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Research Questions

Question 1

How well do Earth System Models (ESMs) simulate the observed distribution of anthropogenic
carbon in atmosphere, ocean, and land reservoirs?

Question 2

Can contemporary atmospheric CO2 observations be used to constrain future CO2 projections?

Question 3

Can we design a strategy for objectively sampling diverse environmental gradients using models
and measurements?

Community Model Benchmarking

Systematic assessment of model fidelity, employing best-available observational data, can
identify model weaknesses and inspire new measurements.
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Observed Carbon Accumulation Since 1850
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Observational estimates of anthropogenic carbon emissions (excluding land use change) and accumulation in
atmosphere, ocean, and land reservoirs for 1850–2010. Atmosphere carbon is a fusion of Law Dome ice core CO2

observations, the Keeling Mauna Loa record, and more recently the NOAA GMD global surface average,
integrated for the purpose of forcing IPCC models. Total land flux is computed by mass balance as follows:

∆CL =
∑
i

Fi − ∆CA − ∆CO .



15 ESMs that performed CMIP5 emissions-forced simulations

Model Modeling Center

BCC-CSM1.1 Beijing Climate Center, China Meteorological
Administration, CHINA

BCC-CSM1.1(m) Beijing Climate Center, China Meteorological
Administration, CHINA

BNU-ESM Beijing Normal University, CHINA
CanESM2 Canadian Centre for Climate Modelling and Analysis,

CANADA
CESM1-BGC Community Earth System Model Contributors,

NSF-DOE-NCAR, USA
FGOALS-s2.0 LASG, Institute of Atmospheric Physics, CAS, CHINA
GFDL-ESM2g NOAA Geophysical Fluid Dynamics Laboratory, USA
GFDL-ESM2m NOAA Geophysical Fluid Dynamics Laboratory, USA
HadGEM2-ES Met Office Hadley Centre, UNITED KINGDOM

INM-CM4 Institute for Numerical Mathematics, RUSSIA
IPSL-CM5A-LR Institut Pierre-Simon Laplace, FRANCE

MIROC-ESM Japan Agency for Marine-Earth Science and
Technology, Atmosphere and Ocean Research Institute
(University of Tokyo), and National Institute for
Environmental Studies, JAPAN

MPI-ESM-LR Max Planck Institute for Meteorology, GERMANY
MRI-ESM1 Meteorological Research Institute, JAPAN

NorESM1-ME Norwegian Climate Centre, NORWAY

CMIP5 Long-Term Experiments

Emissions for Historical + RCP 8.5 Simulations
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(a) Most ESMs exhibited a high bias in
predicted atmospheric CO2 mole fraction,
which ranged from 357–405 ppm at the end
of the historical period (1850–2005).

(b) The multi-model mean was biased high
from 1946 throughout the 20th century,
ending 5.6 ppm above the observed value of
378.8 ppm in 2005.
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Model inventory comparison with Khatiwala et al. (2013)

Once normalized by their atmospheric carbon
inventories, most ESMs exhibited a low bias
in anthropogenic ocean carbon accumulation
through 2010.

The same pattern holds for the Sabine et al.
(2004) inventory derived using the ∆C*
separation technique.
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(a) Ocean inventory estimates had a fairly
persistent ordering during the second half of
the 20th century.

(b) ESMs exhibited a wide range of land
carbon accumulation responses to increasing
CO2 and land use change, ranging from a net
source of 170 Pg C to a sink of 107 Pg C in
2010.

ESM Historical Ocean and Land Carbon Accumulation
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Question 1

How well do Earth System Models (ESMs) simulate the observed distribution of anthropogenic
carbon in atmosphere, ocean, and land reservoirs?

I Most ESMs exhibited a high bias in predicted atmospheric CO2 mole fraction, ranging
from 357–405 ppm in 2005.

I The multi-model mean atmospheric CO2 mole fraction was biased high from 1946 onward,
ending 5.6 ppm above observations in 2005.

I Once normalized by atmospheric carbon accumulation, most ESMs exhibited a low bias in
ocean accumulation in 2010.

