
Multidisciplinary Earth System Science
and the Global Carbon Cycle

Forrest M. Hoffman
forrest@climatemodeling.org

Oak Ridge National Laboratory and University of Tennessee

March 22, 2022

mailto:forrest@climatemodeling.org


Forrest M. Hoffman, Computational Earth System Scientist

● Group Leader for the ORNL Computational Earth Sciences Group
● 32 years at ORNL in Environmental Sciences Division, then 

Computer Science and Mathematics Division, and now 
Computational Sciences and Engineering Division

● Develop and apply Earth system models to study global 
biogeochemical cycles, including terrestrial & marine carbon cycle

● Investigate methods for reconciling uncertainties in 
carbon–climate feedbacks through comparison with observations

● Apply artificial intelligence methods (machine learning and data 
mining) to environmental characterization, simulation, & analysis

● Joint Faculty, University of Tennessee, Knoxville, Department of 
Civil & Environmental Engineering



Reducing Uncertainties in 
Biogeochemical Interactions through 

Synthesis and Computation (RUBISCO) 
Science Focus Area (SFA)



US Dept. of Energy’s RUBISCO Scientific Focus Area (SFA)
Research Goals

● Identify and quantify interactions between 
biogeochemical cycles and the Earth system

● Quantify and reduce uncertainties in Earth system 
models (ESMs) associated with interactions

Research Objectives
● Perform hypothesis-driven analysis of biogeochemical & 

hydrological processes and feedbacks in ESMs
● Synthesize in situ and remote sensing data and design 

metrics for assessing ESM performance
● Design, develop, and release the International Land 

Model Benchmarking (ILAMB) and International Ocean 
Model Benchmarking (IOMB) tools for systematic 
evaluation of model fidelity

● Conduct and evaluate CMIP6 experiments with ESMs

The RUBISCO SFA works with the measurements and 
the modeling communities to use best-available data to 
evaluate the fidelity of ESMs. RUBISCO identifies model 
gaps and weaknesses, informs new model 
development efforts, and suggests new measurements 
and field campaigns.

Forrest M. Hoffman (Laboratory Research Manager), William J. Riley (Senior Science Co-Lead), and James T. Randerson (Chief Scientist)



RUBISCO SFA Nine Partner Institutions
● 5 National Labs

○ Argonne
○ Brookhaven
○ Los Alamos
○ Lawrence Berkeley
○ Oak Ridge

● 3 Universities
○ UC Irvine
○ U. Michigan
○ N. Arizona U.

● National Center 
for Atmospheric 
Research (NCAR)



Soil Carbon Dynamics Working Group
● Formed after community recommendation 

from the 2016 International Land Model 
Benchmarking (ILAMB) Workshop Report

● Objective is to apply data and models to 
improve predictive understanding

● June and September conference calls led to 
meeting at ORNL in October 2018

Knowledge to 
Data
Perform simulations to 
test hypotheses and 
characterize model 
structural uncertainties

Data to 
Knowledge
Synthesize existing 
data from collaborative 
networks, archives, 
and publications

Predictive 
Understanding
Design functional relationship 
metrics to confront models and 
apply data-driven approaches to 
model formulation

Global Data Synthesis Theme
● Combine field observations from collaborative sampling 

networks and databases, including International Soil Carbon 
Network (ISCN) and published literature

● Quantify vertical distribution of SOM and responses to 
controlling mechanisms

Model–Data Integration Theme
● Develop consistent datasets for initializing, forcing, and 

benchmarking microbially explicit soil carbon models
● Characterize model structural uncertainty through software 

frameworks to understand controlling mechanisms

For more information, see 2018 Fall Meeting Report (June 26, 2019)

https://drive.google.com/file/d/19YeNJbV3eHqEshQgsfMaF5gQoELHCV6c/view?usp=sharing


RUBISCO-AmeriFlux Working Group
● Formed after community recommendation from 

the 2016 International Land Model 
Benchmarking (ILAMB) Workshop Report

● Objective is to use AmeriFlux data to improve 
process understanding and to develop, 
parameterize, and test models

● Multiple conference calls led up to a meeting at 
the UC Berkeley Botanical Garden (outside 
LBNL)  on October 15–17, 2019

Four key areas of research emerged from the Working Group 
Meeting:

