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Introduction
● Observations of the Earth system are increasing in spatial resolution and 

temporal frequency, and will grow exponentially over the next 5–10 years

Summit at Oak Ridge National Laboratory, #2 fastest 
supercomputer on the TOP500 List (June 2021).

● With Exascale computing, simulation 
output is growing even faster, 
outpacing our ability to evaluate and 
benchmark model results

● Explosive data growth and the promise 
of discovery through data-driven 
modeling necessitate new methods for 
feature extraction, change detection, 
data assimilation, simulation, and 
analysis

https://top500.org/
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https://www.scientificamerican.com/article/the-do-it-yourself-superc/


Multivariate Geographic Clustering
● Ecoregions have traditionally been 

created by experts
● Our approach has been to objectively 

create ecoregions using continuous 
continental-scale data and clustering

● We developed a highly scalable k-means 
cluster analysis code that uses distributed 
memory parallelism

● Originally developed on a 486/Pentium 
cluster, the code now runs on the largest 
hybrid CPU/GPU architectures on Earth

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourself 
Supercomputer, Sci. Am., 265(2):72–79, 
https://www.scientificamerican.com/article/the-do-it-yourself-superc/

https://www.scientificamerican.com/article/the-do-it-yourself-superc/


Network Representativeness
● The n-dimensional space formed by the 

data layers offers a natural framework for 
estimating representativeness of 
individual sampling sites

● The Euclidean distance between individual 
sites in data space is a metric of similarity 
or dissimilarity

● Representativeness across multiple 
sampling sites can be combined to 
produce a map of network 
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals 
Representativeness of the AmeriFlux Network, Eos Trans. AGU, 
84(48):529, 535, doi:10.1029/2003EO480001.

https://doi.org/10.1029/2003EO480001


Optimizing Sampling Networks
● Professor Vinay Kumar Dadhwal 

showed this paper in his Keynote Lecture 
yesterday

● Our group produced this network 
representativeness map for the authors 
from global climate, edaphic, and 
elevation and topography data

● Dark areas, including most of the Indian 
subcontinent, were poorly represented 
by the constellation of eddy covariance 
flux towers participating in FLUXNET in 
the year 2007

Sundareshwar, P. V., et al. (2007), Environmental Monitoring Network 
for India, Science, 316(5822):204–205, doi:10.1126/science.1137417.

https://doi.org/10.1126/science.1137417


Optimizing Sampling Networks
● The CTFS-ForestGEO global forest monitoring 

network is aimed at characterizing forest 
responses to global change

● The figure at left shows the global 
representativeness of the CTFS-ForestGEO 
sites in 2014

● Non-forested areas are masked with 
hatching, and as expected, they are 
consistently darker than the forested 
regions, which are represented to varying 
degrees by the monitoring sites

Anderson-Teixeira, K. J., et al. (2015), CTFS-ForestGEO: A Worldwide Network 
Monitoring Forests in an Era of Global Change, Glob. Change Biol., 
21(2):528–549, doi:10.1111/gcb.12712.

https://doi.org/10.1111/gcb.12712


Representativeness for Alaska
Data Layers

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013), 
Representativeness-Based Sampling Network Design for the State of Alaska, 
Landscape Ecol., 28(8):1567–1586, doi:10.1007/s10980-013-9902-0.

https://doi.org/10.1007/s10980-013-9902-0


10 Alaska Ecoregions, Present and Future

● Since the random colors are the same in both maps, a change in color represents an 
environmental change between the present and the future.

● At this level of division, the conditions in the large boreal forest become compressed onto the 
Brooks Range and the conditions on the Seward Peninsula “migrate” to the North Slope.

(Hoffman et al., 2013)



20 Alaska Ecoregions, Present and Future

● Since the random colors are the same in both maps, a change in color represents an 
environmental change between the present and the future.

● At this level of division, the two primary regions of the Seward Peninsula and that of the 
northern boreal forest replace the two regions on the North Slope almost entirely.

(Hoffman et al., 2013)



Sampling Site Representativeness

● This representativeness analysis uses the standardized n-dimensional data 
space formed from all input data layers

● In this data space, the Euclidean distance between a sampling location (like 
Barrow) and every other point is calculated

● These data space distances are then used to generate grayscale maps showing 
the similarity, or lack thereof, of every location to the sampling location

● In the subsequent maps, white areas are well represented by the sampling 
location or network, while dark and black areas as poorly represented by the 
sampling location or network

● This analysis assumes that the climate surrogates maintain their predictive 
power and that no significant biological adaptation occurs in the future



Network Representativeness: Barrow vs. Barrow + Council

Light-colored regions are well represented and dark-colored regions are poorly represented by 
the sampling location listed in red.

