations (Eyring et al., 2019)
- To **increase scrutiny of key datasets** used for model evaluation
- To identify gaps in existing observations needed to inform model development
- To accelerate delivery of new measurement datasets for rapid and widespread use in model assessment

A community coordination activity created to:

- **Develop internationally accepted benchmarks** for land model performance by drawing upon collaborative expertise
- Promote the use of these benchmarks for model intercomparison
- Strengthen linkages between experimental, remote sensing, and Earth system modeling communities in the design of new model tests and new measurement programs
- Support the design and development of open source benchmarking tools

Energy and Water Cycles

Carbon and Biogeochemical Cycles

- First ILAMB Workshop was held in Exeter, UK, on June 22–24, 2009
- Second ILAMB Workshop was held in Irvine, CA, USA, on January 24–26, 2011
 - ~45 researchers participated from the US, Canada, UK, Netherlands, France, Germany, Switzerland, China, Japan, and Australia
 - Developed methodology for model-data comparison and baseline standard for performance of land model process representations (Luo et al., 2012)

A Framework for Benchmarking Land Models

- A benchmarking framework for evaluating land models emerged and included (1) defining model aspects to be evaluated, (2) selecting benchmarks as standardized references, (3) developing a scoring system to measure model performance, and (4) stimulating model improvement
- Based on this methodology and prior work on the Carbon-LAnd Model Intercomparison Project (C-LAMP) (Randerson et al., 2009), a prototype model benchmarking package was developed for ILAMB

2016 International Land Model Benchmarking (ILAMB) Workshop May 16–18, 2016, Washington, DC Third ILAMB Workshop was held May 16–18, 2016

- Workshop Goals
 - Design of new metrics for model benchmarking
 - Model Intercomparison Project (MIP) evaluation needs
 - Model development, testbeds, and workflow processes
 - Observational datasets and needed measurements

mm

- Workshop Attendance
 - 60+ participants from Australia, Japan, China, Germany,
 Sweden, Netherlands, UK, and US (10 modeling centers)
 - ~25 remote attendees at any time

Date DOE/SC-XXXX | doi:10.7249/XXXXXXXX U.S. DEPARTMENT OF Office C ENERGY Science

2016 International Land Model Benchmarking (ILAMB) Workshop Report

(Hoffman et al., 2017)

- **ILAMBv1** released at 2015 AGU Fall Meeting Town Hall, doi:<u>10.18139/ILAMB.v001.00/1251597</u>
- **ILAMBv2** released at 2016 ILAMB Workshop, doi:<u>10.18139/ILAMB.v002.00/1251621</u>
- **Open Source software** written in Python; **runs in parallel** on laptops, clusters, and supercomputers
- Routinely used for land model evaluation during development of ESMs, including the E3SM Land Model (Zhu et al., 2019) and the CESM Community Land Model (Lawrence et al., 2019)
- Models are scored based on statistical comparisons and functional response metrics

.....

BERKELEY LA

-2 -1 +0 +1 +2 Variable Z-score

CRUNCEP

ALM WCYC

SP

ILAMB Produces Diagnostics and Scores Models RUBISCO

- ILAMB generates a top-level **portrait plot** of models scores
- For every variable and dataset, ILAMB can automatically produce
 - Tables containing individual metrics and metric scores (when relevant to the data), including Ο
 - Benchmark and model period mean
 - **Bias** and **bias score** (S_{bias})
 - **Root-mean-square error (RMSE)** and **RMSE score** (S_{rmse})
 - **Phase shift** and **seasonal cycle score** (*S*_{phase})
 - **Interannual coefficient of variation** and **IAV score** (S_{iav})
 - **Spatial distribution score** (S_{dist})

Overall score ($S_{overall}$) \longrightarrow $S_{overall} = \frac{S_{bias} + 2S_{rmse} + S_{phase} + S_{iav} + S_{dist}}{1 + 2 + 1 + 1 + 1}$

- **Graphical diagnostics** Ο
 - Spatial contour maps
 - Time series line plots
 - Spatial Taylor diagrams (Taylor, 2001)

111111

Similar **tables** and **graphical diagnostics** for functional relationships

Los Alamos

ILAMBv2.6 Package Current Variables

111111

- Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3), CO₂ (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index (AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C (HWSD, NCSCDv22, Koven)
- **Hydrology:** Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat (Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial water storage anomaly (GRACE), Permafrost (NSIDC)
- Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES, GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)
- **Forcing:** Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature (CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)

- The CMIP6 suite of land models (right) has improved over the CMIP5 suite of land models (left)
- The multi-model mean outperforms any single model for each suite of models
- The multi-model mean CMIP6 land model is the "best model" overall
- Why did CMIP6 land models improve?