● Ecosystem trend spotting - employing long ecosystem carbon 
and water flux records to detect trends in ecosystem 
metabolism and to disentangle responses of ecosystems to 
elevated CO2, climate change, and human disturbances

● Ecosystem responses to extreme events - use long-running 
AmeriFlux measurements, which include ecosystem responses 
to extreme weather conditions, to evaluate models

● Untangling contributions to carbon exchange - use 
complementary measurements of respiration fluxes and 
satellite-derived vegetation indices to improve partitioning 
methods for eddy covariance estimates of GPP and Reco

● Scaling up from sites to ecosystems - combine bottom-up 
and top-down approaches for scaling fluxes across spatial 
scales

For more information, see Measuring, Monitoring, and Modeling 
Ecosystem Cycling in Eos Trans. AGU (August 5, 2020)

https://eos.org/science-updates/measuring-monitoring-and-modeling-ecosystem-cycling
https://eos.org/science-updates/measuring-monitoring-and-modeling-ecosystem-cycling


DOE’s Model-Data-Experiment Enterprise (aka MODEX)

(Hoffman et al., 2017)



Ensemble machine learning approach produces greater spatial prediction 
accuracy of soil carbon stocks

Objective: To identify accurate methods for SOC prediction and 
regions of higher uncertainty in the northern circumpolar 
permafrost region.
Approach: Combine large dataset of field observations and 
environmental factors to evaluate prediction accuracy of machine 
learning (ML) techniques in comparison to a widely used 
approach, regression kriging.
Results/Impacts: The ensemble ML approach provides greater 
spatial details and higher prediction accuracy in comparison to 
regression kriging and other individual ML approaches. Areas 
with high uncertainty in predicted SOC stocks were found in small 
patches in Southern Alaska and in larger areas of the Southern 
and Western Russian permafrost region.
Mishra, Umakant, Sagar Gautam, William J. Riley, and Forrest M. Hoffman (2020), Ensemble Machine 
Learning Approach Improves Predicted Spatial Variation of Surface Soil Organic Carbon Stocks in 
Data-Limited Northern Circumpolar Region, Front. Big Data, 3:40, doi:10.3389/fdata.2020.528441.

Figure 2: Uncertainties in surface SOC stocks 
in the northern circumpolar permafrost 
region.

Figure 1: Prediction accuracy obtained from 
different machine learning approaches.

https://doi.org/10.3389/fdata.2020.528441


Plant-physiological responses to rising CO2 increase tropical flood risk
● Assessments of future flood risk based only 

on precipitation changes ignore land 
processes

● Higher CO2 may reduce stomatal conductance 
and transpiration

● We assessed relative impacts of 
plant-physiological and radiative- greenhouse 
effects on changes in daily runoff intensity 
over tropical continents using CESM

● Extreme percentile rates increase more than 
mean runoff

● Plant-physiological effects have a small impact 
on precipitation intensity, but are a dominant 
driver of runoff intensification

Kooperman, G. J., M. D. Fowler, F. M. Hoffman, C. D. Koven, K. Lindsay, M. S. Pritchard, A. L. S. Swann, and J. T. Randerson 
(2018), Plant-physiological responses to rising CO2 modify simulated daily runoff intensity with implications for global-scale 
flood risk assessment, Geophys. Res. Lett., 45(22):12,457–12,466. doi:10.1029/2018GL079901.

https://doi.org/10.1029/2018GL079901


Soil moisture variability intensifies and prolongs eastern Amazon 
temperature and carbon cycle response to El Niño-Southern Oscillation

Objective: To understand how land–atmosphere coupling 
influences temperature and carbon cycle contrasts between 
El Niño and La Niña conditions in the Amazon.

Approach: Use the Energy Exascale Earth System Model (E3SM 
v0.3) to simulate land and atmosphere with observed SSTs 
during 1982–2016. Three simulations explored variability 
caused by full coupling (AMIP), sea surface temperatures only 
(SSTvar), and soil moisture only (SMvar).

Results/Impacts: During the wet season (January–March), the 
contrast between El Niño and La Niña is driven by coupled 
ocean–atmospheric teleconnections. Soil moisture anomalies 
persist into the subsequent dry season in the eastern Amazon, 
strengthening and extending temperature and carbon cycle 
responses to forcing by ENSO.

