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Problem: Model Uncertainty

◮ Model uncertainty is one of the biggest challenges we face in Earth system science, yet
comparatively little effort is devoted to fixing it (Carslaw et al., 2018)

◮ Ecosystems have complex responses to a wide range of forcing factors in heterogeneous
spatial environments, requiring a highly multivariate approach

◮ The focus is on adding complexity (e.g., more detailed representations of plant traits,
photosynthesis, nutrient limitation, respiration), assuming more processes is better

◮ However, model uncertainty may increase, even as predictions of states and fluxes improve

◮ Rigorous confrontation of models with observations is required to reduce uncertainty

◮ Modeling centers have a limited capacity to collect and synthesize the data required to
systematically assess all aspects of model fidelity

◮ Community-developed benchmarking tools are beginning to address some of these problems



International Land Model Benchmarking (ILAMB) Workshop
May 16–18, 2016, Washington, DC

The International Land Model Benchmarking (ILAMB)
community coordination activity was designed to

◮ Develop internationally accepted benchmarks

◮ Promote the use of these benchmarks

◮ Strengthen linkages between experimental, remote
sensing, and modeling communities

◮ Support the design and development of open source
benchmarking tools (Luo et al., 2012), like the ILAMB
Package (Collier et al., 2018)



ILAMB Package Produces Diagnostics and Scores Models

◮ ILAMB performs model–data comparisons and generates a portrait plot of model scores

◮ For every variable and dataset, ILAMB automatically produces
◮ Tables containing individual metrics and metric scores (when relevant to the data), including

◮ Reference and model period mean
◮ Bias and bias score (Sbias)
◮ Root-mean-square error (RMSE) and RMSE score (Srmse)
◮ Phase shift and seasonal cycle score (Sphase)
◮ Interannual coefficient of variation and IAV score (Siav)
◮ Spatial distribution score (Sdist)
◮ Overall score (Soverall)

◮ Graphical diagnostics
◮ Spatial contour maps
◮ Time series line plots
◮ Spatial Taylor diagrams (Taylor, 2001)

◮ Similar tables and graphical diagnostics are produced for functional relationships

◮ ILAMB design, theory, and implementation are described in Collier et al. (2018)

=⇒ Soverall =
Sbias+2Srmse+Sphase+Siav+Sdist

1+2+1+1+1



ILAMBv2.5 Package Current Variables

◮ Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED4.1s), CO2

(NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, FLUXCOM), Leaf area index
(AVHRR, MODIS), Global net ecosystem carbon flux (GCP, Khatiwala/Hoffman), Net ecosystem
exchange (Fluxnet, FLUXCOM), Ecosystem respiration (Fluxnet, FLUXCOM), Soil C (HWSD,
NCSCDv2, Koven)

◮ Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (FLUXCOM), Latent heat
(Fluxnet, FLUXCOM, DOLCE), Permafrost (NSIDC), Runoff (Dai, LORA), Sensible heat (Fluxnet,
FLUXCOM), Terrestrial water storage anomaly (GRACE)

◮ Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES,
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, GEWEX.SRB, WRMC.BSRN)

◮ Forcing: Surface air temperature (CRU, Fluxnet), Dirunal max/min/range temperature (CRU),
Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), Surface down
SW/LW radiation (Fluxnet, CERES, GEWEX.SRB, WRMC.BSRN)



ILAMB Assessed Several Generations of CLM

◮ Improvements in mechanistic treatment of hydrology,
ecology, and land use with much more complexity in
Community Land Model version 5 (CLM5)

◮ Simulations improved even with enhanced complexity

◮ Observational datasets are not always self-consistent

◮ Forcing uncertainty confounds assessment of model
development

http://webext.cgd.ucar.edu/I20TR/_build_set1F/

(Lawrence et al., 2019)

http://webext.cgd.ucar.edu/I20TR/_build_set1F/


CMIP5 vs. CMIP6 Land Models

◮ The performance of the CMIP6 suite of land models
(on right with green headings) has improved over
that of the CMIP5 suite of land models (on left with
yellow headings)

◮ The multi-model mean (on far right with white
headings) outperforms any single model for each
suite of models

◮ The multi-model mean CMIP6 land model is the
“best model” overall

◮ Why did CMIP6 land models improve over their
CMIP5 progenitors?

(Hoffman et al., in prep.)



CMIP5 and CMIP6 Land Model
Global GPP Compared with

FLUXCOM

◮ Most models of the same lineage improved
in various characteristics between CMIP5
and CMIP6

◮ The MeanCMIP5 and MeanCMIP6 models
perform the best

(Hoffman et al., in prep.)



Spatial Distribution of Global GPP Biases



Functional Relationships of GPP with Precipitation and Temperature



Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely partially
drove improvements exhibited by land carbon cycle models

(Hoffman et al., in prep.)



Reasons for Land Model Improvements

Differences in bias
scores for
temperature,
precipitation, and
incoming radiation
were primarily
positive, further
indicating more
realistic climate
representation by the
fully coupled ESMs

(Hoffman et al., in prep.)



Reasons for Land Model Improvements
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(Hoffman et al., in prep.)

Across all land models, scores for most state and flux variables improved (216) or remained nearly the same
(202), although some were degraded (74). While atmospheric forcings from CMIP6 ESMs were improved over
those from CMIP5 ESMs, the largest improvements were in land model functional relationships, suggesting that
increased land model development was also partially responsible for higher CMIP6 land model scores.



Conclusions and Future Research

Summary

◮ CMIP6 land models performed better than CMIP5 land models due to (1) improved
climate forcing from fully coupled ESMs and (2) improved process representation

◮ Functional relationships exhibited the largest improvements for some models

◮ Thus, CMIP6 land model results are more valuable for impacts analysis and studies of
adaptation and mitigation strategies

◮ Model improvements in mean states and fluxes may not result in reduced uncertainty or
projected model spread

Questions

◮ Will improved multi-model performance result in reduced spread in feedback sensitivities,
projected land carbon storage, and future climate change?

◮ Can ILAMB scores be used to weight contributions to multi-model means to reduce
contemporary biases, reduce projected uncertainties, or alter expected mitigation targets?
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