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Introduction

Observations of the Earth system are increasing in spatial resolution and
temporal frequency, and will grow exponentially over the next 5-10 years

With Exascale computing, simulation
output is growing even faster,
outpacing our ability to analyze,
interpret and evaluate model results

Explosive data growth and the
promise of discovery through
data-driven modeling necessitate
new methods for feature extraction,
change/anomaly detection, data
assimilation, simulation, and analysis

Frontier at Oak Ridge National Laboratory is the #2 fastest
supercomputer on the TOP500 List and the first
supercomputer to break the exaflop barrier (June 10, 2025).



https://top500.org/
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https://atlas.eia.gov/apps/5039a1a01ec34b6bbf0ab4fd57da5eb4/explore

Al/ML and ESS Observations Could Support Regional Testbeds

Local- to regional-scale field observations and machine learning
to support multi-scale modeling for predictions of natural
hazard impacts on energy and water systems
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Al/ML Wildfire Prediction Vegetation Responses to Wildfire
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Sampling Network Design
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Triple-Network Global Representativeness

NSF's NEON Sampling Domains

Gridded data from satellite and
airborne remote sensing, models, and
synthesis products can be combined to
design optimal sampling networks and
understand representativeness as it
evolves through time
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GSMNP: Spatial distribution of the 30 vege’ro e’
Clusters across the national park a, AT

Extracted canopy height and structure from
airborne LiDAR

10 km
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Earthinsights (Kumar et al., in prep.)



Arctic Vegetation Mapping from Multi-Sensor Fusion

Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT)

—— Kougarok Watershed

Vegetation Type

Bl Rock

B Water

I Alder-Willow Shrub

I Mixed Shrub-Sedge Tussock Tundra
[ | Dryas/Lichen Dwarf Shrub Tundra
[ Sedge-Willow-Dryas Tundra

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.
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Leveraging Advances in Machine Learning for Earth Sciences

Existing and new domain-specific machine learning techniques can improve
understanding of biospheric processes and representation in Earth system models
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Machine Learning for Understanding Biospheric Processes

Widening adoption of deep neural networks and growth of Earth science data are fueling
interest in AI/ML for use in Earth system models

ML potential is high for improving predictability when (1) sufficient data are available for
process representations and (2) process representations are computationally expensive

Example methods for improving ELM capabilities EUARLI AETRY,,

by exploring ML and information theory sTon,,
approaches: & v ‘
o Soil organic matter & age |

o Wildfire

o Methane fluxes

o Ecohydrology

All of these applications involve
unresolved, subgrid-scale
processes that strongly influence
results at the largest scales

EARTH SYSTEMS
PREDICTABILITY




orecasting Ri

e Study sites were selected at long term
river ice monitoring stations in Yukon
river basin.

e We developed Long Short Term
Memory (LSTM) and transformer
models to predict river ice breakups.

e Primary predictor variables: daily
min/max air temp., precipitation, SROW:-
water eq., shortwave radiation

e Datasets: DAYMET: CanESMS
(Historicaly SSP419, SSP370;, SSP585;
SSP534-over)
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Break-up date predictions for historical period

LSTM Temperature and Break Up Over Time
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Model predicted break-up date within 1-14 days of observed dates.

Break-up date predictions under future scenarios

Breakup Date over Time [SSP119 Simulation]
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Breakup Date over Time [SSP370 Simulation]
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Breakup Date over Time [SSP585 Simulation]
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Breakup Date over Time [SSP534-OVER Simulation]
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Projections suggested increasingly early break-up of
river ice under warming scenarios.
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AI4AESP

ARTIFICIAL INTELLIGENCE FOR EARTH
SYSTEM PREDICTABILITY (AI4ESP):
CHALLENGES AND OPPORTUNITIES

CHARULEKA VARADHARAJAN NICKI L. HICKMON

FORREST M. HOFFMAN HARUKO WAINWRIGHT SCOTT M. COLLIS
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https://aidesp.slack.com/

https://aidesp.org/

" AI4ESP

Artificial Intelligence for Earth System
Predictability

A multi-lab initiative working with the Earth and Environmental Systems Science Division (EESSD) of the
Office of Biological and Environmental Research (BER) to develop a new paradigm for Earth system
predictability focused on enabling artificial intelligence across field, lab, modeling, and analysis activities.

