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Quantitative Sampling Network Design

I Resource and logistical constraints limit the frequency and
extent of observations, necessitating the development of a
systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

I Required is a methodology that provides a quantitative
framework for informing site selection and determining the
representativeness of measurements.

I Multivariate spatiotemporal clustering (MSTC) was applied at
the landscape scale (4 km2) for the State of Alaska to
demonstrate its utility for representativeness and scaling.

I An extension of the method applied by Hargrove and Hoffman
for design of National Science Foundation’s (NSF’s) National
Ecological Observatory Network (NEON) domains.



Data Layers

Table: 37 characteristics averaged for the present (2000–2009) and the
future (2090–2099).

Description Number/Name Units Source

Monthly mean air temperature 12 ◦C GCM
Monthly mean precipitation 12 mm GCM

Day of freeze
mean day of year GCM

standard deviation days

Day of thaw
mean day of year GCM

standard deviation days

Length of growing season
mean days GCM

standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 ◦C GIPL
Mean annual ground temperature
at bottom of active layer

1 ◦C GIPL

Mean annual ground surface tem-
perature

1 ◦C GIPL

Thermal offset 1 ◦C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM



10 Alaska Ecoregions (2000–2009)

1000 km

Each ecoregion is a different random color. Blue filled circles mark
locations most representative of mean conditions of each region.



10 Alaska Ecoregions (2090–2099)

1000 km

Each ecoregion is a different random color. Blue filled circles mark
locations most representative of mean conditions of each region.



10 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.
At this level of division, the conditions in the large boreal forest
become compressed onto the Brooks Range and the conditions on
the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in
color represents an environmental change between the present and
the future.
At this level of division, the two primary regions of the Seward
Peninsula and that of the northern boreal forest replace the two
regions on the North Slope almost entirely.



NGEE Arctic Site Representativeness

I This representativeness analysis uses the standardized
n-dimensional data space formed from all input data layers.

I In this data space, the Euclidean distance between a sampling
location (like Barrow) and every other point is calculated.

I These data space distances are then used to generate
grayscale maps showing the similarity, or lack thereof, of every
location to the sampling location.

I In the subsequent maps, white areas are well represented by
the sampling location or network, while dark and black areas
as poorly represented by the sampling location or network.

I This analysis assumes that the climate surrogates maintain
their predictive power and that no significant biological
adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”

1000 km

(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Network Representativeness: Barrow + Council

1000 km

(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the sampling location listed in red.



Representativeness: A Quantitative Approach for Scaling

I MSTC provides a quantitative framework for stratifying
sampling domains, informing site selection, and determining
representativeness of measurements.

I Representativeness analysis provides a systematic approach for
up-scaling point measurements to larger domains.

I Methodology is independent of resolution, thus can be applied
from site/plot scale to landscape/climate scale.

I It can be extended to include finer spatiotemporal scales,
more geophysical characteristics, and remote sensing data.

I Paper describing the methodology:
Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove

(2013), “Representativeness-Based Sampling Network Design for

the State of Alaska.” Landscape Ecol., 28(8):1567–1586.

doi:10.1007/s10980-013-9902-0.

Received 2014 Outstanding Paper in Landscape Ecology Award!

http://dx.doi.org/10.1007/s10980-013-9902-0


Barrow Environmental Observatory (BEO)

(Kumar et al., in prep)

Representativeness map for vegetation sampling points for A, B, C,
and D sampling area (left) and zoomed in on the C samping area
(right) developed from WorldView2 satellite images for the year
2010 and LiDAR data.

Vegetation sampling locations represent polygon troughs (red),
edges (green), and centers (blue).



(a) dry tundra gramanoid (b) forb

(c) lichen (d) moss
(Kumar et al., in prep)

Example plant functional type (PFT) distributions scaled up from
vegetation sampling locations.



ForestGEO Network Global Representativeness

(Anderson-Teixeira et al., in press)

Light-colored regions are well represented and dark-colored regions
are poorly represented by the ForestGEO sampling network.

Animation of the time evolution of the ForestGEO network:
https://climate.ornl.gov/∼jkumar/share/forestGEOall years.gif

https://climate.ornl.gov/~jkumar/share/forestGEOall_years.gif


Triple-Network Global Representativeness

(Maddalena et al., in prep)

Map indicates which sampling network offers the most
representative coverage at any location. Every location is made up
of a combination of three primary colors from Fluxnet (red),
ForestGEO (green), and RAINFOR (blue).
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Why Benchmark?

I to demonstrate to the science community and public that the
representation of coupled climate and biogeochemical cycles in
Earth system models (ESMs) is improving;

I to quantitatively diagnose impacts of model development in related
fields on carbon cycle processes;

I to guide synthesis efforts, such as the Intergovernmental Panel on
Climate Change (IPCC), in the review of mechanisms of global
change in models that are broadly consistent with available
contemporary observations;

I to increase scrutiny of key datasets used for model evaluation;

I to identify gaps in existing observations needed for model validation;

I to accelerate incorporation of new measurements for rapid and
widespread use in model assessment;

I to provide a quantitative, application-specific set of minimum
criteria for participation in model intercomparison projects (MIPs);



An Open Source Benchmarking Software System

IPCC AR6
. . .