Levine, P. A., J. T. Randerson, Y. Chen, M. S. Pritchard, M. Xu, and F. M. Hoffman (2019), Soil moisture variability intensifies and prolongs eastern 
Amazon temperature and carbon cycle response to El Niño-Southern Oscillation, J. Clim., 32(4):1273–1292, doi:10.1175/JCLI-D-18-0150.1.

Figure: a. The difference between the mean temperature 
anomalies of El Niño years and those of La Niña years. Monthly 
anomalies are averaged across the wet season (JFM, left column) 
and dry season (JAS, right column). Each experiment (row) is 
described in the Approach section of the text. b. Same as a., but for 
monthly anomalies of net ecosystem exchange (positive is a flux to 
the atmosphere).

a. Temperature b. Carbon

https://doi.org/10.1175/JCLI-D-18-0150.1


International Land Model Benchmarking 
(ILAMB)



What is a Benchmark?
● A benchmark is a quantitative test of model 

function achieved through comparison of model 
results with observational data

● Acceptable performance on a benchmark is a 
necessary but not sufficient condition for a fully 
functioning model

● Functional relationship benchmarks offer tests 
of model responses to forcings and yield insights 
into ecosystem processes

● Effective benchmarks must draw upon a broad 
set of independent observations to evaluate 
model performance at multiple scales

Models often fail to capture the amplitude of 
the seasonal cycle of atmospheric CO2

Models may reproduce correct responses over 
only a limited range of forcing variables
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Why Benchmark Models?
● To quantify and reduce uncertainties in carbon cycle feedbacks to improve 

projections of future climate change (Eyring et al., 2019; Collier et al., 2018)
● To quantitatively diagnose impacts of model development on hydrological 

and carbon cycle process representations and their interactions
● To guide synthesis efforts, such as the Intergovernmental Panel on Climate 

Change (IPCC), by determining which models are broadly consistent with 
available observations (Eyring et al., 2019)

● To increase scrutiny of key datasets used for model evaluation
● To identify gaps in existing observations needed to inform model 

development
● To accelerate delivery of new measurement datasets for rapid and 

widespread use in model assessment



What is ILAMB?
A community coordination activity created to:
● Develop internationally accepted benchmarks 

for land model performance by drawing upon 
collaborative expertise

● Promote the use of these benchmarks for 
model intercomparison

● Strengthen linkages between experimental, 
remote sensing, and Earth system modeling 
communities in the design of new model tests 
and new measurement programs

● Support the design and development of open 
source benchmarking tools

Energy and Water Cycles

Carbon and Biogeochemical Cycles



Third ILAMB Workshop was held May 16–18, 2016
● Workshop Goals

○ Design of new metrics for model benchmarking
○ Model Intercomparison Project (MIP) evaluation needs
○ Model development, testbeds, and workflow processes
○ Observational datasets and needed measurements

● Workshop Attendance
○ 60+ participants from Australia, Japan, China, Germany, 

Sweden, Netherlands, UK, and US (10 modeling centers)
○ ~25 remote attendees at any time

2016 International Land Model Benchmarking (ILAMB) Workshop
May 16–18, 2016, Washington, DC

(Hoffman et al., 2017)



Development of ILAMB Packages
● ILAMBv1 released at 2015 AGU Fall Meeting Town 

Hall, doi:10.18139/ILAMB.v001.00/1251597

● ILAMBv2 released at 2016 ILAMB Workshop, 
doi:10.18139/ILAMB.v002.00/1251621

● Open Source software written in Python; runs in 
parallel on laptops, clusters, and supercomputers

● Routinely used for land model evaluation during 
development of ESMs, including the E3SM Land 
Model (Zhu et al., 2019) and the CESM Community 
Land Model (Lawrence et al., 2019)

● Models are scored based on statistical comparisons 
and functional response metrics

https://dx.doi.org/10.18139/ILAMB.v001.00/1251597
https://dx.doi.org/10.18139/ILAMB.v002.00/1251621


ILAMB Produces Diagnostics and Scores Models
● ILAMB generates a top-level portrait plot of models scores
● For every variable and dataset, ILAMB can automatically produce

○ Tables containing individual metrics and metric scores (when relevant to the data), including
■ Benchmark and model period mean
■ Bias and bias score (Sbias)
■ Root-mean-square error (RMSE) and RMSE score (Srmse)
■ Phase shift and seasonal cycle score (Sphase)
■ Interannual coefficient of variation and IAV score (Siav)
■ Spatial distribution score (Sdist)
■ Overall score (Soverall)

