
CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32 64 128 256
Total MSPs (MPI Processes x Number of Threads)

0

100

200

300

400

500

T
im

e
(s

)

CSD Loops (dashed)
OpenMP Loops (solid)
4 Clumps per process

OpenMP + CSD Loops (dotted)
16 Clumps per process

PHOENIX
The Earth Simulator in Japan and the
Cray X1 at Oak Ridge National Laboratory
have sparked renewed interest in vector
computers among researchers using
the Community Climate System Model
(CCSM).

To utilize these systems, all the CCSM
component models required software

code.

The Community Land Model (CLM) was
particularly vector hostile and required
a complete re−write to provide acceptable
performance on vector architectures.

engineering efforts to vectorize each

The strategy for CLM vectorization was:
Develop a single CLM code that runs
well on both vector and scalar machines
while maintaining the hierarchical nature
of the existing data structures.

●

Alter data structures to obtain short and
predictable data strides.

●

Move loops over columns into science subroutnes, and vectorize over these
long loops instead of the short loops over nested PFTs and soil/snow levels.

●

The Vectorization Challenge

Create readable and understandable code while avoiding vector−specific
versions of code (#ifdef’s) everywhere possible.

●

First, do no harm! Code changes must not reduce the performance on the
present target scalar platforms.

●

The Cray X1

128 SMP nodes
4 Multi−Streaming Processors (MSPs) per node
4 Single Streaming Processors (SSPs) per MSP
Two 32−stage, 64−bit wide vector units running at 800 MHz and
one 2−way superscalar unit running at 400 MHz per SSP
2 MB E−cache per MSP
16 GB of memory per node

●

●

●

●

●

●

512 processors (MSPs), 2048 GB of memory, and 6400 GFlop/s peak

Cray X1

PHOENIX

Plant functional types:
Vegetation state variables.
PFTs may compete for
column−level resources.

Gridcells:
Computational grid shared
with the atmosphere model.

Geomorphologically distinct
land cover types (glacier,

Landunits:

lake, crop, urban, etc.).

Columns:
Water, snow, and soil state
variables.

L1 L2 L3 L4

C1 C2 C3 C4

P1 P2 P3 P1 P2

gridcell

Derived data types of arraysArrays of derived data types

p pft_type

column
landunit
gridcell
itype
area
wtcol
wtlunit
wtgcell
. . .

c column_type

pfti
pftf
npfts
landunit
gridcell
itype
area
wtlunit
wtgcell
. . .

l landunit_type

coli
colf
ncolumns
pfti
pftf
npfts
gridcell
itype
area
wtgcell
. . .

g gridcell_type

luni
lunf
nlandunits
coli
colf
ncolumns
pfti
pftf
npfts
itype
area
wtglob
. . .

ngridcells
area
. . .

clm3 model_type

Additional state and
flux data types are
contained at every
level in the hierarchy.

Listed here are
integer arrays which
index subgrid units
up or down the
hierarchy, counts of
lower subgrid units,
gridcell types, and
real(r8) areas and
weights.

New Data Structures in CLM3.0

heterogeneity is represented by a nested
subgrid hierarchy of gridcells, landunits,
columns, and plant functional types (PFTs).

In CLM, the horizontal land surface●

The hierarchical subgrid organization
is reflected in the data structures used
in the model code.

●

The grid hierarchy was previously
implemented as arrays of derived data
types containing scalars for flux and
state variables.

●

The new data structures represent the grid hierarchy as derived data types●

containing arrays for flux and state variables. In Fortran 90, these arrays
are implemented as pointers.

A cache−friendly blocking
structure, called clumps, is
superimposed on the data
structures for improved
computational efficiency.

●

For optimal load balancing,
gridcells are distributed
among clumps in cyclic
fashion, and clumps are
distributed among MPI
processes in cyclic fashion.

●

Clumps also serve to block
data for shared memory parallelism using OpenMP or Cray streaming.

●

Another set of super−structures, called filters, were added to better support
vectorized processing of columns and PFTs.

●

Filters group like columns or PFTs based on their process−specific
categorization and are used for indirect addressing into the main data
structure hierarchy.