White papers were solicited for development Earth System Predictability Sessions Workshop Report e p—-3
and application of Al methods in areas e Atmospheric Modeling e Posted on B
relevant to EESSD research with an emphasis ® Land Modeling . aidesp.org o o of
on quantifying and improving Earth system e Human Systems & Dynamics e Executive e 1
predictability, particularly related to the ° cvydrolig)a < Summary — o o
integrative water cycle and extreme events. : Ec?)thercsjr;o clence e Longsummary Ry fouce Jm:«t.ﬂ.,ig., Rens Joseph oy
. AeroZoIs &%)I/ouds e Earth science Y ins oo sobvalorio ik operbr N
How can DOE directly leverage artificial | |, ariability & Extremes chapters R e (SR) - Rondell et (A5G
intelligence (Al) to engineer a substantial , -, Dynamics, Oceans & Ice e Computational A0 i
(paradigm-changing) improvement in Cross-Cut Sessions science chapters T Wi idoon  forsHlien ST
Earth System Predictability? e Data Acquisition — s -
) ) e Neural Networks AMS Special ot of ot of
156 white papers were received and read to e Surrogate models and emulators Collection ovid Wonbl Tino oo
plan the organization of the AI4ESP e Knowledge-Informed Machine Learning e Inthenew Al for '
Workshop on Oct 25-Dec 3, 2021 e Hybrid Modeling the Earth Systems AQux oo e
P e Explainable/Interpretable/Trustworthy Al ‘ournal <
{(Z ENERGY e Knowledge Discovery & Statistical Learning J “Al4AESP
e Al Architectures and Co-design


https://ai4esp.org/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/
https://www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/

AI4ESP WORKSHOP HIGHLIGHTS

Scientific Understanding and Earth System Predictions Across Scales
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AI4ESP WORKSHOP HIGHLIGHTS

Overview of priorities emerging from the AI4ESP workshop across 3 key themes.
These priorities will help address major challenges for Earth system predictability

Earth Science Priorities Computational Science Priorities

* New observations * Hybrid models

+ Al-ready data products » Fundamental math and

« Data-driven and hybrid models algorithms

* Analytical approaches * Interpretable, trustworthy Al

Programmatic and Cultural Priorities
+ Al research centers
+ Workforce development

+ Codesign infrastructure ﬁ

« Common standards, benchmarks

» Uncertainty quantification, model * Al-enabled data acquisition * Seed projects, integrate Al into programs
parametrization & calibration + Data, software, hardware infrastructure + Al ethics and policies

+ Significant data gaps * Physically consistent predictions for - Interdisciplinary scientific research

+ Scaling and heterogeneity data-driven models + Diverse organizational missions

« Extreme events « Computational costs of process models - Personnel lack training in Al/ML

* Representation of human activities * Sparse data, extreme values « Using data, communicating across

* Knowledge discovery * Identifying causality research domains, organizations

» Accurate high-resolution predictions with * Interpretable, trustworthy predictions « Data bias, model fairness, explainability
low bias, uncertainty + Data discovery, access, synthesis of predictions

+ Providing actionable, timely information for * Model development and comparison

decision making

EESA22-031

(7 ENERGY S AI4ESP



Highlights Across All Sessions

Science

e Al/ML can accelerate next-generation integrated models to support decision-making that incorporate
complex natural and human processes at sufficient resolutions

Broad consensus on need for deep integration of process-based and ML models (hybrid models)
Challenges: scaling, sub-grid representation, model calibration/UQ, extreme events, human systems
Data gaps are vast — more observations informed by model needs, Al-ready products

Results must be robust, explainable, & trustworthy

Data, Software, Infrastructure

e Need benchmark data and model intercomparison approaches
e Computational infrastructure for integration of process & ML models, data assimilation and synthesis
e Use ML to accelerate data-model and model-observation pipelines

Culture

e Workforce development across domain and computational scientists
e Interdisciplinary research centers focused on AI4ESP
(W ENERGY

o

AI4ESP
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AI4ESP WORKSHOP HIGHLIGHTS

Codesign Is Critical

Codesign advanced computing, software, hybrid Al Stack
ML/physical models, observations and future Earth .o v

system modeling capabilities g% nnnnn
= Common/consistent language & format =

= Merged products (standardization, interoperability)