I ESMs predicted a wide range of land carbon accumulation in response to increasing CO2

and land use change, ranging from −170–107 Pg C in 2010.



Question 2

Can contemporary atmospheric CO2

observations be used to constrain future CO2

projections?

ESM RCP 8.5 Atmospheric CO2 Mole Fraction
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Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

1. there must be a relationship between contemporary variability and future trends on longer
time scales within the model, and

2. it must be possible to constrain contemporary variability in the model using observations.

Example #1

Hall and Qu (2006) evaluated the strength of the springtime
snow albedo feedback (SAF; ∆αs/∆Ts) from 17 models
used for the IPCC AR4 and compared them with the
observed springtime SAF from ISCCP and ERA-40 reanalysis.
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Reducing Uncertainties Using Observations

To reduce feedback uncertainties using contemporary observations,

1. there must be a relationship between contemporary variability and future trends on longer
time scales within the model, and

2. it must be possible to constrain contemporary variability in the model using observations.

Example #2

Cox et al. (2013) used the observed relationship between the
CO2 growth rate and tropical temperature as a constraint to
reduce uncertainty in the land carbon storage sensitivity to
climate change (γL) in the tropics using C4MIP models.



I discovered a new emergent constraint based
on carbon inventories.

A relationship exists between contemporary
and future atmospheric CO2 levels over
decadal time scales because carbon model
biases persist over decadal time scales.

The observed contemporary atmospheric CO2

mole fraction is represented by the vertical line at
384.6 ± 0.5 ppm.

Future  vs. Contemporary Atmospheric CO2 Mole Fraction
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Removing pre-industrial CO2 mole fraction
biases from models, I found the relationship
held, confirming the robustness of the result.

Observed contemporary anthropogenic
atmospheric carbon inventory is represented by
the vertical line at 213.4 ± 6.5 Pg C, which
incorporates 1850 CO2 mole fraction
uncertainties.

Adding uncertainties from fossil fuel emissions
increased the uncertainty to ±12.7 Pg C.

Future  vs. Contemporary Atmospheric Accumulation
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R2 of Multi−model  Bias Structure
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The coefficients of determination (R2) for the multi-model bias structure relative to the set of CMIP5
model atmospheric CO2 mole fractions (black), and oceanic (blue) and land (green) anthropogenic
carbon inventories in 2010. Atmospheric CO2 mole fractions are statistically significant for 1910–2100.
Bias persistence was highest for the ocean, followed by land, and then by the atmosphere.



Contemporary CO2 Tuned Model (CCTM)
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I used this regression to create a contemporary CO2 tuned
model (CCTM) estimate of the atmospheric CO2 trajectory for
the 21st century.

I Peak probability densities of CO2 mole fraction
predictions were lower for the CCTM than the
multi-model means.

I The ranges of uncertainty were smaller by almost a factor
of 6 at 2060 and almost a factor of 5 at 2100.
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Best estimate using Mauna Loa CO2

At 2060: 600 ± 14 ppm, 21 ppm
below the multi-model mean

At 2100: 947 ± 35 ppm, 32 ppm
below the multi-model mean



Projections for  Individual CMIP5 Models
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b)  CO2 − induced Radiative Forcing
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I calculated the CO2 radiative forcing and used an impulse response function (tuned to the mean
transient climate response of CMIP5 models) to equitably compute the resulting CO2-induced
temperature change (∆TCO2 ) for models and the CCTM. The CO2 biases for individual models
contributed to ∆TCO2 biases of −0.7◦C to +0.6◦C by 2100, relative to the CCTM estimate.



Future  vs. Contemporary Ocean  Accumulation
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Future  vs. Contemporary Land  Accumulation
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Contemporary (2010) Ocean Accumulation (Pg C)
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I also developed a multi-model constraint on the evolution of ocean and land anthropogenic inventories.
Since observational uncertainties are higher for ocean and land, uncertainties in future estimates cannot
be reduced as much as for atmospheric CO2.



Question 2

Can we use contemporary CO2 observations to constrain future CO2 projections?

I Yes.

I I developed a new emergent constraint from anthropogenic carbon inventories in
atmosphere, ocean, and land reservoirs.