	Relative	e Sca	le	
Worse	Value	Bet	ter Va	alue
Mie	sing Da	ata or	Error	

(Hoffman et al., in prep)

	Contraction of the second						2 24	N P ME 2MP A							Est still North				
		ST	N'SN	202	8	Nº CH	50	5	SN	ÝG	SN	212	Sh	(°) (5	SW	CN	CMIL	
	200	00	St &	510	8°.6	S'NI	E R	1.10	1 A C	i co	14	o g	3 M	20,8	10	E It	Ne	anean	
osystem and Carbon Cycle	Ť		Ŭ	Ì			N.	Ù	1 V										
Biomass																			
Burned Area																			
Carbon Dioxide																			
Gross Primary Productivity									1										
_eaf Area Index																			
Global Net Ecosystem Carbon Balance																			
Net Ecosystem Exchange													2						
Ecosystem Respiration															·				
Soil Carbon																			
drology Cycle																			
Evapotranspiration																			
Evaporative Fraction																			
_atent Heat												_							
Runoff												<u>)</u>							
Sensible Heat																			
Ferrestrial Water Storage Anomaly																			
Permafrost																			
diation and Energy Cycle																			
Albedo																			
Surface Upward SW Radiation																			
Surface Net SW Radiation																			
Surface Upward LW Radiation																			
Surface Net LW Radiation																			
Surface Net Radiation																			
rcings																			
Surface Air Temperature																			
Diurnal Max Temperature																			
Diurnal Min Temperature																			
Diurnal Temperature Range																			
Precipitation																			
Surface Relative Humidity																			
Surface Downward SW Radiation																			
Surface Downward LW Radiation																			
lationships																			
3urnedArea/GFED4S																			
GrossPrimaryProductivity/GBAF																			
_eafAreaIndex/AVHRR																			
_eafAreaIndex/MODIS																			
Evapotranspiration/GLEAM																			
Evapotranspiration/MODIS					Î														

	with Bearing Barrish															
	allegyerin meserie anen for the sector and the sect															
	rad gitter wear complete the set of the set															
	as an origin mean or ind mean original and the original and the second and the se													a cycle	Scuttin	
	Downlose we be church had beichne. Bis Brit. Byst Bris Stur. Bis Score Bis Score Stand Die als															
Benchmark	۲ [-]	114.	h	\$°	h	\$		\$ ^x	¢.	<i>Q</i> .		Ø	<i>&</i> .	50	54	0*
bcc-csm1-1	[:]	123.	112.	114.	8.79	0.0945		0.238	1.51	1.01		0.484	0.435	0.830	0.955	0.628
BCC-CSM2-MR	[:]	114.	107.	113.	5.88	0.671		-0.0233	1.52	1.11		0.479	0.447	0.817	0.941	0.626
CanESM2	[:]	129.	117.	114.	9.54			0.0601	2.31	2.00		0.388	0.437	0.650	0.836	0.549
CanESM5	[:]	141.	128.	114.	10.1			0.730	1.87	1.60		0.449	0.418	0.710	0.948	0.589
CESM1-BGC	[:]	129.	123.	113.	5.55	0.660		0.379	1.66	1.20		0.426	0.468	0.765	0.889	0.603
CESM2	[:]	110.	104.	113.	5.57	0.642		-0.0542	1.62	1.32		0.458	0.466	0.774	0.933	0.619
GFDL-ESM2G	[:]	167.	152.	114.	12.4			1.26	2.78	1.38		0.377	0.288	0.735	0.897	0.517
GFDL-ESM4	[:]	105.	99.0	114.	6.18			-0.177	1.59	1.49		0.495	0.403	0.702	0.939	0.588
IPSL-CM5A-LR	[:]	165.	150.	113.	11.7	0.515		1.18	2.68	1.20		0.327	0.352	0.781	0.896	0.542
IPSL-CM6A-LR	[:]	115.	109.	113.	5.27	0.708		0.111	1.39	1.14		0.547	0.477	0.790	0.961	0.650
MeanCMIP5	[:]	121.	115.	114.	6.65			0.574	1.41	0.981		0.494	0.502	0.799	0.965	0.652
MeanCMIP6	[:]	116.	110.	114.	6.26			0.129	1.17	0.931		0.572	0.522	0.826	0.956	0.679
MIROC-ESM	[:]	129.	118.	102.	9.04	11.4		0.396	1.90	1.27		0.463	0.435	0.767	0.920	0.604
MIROC-ESM2L	[:]	116.	104.	113.	9.90	0.119		-0.0111	1.95	1.99		0.409	0.379	0.628	0.920	0.543
MPI-ESM-LR	[:]	169.	159.	104.	8.91	9.81		1.36	2.36	1.29		0.402	0.371	0.715	0.930	0.558
MPI-ESM1.2-LR	[:]	141.	133.	104.	6.89	9.81		0.725	2.06	1.13		0.409	0.393	0.769	0.925	0.578
NorESM1-ME	[:]	129.	120.	114.	7.82			0.386	1.86	1.25		0.387	0.456	0.761	0.856	0.583
NorESM2-LM	[:]	107.	97.5	114.	7.59			-0.0828	1.63	1.31		0.443	0.472	0.791	0.938	0.623
UK-HadGEM2-ES	[:]	137.	130.	113.	6.93	0.848		0.602	2.01	1.10		0.389	0.388	0.820	0.855	0.568
UKESM1-0-LL	[:]	126.	119.	113.	7.06	0.825		0.387	1.77	1.16		0.436	0.419	0.791	0.924	0.598