Future MIPsGCP TRENDY CMIP5

MsTMIP
NACP Interim

LBA−DMIP
C−LAMP

I Human capital costs of making rigorous model-data comparisons is
considerable and constrains the scope of individual MIPs.

I Many MIPs spend resources “reinventing the wheel” in terms of
variable naming conventions, model simulation protocols, and
analysis software.

I Need for ILAMB: Each new MIP has access to the model-data
comparison modules from past MIPs through ILAMB (e.g., MIPs
use one common modular software system). Standardized
international naming conventions also increase MIP efficiency.



What is a Benchmark?

I A Benchmark is a quantitative
test of model function achieved
through comparison of model
results with observational data.

I Acceptable performance on
benchmarks is a necessary but
not sufficient condition for a
fully functioning model.

I Functional benchmarks offer
tests of model responses to
forcings and yield insights into
ecosystem processes.

I Effective benchmarks must draw
upon a broad set of independent
observations to evaluate model
performance on multiple
temporal and spatial scales.

Models often fail to capture the amplitude of the
seasonal cycle of atmospheric CO2.

Models may reproduce correct responses over only a
limited range of forcing variables.

(Randerson et al., 2009)



I We co-organized inaugural meeting and ∼45 researchers participated from the
United States, Canada, the United Kingdom, the Netherlands, France, Germany,
Switzerland, China, Japan, and Australia.

I ILAMB Goals: Develop internationally accepted benchmarks for model
performance, advocate for design of open-source software system, and
strengthen linkages between experimental, monitoring, remote sensing, and
climate modeling communities. Initial focus on CMIP5 models.

I Provides methodology for model–data comparison and baseline standard for
performance of land model process representations (Luo et al., 2012).



General Benchmarking Procedure

(Luo et al., 2012)



Example Benchmark Score Sheet from C-LAMP

Models

B
G

C
 D

atasets

Uncertainty Scaling Total
Metric Metric components of obs. mismatch score Sub-score CASA′ CN

LAI Matching MODIS observations 15.0 13.5 12.0
• Phase (assessed using the month of maximum LAI) Low Low 6.0 5.1 4.2
• Maximum (derived separately for major biome classes) Moderate Low 5.0 4.6 4.3
• Mean (derived separately for major biome classes) Moderate Low 4.0 3.8 3.5

NPP Comparisons with field observations and satellite products 10.0 8.0 8.2
• Matching EMDI Net Primary Production observations High High 2.0 1.5 1.6
• EMDI comparison, normalized by precipitation Moderate Moderate 4.0 3.0 3.4
• Correlation with MODIS (r2) High Low 2.0 1.6 1.4
• Latitudinal profile comparison with MODIS (r2) High Low 2.0 1.9 1.8

CO2 annual cycle Matching phase and amplitude at Globalview flash sites 15.0 10.4 7.7
• 60◦–90◦N Low Low 6.0 4.1 2.8
• 30◦–60◦N Low Low 6.0 4.2 3.2
• 0◦–30◦N Moderate Low 3.0 2.1 1.7

Energy & CO2 fluxes Matching eddy covariance monthly mean observations 30.0 17.2 16.6
• Net ecosystem exchange Low High 6.0 2.5 2.1
• Gross primary production Moderate Moderate 6.0 3.4 3.5
• Latent heat Low Moderate 9.0 6.4 6.4
• Sensible heat Low Moderate 9.0 4.9 4.6

Transient dynamics Evaluating model processes that regulate carbon exchange 30.0 16.8 13.8
on decadal to century timescales
• Aboveground live biomass within the Amazon Basin Moderate Moderate 10.0 5.3 5.0
• Sensitivity of NPP to elevated levels of CO2: comparison Low Moderate 10.0 7.9 4.1

to temperate forest FACE sites
• Interannual variability of global carbon fluxes: High Low 5.0 3.6 3.0

comparison with TRANSCOM
• Regional and global fire emissions: comparison to High Low 5.0 0.0 1.7

GFEDv2
Total: 100.0 65.9 58.3

(Randerson et al., 2009)



Biogeochemistry–Climate Feedbacks Scientific Focus Area



Take Home Message

I Modelers: Confront models with data. Just like voting, do
this early and often!

I Make model evaluation tools and data free and open,
facilitating community contributions. It takes a village!

I Design model experiments and analyses to identify weaknesses
and inspire new measurements.

I Data Gatherers: Make data available early and characterize
and report all measurement uncertainties.

I Confront the environment with new sensors, drones, and aerial
and space-based instrumentation to answer key questions
about mechanisms.

I Conduct measurements to improve our understanding of
processes and inform model development.

I Integrated Assessors: Creatively employ multi-model
projections and use results of model evaluation as a lens
through which to view predictions of the future.
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