I Land and ocean processes contributing to contemporary carbon cycle biases persist over
decadal timescales.

I I used the relationship between contemporary and future atmospheric CO2 levels to create
a contemporary CO2 tuned model (CCTM) estimate for the 21st century.
I At 2060: 600 ± 14 ppm, 21 ppm below the multi-model mean.
I At 2100: 947 ± 35 ppm, 32 ppm below the multi-model mean.

I Uncertainties in future climate predictions may be reduced by improving models to match
the long-term time series of CO2 from Mauna Loa and other monitoring stations.



Implications of CO2 Biases in ESMs
I Most of the model-to-model variability of CO2 in the 21st century was traced to biases

that existed at the end of the observational record.
I Future fossil fuel emissions targets designed to stabilize CO2 levels would be too low if

estimated from the multi-model mean of ESMs.
I Models could be improved through extensive comparison with sustained observations

and community model benchmarking.

Hoffman, Forrest M., James T. Randerson, Vivek K. Arora, Qing Bao,
Patricia Cadule, Duoying Ji, Chris D. Jones, Michio Kawamiya, Samar
Khatiwala, Keith Lindsay, Atsushi Obata, Elena Shevliakova, Katha-
rina D. Six, Jerry F. Tjiputra, Evgeny M. Volodin, and Tongwen Wu
(2014), Causes and Implications of Persistent Atmospheric Carbon Diox-
ide Biases in Earth System Models, J. Geophys. Res. Biogeosci.,
119(2):141–162, doi:10.1002/2013JG002381.

http://dx.doi.org/10.1002/2013JG002381
http://dx.doi.org/10.1002/2013JG002381


Question 3

Can we design a strategy for objectively sampling diverse environmental gradients using models
and measurements?

I Resource and logistical constraints limit the frequency and extent of observations,
necessitating the development of a systematic sampling strategy that objectively represents
environmental variability at the desired spatial scale.

I Required is a methodology that provides a quantitative framework for informing site
selection and determining the representativeness of measurements.

I Multivariate spatiotemporal clustering (MSTC) was applied at the landscape scale (4 km2)
for the State of Alaska to demonstrate its utility for representativeness and scaling.

I An extension of the method applied by Hargrove and Hoffman for design of National
Science Foundation’s (NSF’s) National Ecological Observatory Network (NEON) domains.



Multivariate Spatiotemporal Clustering (MSTC)



Data Layers

Table: 37 characteristics averaged for the present (2000–2009) and the future (2090–2099).

Description Number/Name Units Source

Monthly mean air temperature 12 ◦C GCM
Monthly mean precipitation 12 mm GCM

Day of freeze
mean day of year GCM

standard deviation days

Day of thaw
mean day of year GCM

standard deviation days

Length of growing season
mean days GCM

standard deviation days
Maximum active layer thickness 1 m GIPL
Warming effect of snow 1 ◦C GIPL
Mean annual ground temperature at bottom
of active layer

1 ◦C GIPL

Mean annual ground surface temperature 1 ◦C GIPL
Thermal offset 1 ◦C GIPL
Limnicity 1 % NHD
Elevation 1 m SRTM



10 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.
At this level of division, the conditions in the large boreal forest become compressed onto the
Brooks Range and the conditions on the Seward Peninsula “migrate” to the North Slope.



20 Alaska Ecoregions, Present and Future

1000 km 1000 km

2000–2009 2090–2099
(Hoffman et al., 2013)

Since the random colors are the same in both maps, a change in color represents an
environmental change between the present and the future.
At this level of division, the two primary regions of the Seward Peninsula and that of the
northern boreal forest replace the two regions on the North Slope almost entirely.



NGEE Arctic Site Representativeness

I This representativeness analysis uses the standardized n-dimensional data space formed
from all input data layers.

I In this data space, the Euclidean distance between a sampling location (like Barrow) and
every other point is calculated.

I These data space distances are then used to generate grayscale maps showing the
similarity, or lack thereof, of every location to the sampling location.

I In the subsequent maps, white areas are well represented by the sampling location or
network, while dark and black areas as poorly represented by the sampling location or
network.