○ Graphical diagnostics
■ Spatial contour maps
■ Time series line plots
■ Spatial Taylor diagrams (Taylor, 2001)

● Similar tables and graphical diagnostics for functional relationships



ILAMBv2.6 Package Current Variables
● Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3), 

CO2 (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index 
(AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net 
ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C 
(HWSD, NCSCDv22, Koven)

● Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat 
(Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial 
water storage anomaly (GRACE), Permafrost (NSIDC)

● Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES, 
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB, 
WRMC.BSRN)

● Forcing: Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature 
(CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), 
Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)



CMIP5 vs. CMIP6 Models
● The CMIP6 suite of land models (right) 

has improved over the CMIP5 suite of 
land models (left)

● The multi-model mean outperforms 
any single model for each suite of 
models

● The multi-model mean CMIP6 land 
model is the “best model” overall

● Why did CMIP6 land models improve?

(Hoffman et al., in prep)





Gross Primary Productivity
● Multimodel GPP is compared with global 

seasonal GBAF estimates

● We can see
Improvements
across generations
of models (e.g.,
CESM1 vs. CESM2,
IPSL-CM5A vs. 6A)

● The mean CMIP6
and CMIP5 models
perform best

Spatial Taylor Diagram





Reasons for Land Model Improvements
ESM improvements in climate forcings (temperature, precipitation, radiation) likely 
partially drove improvements exhibited by land carbon cycle models

(Hoffman et al., in prep)



Reasons for Land Model Improvements

Differences in bias 
scores for 
temperature, 
precipitation, and 
incoming radiation 
were primarily 
positive, further 
indicating more 
realistic climate 
representation

(Hoffman et al., in prep)



Reasons for Land Model Improvements

While forcings got better, the largest 
improvements were in 
variable-to-variable relationships, 
suggesting that increased land model 
complexity was also partially responsible 
for higher CMIP6 model scores



● (a) ILAMB and (b) IOMB have been used to 
evaluate how land and ocean model 
performance has changed from CMIP5 to CMIP6

● Model fidelity is assessed through comparison 
of historical simulations with a wide variety of 
contemporary observational datasets

● The UN’s Intergovernmental Panel on Climate 
Change (IPCC) Sixth Assessment Report (AR6) 
from Working Group 1 (WG1) Chapter 5 contains 
the full ILAMB/IOMB evaluation as Figure 5.22

         ...

         ...

ILAMB & IOMB CMIP5 vs 6 Evaluation



Summary
● Model benchmarking is increasingly important as model complexity increases
● Systematic model benchmarking is useful for

○ Verification – during model development to confirm that new model code improves 
performance in a targeted area without degrading performance in another area

○ Validation – when comparing performance of one model or model version to observations and 
to other models or other model versions

● The ILAMB package employs a suite of in situ, remote sensing, and reanalysis 
datasets to comprehensively evaluate and score land model performance, 
irrespective of any model structure or set of process representations

● ILAMB is Open Source, is written in Python, runs in parallel on laptops to 
supercomputers, and has been adopted in most modeling centers

● Usefulness of ILAMB depends on the quality of incorporated observational data, 
characterization of uncertainty, and selection of relevant metrics



Earth System Grid Federation (ESGF)



DOE’s Current 
Earth System 

Grid Federation

● Primary server 
at LLNL

● Replicating 
data from the 
global 
Federation

● Independent 
data node at 
ANL

https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720


DOE’s Next 
Generation 

Earth System 
Grid Federation
● Co-located at 

all three of 
DOE’s major 
computing 
facilities

● Replicating 
data from the 
global 
Federation

● Providing 
cloud indexing, 
automated 
migration, and 
tape archiving

https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720
https://lucid.app/documents/edit/1ff4b3e5-6a84-454b-ad40-ccdab7e7441f/0?callback=close&name=slides&callback_type=back&v=3693&s=720


   Design and implementation principles
● Open architecture and protocols

○ Enable substitution of alternative implementations
● Leverage highly available and scalable central services

○ Reduce complexity, increase reliability, provide economies of scale
● Use proven, modern security technologies and practices

○ Integrated access control; protect against attacks and intrusions
● Use case approach to design, implementation, and evaluation

