The Carbon-Land Model Intercomparison Project (C-LAMP) and an International Land-Biosphere Model Benchmarking Activity for the IPCC AR5 Forrest M. Hoffman^{1,2}, James T. Randerson², Peter E. Thornton¹, Natalie M. Mahowald³, Gordon B. Bonan⁴, Steven W. Running⁵, and Inez Y. Fung⁶ ¹Oak Ridge National Laboratory (ORNL), ²University of California-Irvine, ³Cornell University, ⁴National Center for Atmospheric Research (NCAR), ⁵University of Montana, and ⁶University of California-Berkeley #### Introduction The need to capture important climate feedbacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results (Friedlingstein et al., 2006), suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. By using the wide variety of measurements made, collected, and distributed by researchers and data centers, C-LAMP identifies areas in which improvements can be made to models as well as identifying needs for new kinds of measurements. In addition, all the C-LAMP model output is distributed via the Earth System Grid (ESG), and model diagnostics are available on the Web for use by the wider Described here are model-data intercomparison experiments of general use for measuring the scientific performance of global biosphere models. Originally designed to test the performance of three such models coupled to the Community Climate System Model Version 3 (CCSM3), the Carbon-Land Model Intercomparison Project (C-LAMP) has evolved into an international protocol and a growing set of metrics for scoring the performance of models by comparison with best-available observational datasets, from satellite-based to leaf-scale measurements. C-LAMP is expected to serve as a prototype for biosphere model benchmarking for IPCC AR5. #### **C-LAMP Protocol** **Experiment 1: "off-line" biosphere model runs forced with new NCEP/NCAR Reanalysis** meteorological datasets (Qian et al., 2005) - 1.1 Spin-up run - 1.2 Control run (1798–2004) - 1.3 Climate varying run (1948–2004) - 1.4 Climate, CO₂, and N deposition varying run (1798–2004) - 1.5 Climate, CO₂, N deposition, and land use varying run (1798–2004) **Experiment 2:** partially coupled land-atmosphere model runs with prescribed sea surface temperatures (SSTs) and sea ice cover - 2.1 Spin-up run - 2.2 Control run (1800–2004) - 2.3 Climate varying run (1800–2004) - 2.4 Climate, CO₂, and N deposition varying run (1800–2004) - 2.5 Climate, CO₂, N deposition, and land use varying run (1800–2004) C-LAMP has produced a standard set of common output quantities for climate-carbon cycle models and recommendations for carbon accounting. These are being proposed as additions to the NetCDF Climate and Forecast (CF) Metadata Convention for output field names and units to be produced by terrestrial biogeochemistry components of **Earth System Models for IPCC AR5.** The complete protocol, metrics for evaluation, and output approach are described at http://www.climatemodeling.org/c-lamp Precipitation (mm vr⁻¹) tion for EMDI NPP measurements and the models. CASA' exhibits an increasingly high bias while CN exhibits a consistent low bias. 1000 1500 2000 Annual cycle of atmospheric CO2 at (a) Colorado (aircraft samples from 6 km masl: 41°N), (d) Azores Islands (39°N) using model fluxes from Experiment the TRANSCOM Global fire emissions from CN compared to the Globa Fire Emissions Database version 2. The version of CASA analyzed here did not simulate fire emissions. ## For more results, see Randerson, James T., Forrest M. Hoffman, Peter E. Thornton, Natalie M. Mahowald, Keith Lindsay, Yen-Huei Lee, Cynthia D. Nevison, Scott C. Doney, Gordon Bonan, Reto Stöckli, Curtis Covey, Steven W. Running, and Inez Y. Fung. September 2009. "Systematic Assessment of Terrestrial Biogeochemistry in Coupled Climate-Carbon Models." Global Change Biology, 15(9):2462-2484. doi:10.1111/j.1365-2486.2009.01912.x. ### C-LAMP Score Sheet for CASA' and CN • Phase (assessed using the month of maximum LAI) • Mean (derived separately for major biome classes) • Matching EMDI Net Primary Production observations • Correlation with MODIS (r^2) • Latitudinal profile comparison with MODIS (r^2) Matching phase and amplitude at Globalview flash sites Energy & CO₂ fluxes Matching eddy covariance monthly mean observations Transient dynamics Evaluating model processes that regulate carbon exchange on decadal to century timescales • Aboveground live biomass within the Amazon Basin Sensitivity of NPP to elevated levels of CO₂: compare to temperate forest FACE sites comparison with TRANSCOM • Regional and global fire emissions: comparison t All C-LAMP simulations were performed as a part of the biogeochemistry subproject of the Computational Climate Science End Station Project (Dr. Warren Washington, PI), a U.S. Department of Energy Innovative and Novel **Computational Impact on Theory and Experiment** (INCITE) Project using resources at the National Center for Computational Sciences (NCCS) located at Oak Ridge National Laboratory (ORNL). 58.3 The C-LAMP model results are all available to the wider research community on a new Earth System Grid (ESG) node at Oak Ridge **National Laboratory at** http://esg2.ornl.gov/ provided by the SciDAC Earth System Grid Center for Enabling **Technology (ESG-CET).** ## International Land Model Benchmarking (ILAMB) Activity international benchmarking and carbon cycle feedback analysis activity, the results of which could contribute to IPCC AR5. Needed are We believe that C-LAMP and Europe's ILAMB should serve as prototypes for a wider - 1) a well-crafted protocol that exercises model capabilities for simulating energy, water, and biogeochemical cycles; - 2) model output data and metadata standards to simplify subsequent analyses; - 3) best-available forcing data sets; and - 4) best-available observational data sets, metrics, and diagnostics. - An international meeting of researchers will be held in January 2011 in Irvine, California, to finalize the protocol, output standards, metrics, diagnostics, and a schedule for - analysis and publication. For more information, see http://www.ilamb.org/. Igements: Research partially sponsored by the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (OBER) within the U.S. Department of Energy's Office of Science (SC). This research used resources of the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research (UCAR) and receives research funding primarily from the National Science Foundation (NSF).