I This analysis assumes that the climate surrogates maintain their predictive power and that
no significant biological adaptation occurs in the future.



Present Representativeness of Barrow or “Barrow-ness”

1000 km

(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are poorly represented by
the sampling location listed in red.



Network Representativeness: Barrow + Council

1000 km

(Hoffman et al., 2013)

Light-colored regions are well represented and dark-colored regions are poorly represented by
the sampling location listed in red.



State Space Dissimilarities: 8 Sites, Present (2000–2009)

Table: Site state space dissimilarities for the present (2000–2009).

Toolik Prudhoe
Sites Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

Barrow 9.13 4.53 5.90 5.87 7.98 3.57 12.16
Council 8.69 6.37 7.00 2.28 8.15 5.05

Atqasuk 5.18 5.23 7.79 1.74 10.66
Ivotuk 1.81 5.83 4.48 7.90

Toolik Lake 6.47 4.65 8.70
Kougarok 7.25 5.57

Prudhoe Bay 10.38



State Space Dissimilarities: 8 Sites, Present and Future

Table: Site state space dissimilarities between the present (2000–2009) and the future (2090–2099).

Future (2090–2099)
Toolik Prudhoe

Sites Barrow Council Atqasuk Ivotuk Lake Kougarok Bay Fairbanks

P
re
se
n
t
(2
00
0–
20
09
) Barrow 3.31 9.67 4.63 6.05 5.75 9.02 3.69 11.67

Council 8.38 1.65 8.10 5.91 6.87 3.10 7.45 5.38
Atqasuk 6.01 9.33 2.42 5.46 5.26 8.97 2.63 10.13

Ivotuk 7.06 7.17 5.83 1.53 2.05 7.25 4.87 7.40
Toolik Lake 7.19 7.67 6.07 2.48 1.25 7.70 5.23 8.16

Kougarok 7.29 3.05 6.92 5.57 6.31 2.51 6.54 5.75
Prudhoe Bay 5.29 8.80 3.07 4.75 4.69 8.48 1.94 9.81

Fairbanks 12.02 5.49 10.36 7.83 8.74 6.24 10.10 1.96



Question 3

Can we design a strategy for objectively sampling diverse environmental gradients using models
and measurements?

I Yes, MSTC provides a quantitative framework for stratifying sampling domains, informing site
selection, and determining representativeness of measurements.

I Representativeness analysis provides a systematic approach for up-scaling point measurements to
larger domains.

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013),
Representativeness-Based Sampling Network Design for the State of
Alaska, Landscape Ecol., 28(8):1567–1586, doi:10.1007/s10980-013-
9902-0.
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http://dx.doi.org/10.1007/s10980-013-9902-0
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Problem: Model Uncertainty

Model uncertainty is one of the biggest challenges we face in Earth system science, yet
comparatively little effort is devoted to fixing it (Carslaw et al., 2018)

I Model complexity is rapidly
increasing as detailed process
representations are added

I Evidence shows overall model
uncertainty is reduced only slowly
and sometimes increased (Knutti
and Sedlác̆ek, 2013)

I Balance must be struck between
model “elaboration” and efforts
to reduce model uncertainty Patterns of precipitation change across two generations of

models. Adapted from Knutti and Sedlác̆ek (2013).



Why is Addressing Uncertainty a Challenge?

I Ecosystems have complex responses to a wide range of forcing factors in heterogeneous
spatial environments, requiring highly multivariate approach

I Model uncertainty may increase, even as predictions of states and fluxes improves

I Rigorous confrontation of models with independent observations and hundreds of
simulations are required to reduce uncertainty

I Modeling centers have a limited capacity to conduct sensitivity experiments, especially in
fully coupled Earth system models, and rely primarily on homegrown methods and tools

I Focus is on adding complexity (e.g., more detailed representations of plant traits,
photosynthesis, nutrient limitation, respiration)

We are working on an ORNL LDRD-supported DRD Project to develop a Land Model
Testbed (LMT) to advance our capabilities in running large ensembles and evaluating
model performance with a suite of tools.