.....

BERKELEY LA

Gross Primary Productivity

- Multimodel GPP is compared with global seasonal GBAF estimates
- We can see
 Improvements
 across generations
 of models (e.g.,
 CESM1 vs. CESM2,
 IPSL-CM5A vs. 6A)
- The mean CMIP6 and CMIP5 models perform best

Los Alamos

Biases in GPP by Model

Functional Relationship Metrics (GPP vs. Precipitation, Temperature)

Precipitation/GPCPv2.3

SurfaceDownwardSWRadiation/CERESed4.1

SurfaceNetSWRadiation/CERESed4.1

SurfaceAirTemperature/CRU4.02

Reasons for Land Model Improvements

ESM improvements in **climate forcings** (temperature, precipitation, radiation) likely **partially drove improvements** exhibited by land carbon cycle models

Reasons for Land Model Improvements

Differences in bias scores for temperature, precipitation, and incoming radiation were primarily positive, further indicating **more**

realistic climate

representation

Reasons for Land Model Improvements

- While forcings got better, the largest improvements were in
 variable-to-variable relationships, suggesting that increased land model complexity was also partially responsible for higher CMIP6 model scores
- These results suggest that rigorous model evaluation & benchmarking
 with tools like ILAMB and IOMB can
 lead to model improvements

CMIP5 vs. CMIP6 Evaluation

- (a) International Land Model Benchmarking (ILAMB) and (b) International Ocean Model Benchmarking (IOMB) tools were used to evaluate how land and ocean model performance changed from CMIP5 to CMIP6
- Model fidelity is assessed through comparison of historical simulations with a wide variety of contemporary observational datasets
- The UN's Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) from Working Group 1 (WG1) Chapter 5 contains the full ILAMB/IOMB evaluation as Figure 5.22