= Adaptive data & parameter selection

= Computation using large datasets without moving

College of Engineering, Carnegie Mellon University

= Specialized AlI/ML code & architecture

= Training and benchmarking datasets and hybrid
model design

i@

(ZENERGY 20 =~ AI4AESP



AI4ESP WORKSHOP HIGHLIGHTS

Infrastructure Investment Is Imperative

=  Workforce development
;'$~<‘

=  Multi-agencyl/institution coordination, cooperation, P %}“
collaboration et %ﬁ
: f =3 ? L:m
=  Codesign, creation, implementation & maintenance "'

:h-/\« é"
ﬁ.& % b ’

— Computational resources

— Training, benchmarking, & combined datasets
_ Al methodology development image from technologynetworks.com

— Interoperable frameworks for data & hybrid modeling

=  FAIR/Equitable data & software practices
= QObservations covering normal & capturing rare & extreme events

=  Adaptive observatories, data assimilation, & modeling

&

21
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https://www.technologynetworks.com/

AI4ESP WORKSHOP HIGHLIGHTS

Cultural Change Is Compulsory

Assessment et AN Metadata

=  Communities excited to work together
— need combined purpose and early success S
¢

= Existing & upcoming workforce development

Acquistion -2 <- Standards

09 P
. ’
efa N

Modular Data Ecosystem to enable data
interoperability for Al. Courtesy of Prakash & Serbin

= Common terminology across groups & scales
in AI4ESP space

= Transfer learning for different domains & scales
= Achieve & maintain FAIR, equitable data access

= Open science community effort pulling in an ultimately
singular direction

= Environmental justice throughout the system

o

e
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AI4ESP WORKSHOP HIGHLIGHTS

Uncertainty Quantification & Propagation Is Underlying

= Digital twin mindset
= Common understanding of uncertainty
» Defined uncertainty

= Capture beginning with instrument/sensor
calibration/operation

» Propagation requires formatting and transfer
standards

» Assimilation, parameterization, surrogate,
emulator, hybrid modeling

@ ENERSY 23

N‘ Patterns and
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OWledge from daty’ knowledge

Velocity &Pﬁ
sc‘;“;ne";gf 3 Real-time critical
in some areas, not all
i 3
Variety 3 @ Integrated across
Diversedata . o disciplines
sources R '_ &
el . S 4
i Confidence

Veracity

dge’

Data challenges in the earth sciences: different data sources, small data / big
data challenges, and uncertainty in the data. Figure taken from (Reichstein, M.
etal. 2019)

SIAI4ESP



AI4ESP WORKSHOP HIGHLIGHTS

Human System Integration Is Significant

» Inclusion of complex human processes & decisions

= Capture complex feedbacks between all components
= Build decision-relevant process models

» Ethically sensitive data synthesis and gap filling

= Representation of human systems and dynamics in
models

» Results must be robust, explainable, & trustworthy

globalchange.gov

» Results must be shared efficiently (both positive &
negative)

o¥
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AI4ESP WORKSHOP HIGHLIGHTS

Idealized Roadmap for Success @ A I 4 E S P
Long Term (<10 years)

» Improved Earth system /9

understanding and predictions
* Supporting stakeholder needs == Mid Term (<5 years)
at relevant scales for decision making
* Al research centers

* Measurable improvement in Earth
system models with better
representation of human activities

* New Al techniques tailored for
Earth science applications

« Established interdisciplinary workforce

Near Term (<2 years)
+ Open benchmark datasets

» Al-enabled observations and data
products based on gaps
* Seed efforts to demonstrate

potential of Al in existing programs
and modeling frameworks

« Cross-disciplinary collaborations
to initiate activities

using standards, co-developed models

EESA22-033

* Open science culture with data sharing

I4AESP



AI4ESS Breakout #3: Al for ESS Science

Al/ML for ESS Data-Model Integration to Advance Predictive Process Understanding

Question 1: [30 min]

What immediate (0.5-1 year) and intermediate (1-2 year) opportunities exist or
could be created to leverage Al to meet the ESS mission, and what is needed to take
action?

Question 2: [30 min]

How can Al help ESS contribute to other BER programs (both divisions), other SC
offices (e.g., ASCR), and the DOE mission (e.g., secretary 9 priorities

https://www.energy.gov/articles/secretary-wright-acts-unleash-golden-era-american-energy-dominance)?



https://www.energy.gov/articles/secretary-wright-acts-unleash-golden-era-american-energy-dominance