○ Ensure that solutions meet real user needs
● Integrated instrumentation

○ Metrics drive data management, data access features, capability development
● Focus on performance to deal with big data

○ High-speed data transfer, search, server-side processing



ESnet Global Connectivity

Global ESnet interconnectivity—including high 
speed connections to London, Amsterdam, and 

Geneva—will enable rapid data replication 
across most of the Federation data nodes

ESGF2 will make use of the 
high bandwidth between DOE 
labs and HPC centers

Data will be automatically 
migrated and cached 
across ORNL, ANL, and 
LLNL sites

ESnet representative, Eli Dart, is part of our Resource & Project Liaisons group

>100 Gb/s



Data Discovery Platform: Architecture



Outreach Activities

● Organize Webinars, Tutorials, and ESGF2 Bootcamps
○ Data management lessons learned
○ Ingest best practices
○ Data discovery and access

● Hackathons and Workshops
○ Data standards
○ Data node deployment
○ User compute resources 
○ Hold at large relevant conferences, e.g.,

AGU Fall Meeting, EGU, and AMS Annual Meeting

● Organize and host an annual
ESGF Developer and User Conference



Artificial Intelligence for Earth System 
Predictability (AI4ESP)



https://ai4esp.org/ https://ai4esp.slack.com/

White papers were solicited for development and 
application of AI methods in areas relevant to EESSD 
research with an emphasis on quantifying and 
improving Earth system predictability, particularly 
related to the integrative water cycle and extreme 
events.

How can DOE directly leverage artificial 
intelligence (AI) to engineer a substantial 
(paradigm-changing) improvement in Earth 
System Predictability?

156 white papers were received and read to plan the 
organization of a workshop in Fall 2021.

AI4ESP Workshop: Oct 25–Dec 3, 2021

Earth System Predictability Sessions
● Atmospheric Modeling
● Land Modeling
● Human Systems & Dynamics
● Hydrology
● Watershed Science
● Ecohydrology
● Aerosols & Clouds
● Climate Variability & Extremes
● Coastal Dynamics, Oceans & Ice

Cross-Cut Sessions
● Data Acquisition
● Neural Networks
● Surrogate models and emulators
● Knowledge-Informed Machine Learning
● Hybrid Modeling
● Explainable/Interpretable/Trustworthy AI
● Knowledge Discovery & Statistical Learning



Oak Ridge National Laboratory (ORNL)
and the

Computational Earth Sciences Group



Summit at Oak Ridge National Laboratory, #2 fastest 
supercomputer on the TOP500 List (November 2021).

Spallation Neutron Source (SNS)

https://top500.org/


Computational Earth Sciences Group
The Computational Earth Sciences Group (CESG) 
improves process understanding of the global Earth system 
by developing and applying models, machine learning, and 
computational tools at scale; integrating observational data; 
and quantifying Earth system predictability and uncertainty 
associated with interactions between water, energy, 
biogeochemical cycles, and aerosols.

● Advances predictive understanding and simulation of atmospheric, 
terrestrial, cryospheric, and marine coupled systems

● Quantifies interactions and feedbacks within and between the Earth 
system and terrestrial, marine, and subsurface biogeochemical cycles

● Develops and applies methods and tools, including AI and machine 
learning, for quantitative assessment and benchmarking of coupled, 
multiscale Earth system models at global and regional scales

● Provides metrics for stakeholders through projects that connect to 
integrated and vulnerability assessment and adaptation projects

Forrest M. Hoffman
Group Leader

(IPCC AR6 WG1, 2021, Figure 5.22)

(Ashfaq et al., Clim. Dyn., 2020)

(Batibeniz et al., Earth’s Future, 2020)



Sensitivity of ENSO Teleconnection to Extremes: Model Resolution and Air-sea Coupling 

Objective: Evaluate representation of ENSO teleconnection to precipitation 
extremes over North America in DOE E3SM historical simulations.
New Science: Extreme value analysis reveals that high resolution models 
generally improve the simulation of precipitation extremes over North 
America. However, the improvement in ENSO teleconnection to 
precipitation extremes is marginal. Model bias over Western North America 
and Southeastern US  is associated with a stronger and more widespread 
reduction of extratropical cyclone activity during El Nino years than 
observed. Air-sea coupling enhances this behavior as evident from 
prescribed SST simulations.
Results/Impacts: The deficiencies in the simulation of ENSO teleconnection 
to precipitation extremes appears to be due to ENSO associated large scale 
atmospheric drivers of precipitation extremes. Improving mid-latitude 
atmosphere-ocean coupled response to ENSO events in models could 
alleviate these biases. 
Mahajan, Salil, Q. Tang, N. Keen, C. Golaz, L. Van-Roekel (2020), Sensitivity 
of the simulation of ENSO teleconnections to precipitation extremes over 
North America in an ESM: Model resolution and air-sea coupling, Journal of 
Climate (in preparation).