(Hoffman et al., 2013)



State Space Dissimilarities: 8 Sites, Present (2000–2009)



State Space Dissimilarities: 8 Sites, Present and Future



(Maddalena et al., in prep.)

NSF’s NEON Sampling Domains

Triple-Network Global Representativeness
2000–2009 2090–2000
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Gridded data from satellite and 
airborne remote sensing, models, and 
synthesis products can be combined to 
design optimal sampling networks and 
understand representativeness as it 
evolves through time

Sampling Network Design



50 Phenoregions for year 
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)

Clustered from year 2000 to present

50 Phenoregion Prototypes 
(Random Colors)

(Hargrove et al., in prep.)EarthInsights



50 Phenoregions Persistence
and

50 Phenoregions Max Mode 
(Similarity Colors)

(Hargrove et al., in prep.)EarthInsights

Principal Components 
Analysis

PC1 ~ Evergreen
PC2 ~ Deciduous
PC3 ~ Dry Deciduous



(Kumar et al., in prep.)EarthInsights

Extracted canopy height and structure from
airborne LiDAR 



(Kumar et al., in prep.)EarthInsights



Global Fire Regimes

(Norman et al., in prep.)EarthInsights

Regions that exhibit similar fire seasonality globally
From MODIS “Hotspots” at 1 km resolution from 2002–2018



Vegetation Distribution at Barrow Environmental Observatory

In situ data from field measurement activities inform the 
development of wide-scale maps of vegetation distribution 
through inference using remote sensing data as surrogate 
variables, and relationships with environmental controls 
can be extracted

Representativeness map for vegetation 
sampling points in sites A, B, C, and D with 
phenology (left) and without (right) from 
WorldView2 multispectral imagery for the 
year 2010 and LiDAR data

Example plant functional type (PFT) 
distributions scaled up from vegetation 
sampling locations

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type 
Distributions in the Barrow Environmental Observatory Using 
WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733, 
doi:10.3390/rs8090733.

https://doi.org/10.3390/rs8090733


Arctic Vegetation Mapping from Multi-Sensor Fusion
Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT) 

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural 
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.

https://doi.org/10.3390/rs11010069


Satellite Data Analytics Enables Within-Season Crop Identification
Earliest date for crop type classificationa)

b)

Figure: a) Comparison of cluster-then-label crop map with 
USDA Crop Data Layer (CDL) shows similar patterns at 
continental scale. b) Good spatial agreement is found at 
three selected regions, but cluster-then-label crop maps 
lack sharpness at field boundaries due to coarser 
resolution of MODIS data.

Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R. 
Ganguly (2020), Mapping Crops Within the Growing Season 
Across the United States, Remote Sens. Environ., 251, 112048, 
doi:10.1016/j.rse.2020.112048.

https://doi.org/10.1016/j.rse.2020.112048


Watershed-Scale Plant Communities Determined from DNN and AVIRIS-NG

(Konduri et al., in prep.)EarthInsights

At the watershed scale, vegetation community distribution follows topographic and water controls. 
At a fine scale, nutrients limit the distribution of vegetation types.



Hybrid ML/Process-based Modeling for Terrestrial Modeling
In the hierarchy of land 
model processes, we start 
with the photosynthesis 
parameterization because

● Multiple hypotheses
● Many leaf-level 

measurements
● Most computationally 

intensive part of the land 
model

(Figure from P. E. Thornton)



Hybrid ML/Process-based Modeling for Terrestrial Modeling
Individual processes can be 
represented by a 
multi-hypothesis approach, 
and ML provides an 
opportunity for a 
data-derived hypothesis that 
can be further explored or 
used to calibrate other 
hypotheses, when sufficient 
data are available.