●

Vectorization Process and Results
Approval was obtained for the data structure modifications and vectorization
strategy from the Land Model Working Group.
Code was changed one subroutine branch at a time, testing answers and
performance on the Cray X1 and IBM Power 4 along the way.
Prototype code was provided to CREIPI and NEC for testing on the Earth
Simulator and NEC SX platforms.
Preliminary vectorization of CLM was completed ahead of the 2003

In October 2003, the new code was 25.8 times faster on the Cray X1 and was
even 1.8 times faster on the IBM.

●

●

●

●

●

CLM3.0 has a smaller memory footprint, and the new vector data structures
simplify history updates and reduce the complexity and number of MPI
gathers and scatters.

●

end−of−year deadline resulting in a single code that gives acceptable
performance on both scalar and vector platforms.

This research used resources of the Center for Computational Sciences at Oak
Ridge National Laboratory which is supported by the Office of Science of the
U.S. Department of Enegy under Contract No. DE−AC05−00OR22725. Additional
resources were provided by the National Center for Atmospheric Research
which is sponsored by the National Science Foundation (NSF), the Central
Research Institute of Electric Power Industry (CRIEPI) in Japan, Cray Inc., and
NEC Corporation.

ACKNOWLEDGEMENTS

Forrest Hoffman (forrest@climate.ornl.gov)
Mariana Vertenstein (mvertens@ucar.edu)

http://climate.ornl.gov/clm/vector_performance/

http://www.cgd.ucar.edu/tss/clm/distribution/clm3.0/
CLM3.0 Model Release Website

✔ Offline Community Land Model (CLM3.0)

Offline CLM3.0 with Dynamic Vegetation Model (DGVM)

Standalone Community Atmosphere Model (CAM3.0) with CLM3.0

Standalone CAM3.0/CLM3.0 with DGVM

✔

✔

✔

Validated on the Cray X1

 nclumps = get_proc_clumps()
!$OMP PARALLEL DO PRIVATE (nc,begg,endg,begl,endl,begc,endc,begp,endp)
!CSD$ PARALLEL DO PRIVATE (nc,begg,endg,begl,endl,begc,endc,begp,endp)
 do nc = 1,nclumps
 call get_clump_bounds(nc, begg, endg, begl, endl, begc, endc, begp, endp)
 .
 .
 call Hydrology1(begc, endc, begp, endp, &
 filter(nc)%num_nolakec, filter(nc)%nolakec, &
 filter(nc)%num_nolakep, filter(nc)%nolakep)
 .
 .

 end do
!CSD$ END PARALLEL DO
!$OMP END PARALLEL DO

 ! Assign local pointers to derived type
 ! members (landunit−level)
 clandunit => clm3%g%l%c%landunit
 itype => clm3%g%l%itype
 ! Assign local pointers to derived type
 ! members (column−level)
 cgridcell => clm3%g%l%c%gridcell
 t_grnd => clm3%g%l%c%ces%t_grnd
 h2osno => clm3%g%l%c%cws%h2osno
 snowdp => clm3%g%l%c%cps%snowdp
 snowage => clm3%g%l%c%cps%snowage

!dir$ concurrent
!cdir nodep
 do f = 1, num_nolakec
 c = filter_nolakec(f)
 l = clandunit(c)
 g = cgridcell(c)
 .
 .
 .
 if (itype(l) == istwet .and. t_grnd(c) > tfrz) then

 snowdp(c) = 0._r8
 snowage(c) = 0._r8
 end if
 .
 .
 .
 end do

 h2osno(c) = 0._r8

The highest level loops in the main driver routine run over clumps for each
MPI process and provide for OpenMP or Cray Streaming parallelism.

●

Science subroutines called within these loops are passed local clump bounds
for gridcells, landunits, columns, and PFTs as needed.

●

●

Code Reorganization

Loops within science subroutines run over grid or subgrid units.●

Many loops over subgrid units use filters for indirect addressing.●

vectorization.
●

Also passed are relevant filters (counts and vector indices).