ENSO impacts on extra-tropical cyclone (storm track) activity in MERRA2 
reanalysis product (1980-2018), and low-resolution (1-degree) E3SM v1 
coupled and prescribed SST (uncoupled) historical ensembles (1979-2015).



Revisiting Recent U.S. Heat Waves in a Warmer and More Humid Climate 
Contact: Deeksha Rastogi, E-mail: rastogid@ornl.gov

Citation - Rastogi, D., Lehner, F., & Ashfaq, M. Revisiting Recent U.S. Heat Waves in a 
Warmer and More Humid Climate. Geophysical Research Letters, 47, 
e2019GL086736, https://doi.org/10.1029/2019GL086736

Objective: Investigate the characteristics of temperature-based (dry) 
and temperature-humidity-based (humid) temporally compounded heat 
waves in present and a warmer climate across the United States using a 
pair of high resolution spectrally nudged numerical model simulations. 

New Science: 
1) We show that humidity exacerbated the geographical footprint of 

heat waves more for some years (e.g. higher humidity impacts were 
identified during 2010 as compared to 2012 over the Southeast).

2) In a warmer climate, dry heat waves are projected to become drier, 
while humid heat waves remain humid. However, the overall increase 
in daily maximum temperature intensifies the heat stress during both 
future humid and dry heat waves across all regions.

Significance: There is a projected increase in apparent (or feels like) 
temperature and human exposure to extreme heat by the 21st century. 
This study utilized a set of high-resolution numerical simulations with 
large-scale circulation constrained, to emphasize the importance of 
thermodynamic drivers in determining future heat wave characteristics.

Humid versus Dry Heat Wave Characteristics over the 
Southeast U.S. during 2010 and 2012 Summers 

Figure: Daily maximum temperature (Tmax) and daily maximum apparent 
temperature (ATmax) heatwaves during 2010 and 2012 summer over the southeast 
United States. Line plots show mean percentage area under heatwaves over the 
Southeast United States for summer (June-July-August) during (a) 2010 (d) 2012. 
Spatial maps show average differences between ATmax and Tmax during the 
heatwave days in 2010 for (b) model (WRF) and (l) observations (PRISM) and 
2012 for (m) model and (n) observations.

Funding: 
Energy Exascale Earth System Model (E3SM), US DOE, Office of Science, Office 
of Biological and Environmental Research (BER) 

Advance Study Program fellowship awarded by Graduate Visitor Program at 
National Center for Atmospheric Research (NCAR). 

Support for data storage and analysis is provided by Computational Information 
Systems Laboratory at National Center for Atmospheric Research, Boulder, CO.

https://doi.org/10.1029/2019GL086736
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Objective
•Use limited expensive earth system model simulation 
data to build a fast-to-evaluate surrogate model for 
accurate predictions in large-scale earth systems. 

New science

•Advanced singular value decomposition method has 
been developed to produce a simple neural network 
(NN) surrogate model which greatly reduces the 
number of required training data.

•Efficient Bayesian optimization algorithm has been 
developed to generate an accurate NN surrogate. 

Significance

•An accurate and fast-to-evaluate surrogate enables 
efficient model-data integration in earth system 
modeling.

•Advanced application of machine learning techniques 
for Earth and environmental systems sciences.

Lu, D. and D. Ricciuto, Efficient surrogate modeling methods for large-scale 
Earth system models based on machine learning techniques. 
https://doi.org/10.5194/gmd-2018-327 

Advancing a predictive understanding of large-scale earth 
systems through machine learning

The resulted simple and optimized NN 
enables only 20 training data to produce 
accurate predictions of regional GPPs 
otherwise 200 data are needed for the 
similar accuracy.



Monsoon seasons will shift and shrink at the higher levels of radiative forcing
Objective: Quantification of future changes in the global monsoons at 
various levels of radiative forcing.