(Fisher and Koven, 2020)







Washington DC Town Hall
October 22-23

Earth and 
Environmental 
Sciences
Forrest M. Hoffman (ORNL), 
Rao Kotamarthi (ANL), 
Haruko Wainwright (LBNL), 
and the EES Writing Team



Washington DC Town Hall
October 22-23

Grand Challenge #1
Project environmental risk and develop 
resiliency in a changing environment

• Increasing frequency of weather 
extremes and changing environment 
pose risks to energy infrastructure and 
the built environment

• Sparse observations and inadequate 
model fidelity limit the ability to 
identify vulnerability, mitigate risks, 
and respond to disasters



Washington DC Town Hall
October 22-23

Grand Challenge #1

• New tools are needed to accelerate 
projection of weather extremes and 
impacts on energy infrastructure

• Building resiliency to address evolving 
risks will benefit from integration of 
smart sensing systems, 
built-for-purpose models, ensemble 
forecasts to quantify uncertainty, and 
dynamic decision support systems for 
critical infrastructure



Washington DC Town Hall
October 22-23

Grand Challenge #2

Characterize and modify subsurface conditions for 
responsible energy production, CO

2
 storage, and 

contaminant remediation

• National energy security and transition to renewable 
energy resources relies on utilization of subsurface 
reservoirs for energy production, carbon storage, and 
spent nuclear fuel storage

• Subsurface data are uncertain, disparate, diverse, sparse, 
and affected by scaling issues

• Subsurface process models are incomplete, uncertain, 
and frequently unreliable for prediction



Washington DC Town Hall
October 22-23

Grand Challenge #2

• We need to substantially increase hydrocarbon 
extraction efficiency, discover and exploit 
hidden geothermal resources, reduce induced 
seismicity and other impacts, improve geologic 
CO

2
 storage, and predict long-term fate and 

transport of contaminants

• Mitigating risks requires improved subsurface 
characterization and assimilation of real-time 
data streams into predictive models of 
geological and ecological processes



Washington DC Town Hall
October 22-23

Grand Challenge #3

Develop a predictive understanding of the Earth 
system under a changing environment

• To advance the nation’s energy and infrastructure 
security, a foundational scientific understanding of 
complex and dynamic hydrological, biological, and 
geochemical processes and their interactions is 
required (across atmosphere, ocean, land, ice)

• Knowledge must be incorporated into Earth 
system models to project future climate conditions 
for various scenarios of population, 
socioeconomics, and energy production and use

Energy & Water Cycles

Carbon & Biogeochemical Cycles



Washington DC Town Hall
October 22-23

Grand Challenge #3
• Accurate predictions are needed to 

quantify changes in atmospheric and 
ocean circulation and weather extremes, 
to close the carbon cycle, and to 
understand responses and feedbacks of 
human, terrestrial, and marine ecosystems 
to environmental change

• Advances in genomics and bioscience data 
need to be leveraged to provide detailed 
understanding of plant–microbial 
interactions and their adaptations and 
feedbacks to the changing environment



Washington DC Town Hall
October 22-23

Grand Challenge #4

Ensure global water security under a 
changing environment

• Water resources are critical for energy 
production, human health, food 
security, and economic prosperity

• Water availability and water quality are 
impacted by environmental change, 
weather extremes, and disturbances 
such as wildfire and land use change 



Washington DC Town Hall
October 22-23

Grand Challenge #4

• Methods are needed to integrate 
disparate and diverse multi-scale data 
with models of watersheds, rivers, and 
water utility infrastructure

• Predictions of water quality and 
quantity require data-driven models 
and smart sensing systems

• Water resource management must 
account for changes in weather 
extremes, population, and economic 
growth



Washington DC Town Hall
October 22-23

Accelerating Development

The near-term (5–10 years) priorities are to:

• Develop hybrid process-based/AI modeling frameworks for Exascale systems

Hybrid Approaches to Earth Science Simulation (Reichstein et al., 2019)• Develop strategies for mapping 
hybrid components on GPU/CPU  
based on computational density 
and communications patterns

• Develop physics / chemistry / 
biology-constrained ML

• Develop explainable AI and ML 
methods for hypothesis 
generation and testing 



Washington DC Town Hall
October 22-23

Expected Outcomes

• Model testbeds and surrogate models are expected to yield insights into 
process understanding across all Grand Challenges

• Data-driven and physics-constrained hybrid models are expected to stimulate 
new discovery and bridge space and time scales

• Integrated models of Earth system processes and
energy/built infrastructure will enhance national
energy and water security through simulation

• AI methods will enable effective use of large data
streams for energy production, predictive process
understanding, and environmental resiliency



https://ai4esp.org/ https://ai4esp.slack.com/

White papers were solicited for development and 
application of AI methods in areas relevant to EESSD 
research with an emphasis on quantifying and 
improving Earth system predictability, particularly 
related to the integrative water cycle and extreme 
events.