The use of pointers in data structures requires compiler directives for loop

CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

200

400

600

800

1000

1200

1400

T
im

e
(s

)

1 MSP (no MPI)

2 MSPs

4 MSPs

8 MSPs

16 MSPs

32 MSPs

64 MSPs

128 MSPs

No CSDs, No OpenMP

CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

200

400

600

800

1000

1200

1400

T
im

e
(s

)

1 MSP (no MPI)

2 MSPs

4 MSPs

8 MSPs

16 MSPs

32 MSPs

64 MSPs

128 MSPs

CSD Loops in Driver

CLM3 Total Run Time on Cray X1 (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32
Clumps per MPI Process

0

100

200

300

400

500

600

T
im

e
(s

)

4 MSPs

8 MSPs

16 MSPs

32 MSPs

64 MSPs

128 MSPs

256 MSPs

OpenMP Loops in Driver

 nclumps = get_proc_clumps()
!$OMP PARALLEL DO PRIVATE (gnc,nc_beg,nc_end,nc,begg,endg,begl,endl,begc,endc,begp,endp)
do gnc = 1,nclumps/4
 nc_beg = (gnc − 1) * 4 + 1
 nc_end = min(nc_beg+3,nclumps)
!CSD$ PARALLEL DO PRIVATE (nc,begg,endg,begl,endl,begc,endc,begp,endp)
 do nc=nc_beg,nc_end
 call get_clump_bounds(nc, begg, endg, &
 begl, endl, begc, endc, &
 begp, endp)
 .
 .
 call Hydrology1(begc, endc, begp, endp, &
 filter(nc)%num_nolakec, filter(nc)%nolakec, &
 filter(nc)%num_nolakep, filter(nc)%nolakep)
 .
 .
 end do
!CSD$ END PARALLEL DO
end do
!$OMP END PARALLEL DO

Model performance was compared
on the IBM Power 4, the Cray X1,
and the Earth Simulator.

●

At 64 processors, the Earth
Simulator does slightly better than
the Cray X1 using only CSDs.

●

When OpenMP is used (with or
without CSDs), the Cray X1 beats
the Earth Simulator on a per
processor basis.

●

The Cray X1 offers significantly
better performance than other
platforms at low processor counts.

●

CLM3 Total Run Time (30 Day T85 Offline Run with I/O)

1 2 4 8 16 32 64 128 256
Total Processors/MSPs (MPI Processes x Number of Threads)

0

100

200

300

400

500

600

T
im

e
(s

)

IBM Power 4, 4 OpenMP threads, 4 clumps/process

Earth Simulator, 4 OpenMP threads, 4 clumps/process

Earth Simulator, 8 OpenMP threads, 8 clumps/process

Cray X1, CSD Loops, 4 clumps/process

Cray X1, 4 OpenMP threads, 4 clumps/process

Cray X1, 4 OpenMP threads plus CSD Loops,

16 clumps/process

Vector Performance on the Cray X1
Timing tests were performed on the Cray X1 using the offline version of
CLM3.0 varying processor count and the clumps−per−process parameter with
and without OpenMP and Cray Streaming Directives.

●

The best performance is obtained when vector length is maximized. For

when using shared memory it should be set to the number of shared memory

●

●

automatically multi−streamed by the Cray compiler.
●

To test the performance of simultaneous use of OpenMP and Cray Streaming●

For this test, the clumps−per−process parameter was set to 16 (i.e., 4 for the
SSPs times 4 for the OpenMP shared memory MSPs).

●

simultaneous use of OpenMP and Cray Streaming Directives since most of
the lower−level loops automatically multi−stream.

●

Performance turns over after 128 MPI processes (i.e., 128 MSPs).

no CSDs and no OpenMP, the clumps−per−process should be set to one, and

processors (i.e., four in the CSD and OpenMP cases on the Cray X1).

Beyond 8 MSPs, no significant gain in performance was obtained by forcing

Best performance is achieved using OpenMP since lower−level loops are

Directives at the driver routine level, the loops were split up as follows.

✚

Vectorizing the Community Land Model Version 3.0 (CLM3.0)
J. B. White III, Patrick Worley, John Drake, Matthew Cordery

✱

Forrest M. Hoffman, Mariana Vertenstein , Hideyuki Kitabata ,✱ ✚

✖

✖Oak Ridge National Laboratory, National Center for Atmospheric Research, Central Research Institute of Electric Power Industry (Japan), and Cray Inc.