	CMIP5 ESMS										CMIP6 ESMS											
(a) Land Benchmarking Results	bcc-csm1-1	CanESM2	CESM1-BGC	GFDL-ESM2G	IPSL-CM5A-LR	MIROC-ESM	MPI-ESM-LR	NorESM1-ME	HadGEM2-ES	BCC-CSM2-MR	CanESM5	CESM2	GFDL-ESM4	IPSL-CM6A-LR	MIROC-ES2L	MPI-ESM1.2-LF	NorESM2-LM	UKESM1-0-LL	Mean CMIP5	Mean CMIP6		
Land Ecosystem & Carbon Cycle	-0.72	-0.93	-1.55	-1.51	-0.13	0.60	-0.43	-1.31	0.19	-0.43	0.66	0.48	-1.09	0.22	0.60	-0.07	1.00	0.49	1.63	2.30		
Biomass	0.20	-0.45	-1.52	-0.40	-1.26	-0.26	-1.07	-1.77	0.92	1.39	0.74	-0.20	-0.54	0.16	0.93	-0.96	-0.01	1.04	1.23	1.82		
Burned Area			-0.87				0.10	-0.83				1.60										
Leaf Area Index	-0.20	-0.64	-1.30	-2.53	- <mark>0.01</mark>	0.30	0.01	-1.85	-0.16	0.27	0.08	0.34	-0.70	1.19	0.82	0.46	0.37	0.69	1.04	1.81		
Soil Carbon	0.27	1.26	-1.46	0.07	0.75	0.47	-0.03	-1.14	0.07	0.23	1.35	-0.99	-2.04	-1.55	0.90	-0.75	-0.17	0.24	1.01	1.48		
Gross Primary Productivity	0.59	-1.23	0.01	-1.81	-1.40	0.29	-0.53	-0.24	-1.04	0.77	0.04	0.59	-0.38	1.17	-1.02	-0.37	0.73	0.09	1.51	2.22		
Net Ecosystem Exchange	-0.42	-1.81	-0.21	-0.65	1.10	-0.24	0.80	0.02	-1.03	-1.02	-1.19	0.59	1.69	-0.42	0.63	-0.21	1.08	-1.43	1.28	1.43		
Ecosystem Respiration	0.90	-0.56	-0.86	-0.24	-1.35	0.99	-0.01	-0.94	-1.54	0.81	0.59	0.51	-0.79	0.90	-0.21	-1.24	0.43	-0.94	1.34	2.21		
Carbon Dioxide		-1.54	-0.36	-2.92	-0.74	1.53	-0.00	0.37	0.85		0.42	0.26	0.39	0.59	1.10	-0.87	0.21	0.69	0.09	-0.07		
Global Net Carbon Balance		-1.64	-0.88	-1.13	0.17	-0.31	-0.38	-0.50	0.24		-0.23	1.34	-1.70	0.17	-0.74	1.45	1.56	0.26	0.92	1.40		
Land Hydrology Cycle	-2.65	-0.42	0.44	-0.18	-0.49	-0.52	-0.57	0.17	0.70	0.15	-0.47	1.51	-1.24	0.58	-0.72	-0.83	0.97	0.87	1.00	1.70		
Evapotranspiration	-0.82	-0.99	-0.27	-1.02	0.64	-1.14	-0.62	-0.60	0.28	0.39	-1.08	1.09	0.65	0.43	-1.40	-1.01	0.82	1.05	1.41	2.20		
Evaporative Fraction	-0.34	0.74	0.74	-0.14	-0.85	0.21	-1.98	0.22	-0.34	0.10	0.11	1.25	-0.88	1.29	-1.65	-1.81	1.11	-0.06	0.98	1.29		
To monthiel Materia Champion America																						
lerrestrial water Storage Anomaly	-2.79	-0.45	0.47	0.50	-0.38	0.34	0.35	0.43	0.58	0.15	-0.08	0.95	-2.91	0.43	0.37	0.15	0.39	0.51	0.49	0.50		
(b) Ocean Banchmarking Bosults	-0.88	-2.26	0.01	0.13	0.83	0.69	0.56	0.69	-0.56	-0.11	-3.02	0.83	0.74	-0.18	0.49	0.42	0.89	0.43	0.06	0.23		
(b) Ocean Benchmarking Results			2.10	0.20	0.20		0.04		0.22		0.27	0.02	0.27	0.26	0.01	0.67	1.02	0.27	0.20	0.67		
Chlorophyll		1.50	2.10	0.20	1.02		0.04		0.22		-0.57	0.85	.0.21	0.20	-1.02	-0.41	-2.19	0.27	0.30	0.07		
		-1.50	0.73	-0.13	1.02		-0.53	1 53	-0.29	_	0.73	0.00	-0.21	-0.41	0.35	-0.30	0.40	0.10	0.13	1.57		
Ocean Nutrients			.0.84	-0.10	0.91		-0.95	-1.35	-0.23		0.75	-0.02	1.00	1.88	0.33	-0.50	1 14	0.43	-0.16	1.57		
Nitrate surface		0.21	-1 63	0.67	1 22		-0.18	-1 70	0.82		1 21	-0.90	0.29	1.00	1.02	0.30	1.14	-0.56	-0.10	0.18		
Phosphate surface		ULLI	-0.69	-0.04	0.04		-0.45	-0.43	0.02			0.39	-0.14	0.17	-0.41	-0.98	0.00	0.02	0.88	1.63		
Silicate, surface			0.44	-0.71	0.24		-0.81	-0.20	-2.16			0.50	1.24	1.60		-1.21	-0.19	0.18	-0.29	1.37		
Ocean Carbon											1.24	-0.23	-0.62	-0.69	-1.08	-1.12	1.31			1.19		
TAlk. surface		-0.27	1.01	0.12	0.19		0.32	-2.31	-0.22		0.06	-0.36	0.85	-0.42	0.29	-2.40	1.27	0.06	1.27	0.54		
Salinity 700m	0.44	-0.35	-1.06	-0.54	0.70	0.46	-0.46	-0.80	0.32	0.36	0.25	-1.16	-0.47	0.54	0.33	-0.39	-0.87	-0.54	1.58	1.64		
Ocean Belationships			-1.86	-0.36	-0.29		1.50	-0.43	0.68		-0.02	0.72	1.20	0.17	-1.86	0.02		-1.12	0.39	1.25		
Oxygen, surface/WOA2018			0.27	0.23	-0.63		-0.26	-0.12	-0.38		0.29	-0.21	0.19	0.18	0.14	-0.07		0.03	-0.23	0.53		
Nitrate, surface/WOA2018		-2.41	-1.38	-0.18	0.06		1.41	-0.16	0.78		0.09	0.79	1.07	0.26	-1.35	0.20		-0.74	0.52	1.04		
													tive Scale									
						W	ors	e V	alu	е	В	Better Value										