How can DOE directly leverage artificial 
intelligence (AI) to engineer a substantial 
(paradigm-changing) improvement in Earth 
System Predictability?

156 white papers were received and read to plan the 
organization of a workshop in Fall 2021.

AI4ESP Workshop: Oct 25–Dec 3, 2021

Earth System Predictability Sessions
● Atmospheric Modeling
● Land Modeling
● Human Systems & Dynamics
● Hydrology
● Watershed Science
● Ecohydrology
● Aerosols & Clouds
● Climate Variability & Extremes
● Coastal Dynamics, Oceans & Ice

Cross-Cut Sessions
● Data Acquisition
● Neural Networks
● Surrogate models and emulators
● Knowledge-Informed Machine Learning
● Hybrid Modeling
● Explainable/Interpretable/Trustworthy AI
● Knowledge Discovery & Statistical Learning



AI4ESP White Papers: Earth System Predictability Topics

Earth System Predictability Topics from 156 White Papers



● Watershed science
○ Hydro-Biogeochemistry, Soil biogeochemistry
○ Water quality 
○ Lab-to-field, field-to-regional scale analysis
○ Experimental data, sensor networks (rapid responses), 

and experimental/network designs

● Hydrology
○ Water resources
○ Precipitation-induced hazards (floods etc) 
○ Weather/hydrological monitoring
○ Groundwater to surface water models
○ Mountain hydrology
○ Regional to continental scale

nasa.gov

climate.gov

ess.science.energy.gov

AI4ESP White Papers: Earth System Predictability Topics



● Atmospheric Modeling
○ Convection and turbulence
○ Surface Fluxes
○ Radiation
○ Model Tuning
○ General concepts that can generalized

to other ESMs components

Two confusion matrices are used to evaluate the effectiveness of CloudNet. Confusion matrix (a) is the 
model prediction with the Singapore Whole-sky Imaging Categories test set, which randomly selects 12 
images in each category. Confusion matrix (b) is the same as (a), but (b) is the model prediction with the 
Cirrus Cumulus Stratus Nimbus test set. Ci = cirrus; Cs = cirrostratus; Cc = cirrocumulus; Ac = altocumulus; 
As = altostratus; Cu = cumulus; Cb = cumulonimbus; Ns = nimbostratus; Sc = stratocumulus; St = stratus; Ct 
= contrail.

Zhang, J. L., Liu, P., Zhang, F., & Song, Q. Q. (2018). CloudNet: 
Ground-based cloud classification with deep convolutional 
neural network. Geophysical Research Letters, 45, 8665– 8672. 
https://doi.org/10.1029/2018GL077787

e3sm.org

● Aerosols and Clouds 
○ Cloud Classification
○ Aerosol cloud 

interactions
e3sm.org

AI4ESP White Papers: Earth System Predictability Topics

https://doi.org/10.1029/2018GL077787


AI4ESP White Papers: Earth System Predictability Topics
● Land Modeling

○ Agriculture / Crops
○ Leaf Phenology
○ Streamflow / Water Availability
○ Wildfire
○ Satellite Data Assimilation

● Ecohydrology
○ Stomatal Conductance / Photosynthesis
○ Plant Hydraulics and Growth
○ Evapotranspiration
○ Soil Moisture
○ Soil

Hydrology

Getty Images Adkins Arboretum wallpaperbetter.com

ABC7 News

Nature McDowell et al. (2019)
drought.gov



● Coastal dynamics, Ocean/Ice
○ Ocean/land/ice interface
○ Sea-level rise, storm surge
○ Coastal ecosystem/carbon cycling

Ward et al., 2020

● Climate variability and Extremes
○ TCs, ARs, Compound/Cascading events
○ Predictability
○ Circulation/climate variability (ENSO, NAO etc)
○ Telecommunication

Wang et al., 2014

AI4ESP White Papers: Earth System Predictability Topics



● Human Systems and Dynamics
○ Human activities/population
○ Energy-water-land nexus 
○ Agriculture
○ Urban environment
○ Land use/cover changes

globalchange.gov

AI4ESP White Papers: Earth System Predictability Topics

globalchange.gov



Workshop Agenda

● Public sessions (highlighted 
in green) are open to 
anyone; requires 
registration at 
https://ai4esp.org/workshop/

● Invitation-only sessions 
(highlighted in pink) are 
open to invited active 
participants and selected 
listening participants; 
requires registration on 
the Google Form link in the 
invitation email

https://ai4esp.org/workshop/