International Land Model Benchmarking (ILAMB) Workshop
May 16–18, 2016, Washington, DC

The International Land Model Benchmarking (ILAMB)
community coordination activity was designed to

I Develop internationally accepted benchmarks

I Promote the use of these benchmarks

I Strengthen linkages between experimental, remote
sensing, and modeling communities

I Support the design and development of open source
benchmarking tools (Luo et al., 2012), like the ILAMB
Package (Collier et al., 2018)



CMIP5 vs. CMIP6 Models

I The CMIP6 suite of land models (right) has
improved over the CMIP5 suite of land models
(left)

I The multi-model mean outperforms any single
model for each suite of models

I The multi-model mean CMIP6 land model is the
“best model” overall

I Why did CMIP6 land models improve?

(Hoffman et al., in prep.)



Reasons for Land Model Improvements

ESM improvements in climate forcings (temperature, precipitation, radiation) likely partially
drove improvements exhibited by land carbon cycle models

(Hoffman et al., in prep.)



Reasons for Land Model Improvements

Differences in bias
scores for
temperature,
precipitation, and
incoming radiation
were primarily
positive, further
indicating more
realistic climate
representation

(Hoffman et al., in prep.)



Reasons for Land Model Improvements
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(Hoffman et al., in prep.)

While forcings got better, the largest improvements were in variable-to-variable relationships,
suggesting that increased land model complexity was also partially responsible for higher CMIP6
model scores



Improvements by Land Model
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Recent and Ongoing
Student Research



High Resolution Vegetation Maps for the BEO
We combined high resolution multi-spectral remote sensing and digital elevation models and vegetation
community data to develop machine learning models and produce high resolution maps of vegetation community
distributions. Capturing vegetation phenology from repeat imagery exploits variations in the timing of green up
for different vegetation types, allowing improved accuracy in resulting data products.
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High resolution vegetation maps captures vegetation community and distribution across polygon types

Langford, Z. L., J. Kumar, F. M. Hoffman, R. J. Norby, S. D. Wullschleger, V. L. Sloan, and C. M. Iversen (2016),
Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and
LiDAR Datasets, Remote Sens., 8(9):733, doi:10.3390/rs8090733.



Terrestrial Feedbacks in a Geoengineered Climate

I Reduced ecosystem respiration and small increases in vegetation productivity under geoengineering resulted
in an additional 79 Pg C sink by the end of the 21st century in comparison with RCP 8.5

I Increase in atmospheric CO2 should have been reduced by 4% at 2097 due to the terrestrial carbon
feedback (∆[CO2]atm = 37 ppm), but marine feedbacks will also influence these results

Yang, Cheng-En, Forrest M. Hoffman, Simone Tilmes, Douglas G. MacMartin, Lili Xia, Jadwiga H. Richter, Ben Kravitz,
Michael J. Mills, and Joshua S. Fu (2019), Assessing Terrestrial Biogeochemical Feedbacks in a Strategically
Geoengineered Climate, submitted to Environ. Res. Lett.



Continental-scale Monitoring of Croplands using Remote Sensing Data
and Machine Learning Methods

I Continuous mapping (and
monitoring) of crops in near
real time – what is growing?

I Estimate fractional crop cover
in every pixel and predict crop
acreage – where is it growing?

I Impact of mean and extreme
weather on crop yield – what is
the expected yield given
growing conditions?

(Konduri et al., submitted)



Earliest Date for Crop Type Classification

(Konduri et al., submitted)

Konduri, Venkata Shashank, Jitendra Kumar, William W. Hargrove, Forrest M. Hoffman, and Auroop R. Ganguly (2020),
Mapping Crops Within the Growing Season Across the United States, submitted to Remote Sens. Environ.



Carbon Cycle Extremes in Multi-Century Simulations

(Sharma et al., in prep.)



Changing Spatial Distribution of Negative Extremes

(Sharma et al., in prep.)

Sharma, Bharat D., Forrest M. Hoffman, Jitendra Kumar, Nathan Collier, and Auroop R. Ganguly (2020), Quantifying the
Changes in Carbon Cycle Extremes with Land Use Change and Attribution to Climate Drivers through Year 2300, in
preparation.
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