

Quantifying Phenological Variations in Tropical Forests Using High Spatio-Temporal Resolution Satellite Remote Sensing

Forrest M. Hoffman¹, Jitendra (Jitu) Kumar¹, Morgan Steckler^{1,2}, Bhara Sharma^{1,3}, William W. Hargrove⁴

¹Oak Ridge National Laboratory, ²University of Tennessee Knoxville, ³Northeastern University, ⁴USDA Forest Service

Monday April 11, 2022 IALE-NA Annual Meeting 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

- What are the dominant patterns of vegetation phenology and their spatio-temporal variations across the diverse tropical region?
- How do phenological responses to inter- and intra-annual variability in meteorological conditions vary across heterogeneous vegetation types and regions of the tropics?
- Which climate conditions drive the anomalies/extremes in vegetation phenology?

Understanding mechanisms of phenological change?

- What drives the change (positive or negative) in vegetation phenology, beyond expected interannual variability?
- How do these drivers vary by land cover/vegetation types and regionally?
- We analyzed climate reanalysis time series from ERA5
 - Temperature, Precipitation, Soil Moisture, Radiation*
 - Spatial resolution: 0.25 degrees
 - Temporal resolution: 15 days (aggregated from daily)

CAK RIDGE

Study Region: Costa Rica

Land Cover/Vegetation in Costa Rica

Land Cover	% Area		
Herbaceous vegetation	1.30		
Cropland	29.76		
Urban	1.15		
Water bodies	2.59		
Wetland	1.53		
Evergreen Broadleaf (closed)	44.64		
Closed forest	1.52		
Evergreen Broadleaf (Open)	4.81		
Open forest	11.88		

Source: PROBA-V 100m, https://land.copernicus.eu/global/products/lc

CAK RIDGE National Laboratory

Satellite remote sensing

- Sentinel-2 time series for the period 2017–2020.
- Normalized Difference Red Edge Index (NDRE):
 NDRE = (NIR RE) / (NIR + RE) | NDRE = (B8 B5) / (B8 + B5)
- Spatial resolution: 20m
- Temporal resolution: 15 days
- Data processing:
 - NDRE data processing, cloud/shadow removal performed within Google Earth Engine platform.
 - This is a slow and limiting step, and thus we are processing small regions at a time

Noise filtering and gap filling

- NDRE data are noisy in space and time and require corrections.
- We developed and applied a workflow to identify and filter noisy data, a curve-fitting based gap filling, and a Savitzky-Golay filter for smoothing.

Interannual variability in phenology (CR)

	2017	2018	2019	2020
1	26.04	26.67	26.43	26.70
2	6.05	7.93	10.26	5.54
3	12.58	12.32	11.37	12.43
4	19.40	17.85	16.49	18.01
5	18.60	18.41	17.53	17.82
6	11.43	10.24	5.05	4.06
7	0.99	1.01	1.00	1.00
8				
9	4.36	4.17	4.11	4.85
10	0.55	1.40	7.77	9.58

Fractional area occupied by each cluster

Landcover product: PROBA-V 100m, https://land.copernicus.eu/global/products/lc

Landcover labels are for phenology-based clusters are derived using spatial overlays with PROBA-V landcover products using MapCurves algorithm.

Landcover product: PROBA-V 100m, https://land.copernicus.eu/global/products/lc

2020

CAK RIDGE

Phenological changes over 2017-2020

1)Closed Evergeen Brd. Leaf 2)Open Forest 3)Cropland 4)Closed Evergreen Brd. Leaf 5)Closed Evergreen Brd. Leaf 6)Cropland 7)Urban/built up 8)Open sea 9)Cropland 10)Cropland

2017

2020

What transitions have occurred over 2017-2020

1)Closed Evergeen Brd. Leaf 2)Open Forest 3)Cropland 4)Closed Evergreen Brd. Leaf 5)Closed Evergreen Brd. Leaf 6)Cropland 7)Urban/built up 8)Open sea 9)Cropland 10)Cropland

2017-2020

How stable or transient are the phenological states?

2017-2018

2018-2019 year to year transition matrix

2019-2020

Interannual variability in phenology (CR)

Methodology to detect extremes in phenology and attribution to climate drivers

Anomalies in drivers vs NDRE (CR)

Are anomalies in phenology driven by anomalous conditions?

Anomalies in drivers vs NDRE (CR)

Are anomalies in phenology driven by anomalous conditions?

Anomalies in drivers vs NDRE (CR)

Are extreme anomalies in phenology driven by anomalous/extremes climate conditions?

Spatial patterns of drivers

Meteorological drivers of NDRE anomalies

- Low precipitation & soil moisture conditions lead to immediate decrease ("browning") in NDRE
- Increased precipitation & soil moisture drives delayed decrease in NDRE
- Increased temperature has a lagged/delayed impact on NDRE increase ("greening")

Role of individual and compound effects of meteorological drivers

Attribution of NDRE extremes to Climate Drivers in Costa Rica

(via soil moisture) anomalies over a longer time period play an important role.

Open forest, unknown

1.4 1.4 1.2 1.0 0.8 0.6 0.4 0.2 National Laboradofy (-ve) Hot (-ve) Hot & Dry (-ve)

- Different vegetation/landcover types respond differently to anomalies in meteorological conditions
- Croplands (and other low height and shallow rooted vegetation are more susceptible to anomalies in moisture availability

Summary

- High spatio-temporal resolution remote sensing allows us to identify dominant phenological patterns across the tropics.
- We can identify regions with stable vs. transient phenological patterns (albeit with a short time series).
- We characterized the meteorological anomalies that drive anomalies in phenology.
- Drivers of extremes/anomalies show regional and land cover type-specific patterns.
- We are expanding the study to other parts of the tropics.