Missing Data or Error

(b)

Addressing Observational Uncertainty

- Few observational datasets provide complete uncertainties, but some are appearing
- ILAMB uses multiple datasets for most variables and allows users to weight them according to a rubric of uncertainty, scale mismatch, etc.
- ILAMB can also use:
 - Full spatial/temporal uncertainties provided with the data
 - Fixed, expert-derived uncertainty for a dataset
 - Uncertainties derived from combining multiple datasets
- Experiments with self-consistent
 CLASS data (Hobeichi et al. 2020) and
 Barnard's nitrogen fixation data demonstrate that while scores shift, including uncertainty rarely alters the rank ordering of models (figure)

- Model benchmarking is increasingly important as model complexity increases
- Systematic model benchmarking is useful for
 - **Verification** during model development to confirm that new model code improves performance in a targeted area without degrading performance in another area
 - Validation when comparing performance of one model or model version to observations and to other models or other model versions
- The **ILAMB package** employs a suite of in situ, remote sensing, and reanalysis datasets to comprehensively evaluate and score land model performance, *irrespective of any model structure or set of process representations*
- ILAMB is Open Source, is written in Python, runs in parallel on laptops to supercomputers, and has been adopted in most modeling centers
- Usefulness of ILAMB depends on the quality of incorporated observational data, characterization of uncertainty, and selection of relevant metrics

Model Evaluation Perspective on Recommendations

- We need better characterization of uncertainties in observational and remote sensing data products
 - Do the data help distinguish models from each other?
 - Do the data help inform us about which combination of process representations are important?
- We need to better characterize and understand the **representativeness** of observations
 - Are in situ measurements representative of the data pixels / model grid cells?
 - What additional data are useful for quantifying representativeness and can this inform or direct measurement campaigns or sampling strategies (Matthias' talk, for example)?
- We need to better understand how processes scale across space and through time
 - How do we use measurements from stomata to leaves to organisms to inform process representations at the scales of cohorts to canopies to ecosystems to landscapes to watersheds?
 - Can we maintain a constellation of observational systems that produce data at relevant scales over long time periods as the climate changes?
- We need to characterize **plant traits, ecosystem community dynamics, and land use & land cover change** to inform demographic models
 - Do the data help us understand important plant traits and cohort behavior?
 - Can we capture enough data to inform / constrain models of disturbance and recovery?

Questions for the Modeling Community

- How many different models or model configurations are needed to answer science questions?
 - Are models designed to develop mechanistic understanding or address societally relevant questions?
 - What evaluation metrics should be used for models designed for different purposes?
- How can we combine multisensor observational data to better inform process representations in models?
 - Can we use AI/ML to derive synthesized or assimilated data products to constrain models?
 - Can we use data-driven AI/ML approaches to produce online parameterizations, hybrid models, surrogate models, and digital twins?
- How can we best evaluate long timescale processes with relatively short timescale remote sensing?
 - Can we trade space for time from representativeness analyses with model ensembles?
 - Does contemporary bias removal reduce future model spread?
 - Can we weight models based on ILAMB scores?
- How can we better **organize our communities** to build better (not more?) models, address uncertainties, engage observational community, prepare for CMIP7, 8, 9?
 - 1st Land Surface Modeling Summit in Oxford (11–15 Sep 2022), Eleanor Blythe & Dave Lawrence
 - 4th Carbon from Space Workshop in Frascati (25–28 Oct 2022), ESA & NASA
 - 4th ILAMB Workshop in USA (Late 2023?)