New Science:
● For the first time, a global view of changes in monsoon characteristics 

using an unprecedented ensemble of high-resolution regional 
climate model experiments for two different radiative forcing 
scenarios.

● A spatially robust delay in the start of global monsoons and shrinking 
of monsoon seasons at higher levels of radiative forcing.

● Deeper boundary layer and reduced atmospheric saturation during 
pre-monsoons suppress convective precipitation, which weakens 
atmospheric diabatic heating and delays the transitioning of 
monsoon regions into deep convective states. 

● No significant changes in monsoons at lower radiative forcing levels.

Significance: Two-thirds of global population relies on monsoons 
precipitation. Projected changes in the global monsoons will impact energy, 
health, agricultural and water resource sectors and has the potential to 
disrupt global economic supply chains. The possibility that a major change 
in global monsoons can be avoided at lower levels of radiative forcing 
highlights the urgent need for steps towards emissions stabilization.

Ashfaq, Moetasim, T. Cavazos, M. S. Reboita, J. A. 
Torres-Alavez, E.-S. Im, C. F. Olusegun, L. Alves, 
Kesondra Key, M. O. Adeniyi, M. Tall, M. Bamba 
Sylla, Shahid Mehmood, Q. Zafar, S. Das, I. Diallo, E. 
Coppola, and F. Giorgi (2020), Robust late 
twenty-first century shift in the regional monsoons in 
RegCM-CORDEX simulations, Clim. Dyn., 
doi:10.1007/s00382-020-05306-2.

Delay in the start of global monsoons at higher 
radiative forcing levels

Part of the climate model simulations, analyses, and 
data storage were supported by the OLCF resources.

https://doi.org/10.1007/s00382-020-05306-2


The Earth Has Humans, So Why Don’t Our Climate Models?
Objective: To inspire an interdisciplinary effort to couple
models of human behavior and social systems with climate
models to overcome deficiencies in representing feedbacks.
Approach: A multi-model approach that considers a range
of theories and representations of human perception and
behavior, driven by a suite of social factors, is proposed.
Results/Impacts: We describe the importance of linking
social factors with climate processes and identify four
priorities for advancing the development of coupled
social-climate models: 1) evaluate an array of behavioral theories, 2) identify regional climate 
impacts on humans, 3) incorporate influence of diverse social systems, and 4) improve 
representation of how perceptions and behavior influence greenhouse gas emissions.

Beckage, B., K. Lacasse, J. M. Winter, L. J. Gross, N. Fefferman, Forrest M. Hoffman, S. S. Metcalf, T. Franck, E. Carr, A. Zia, and 
A. Kinzig (2020), The Earth Has Humans, So Why Don’t Our Climate Models? Clim. Change, doi:10.1007/s10584-020-02897-x.

Figure: Schematic diagram demonstrating a strategy 
for coupling social models with climate models.

https://doi.org/10.1007/s10584-020-02897-x


A Semi-implicit Barotropic Mode Solver for the E3SM Ocean Model Enables 
Faster and More Stable Ocean Simulations
Objective: To solve the barotropic mode in the E3SM ocean 
model more efficiently and stably as a competitor of an existing 
scheme.
Approach: Implement the semi-implicit method for the 
barotropic mode using a more scalable iterative method with an 
optimized preconditioner.
Results/Impacts: Several numerical experiments demonstrate 
that the semi-implicit barotropic mode solver has almost the 
same accuracy and better parallel scalability compared with the 
existing scheme while allowing faster and more stable 
simulations. The semi-implicit solver accelerates the barotropic 
mode up to 2.9 faster than the existing scheme on 16,320 
processors. In addition, this semi-implicit solver provides a more 
flexible choice of a time step size to model users. 
Kang, H.-G., K. J. Evans, M. R. Petersen, and P. W. Jones (2020), A scalable barotropic 
mode solver for the MPAS-Ocean, J. Adv. Model Earth Sy., in preparation. 

Figure: Strong scaling results for the 
barotropic mode solved by the 
explicit-subcycling scheme (ES, the existing 
scheme) and the semi-implicit method (SI). 
The MPAS-O model was run on the National 
Energy Research Scientific Computing 
Center’s Cori supercomputer. 



Geoengineering Increases the Global Land Carbon Sink
Objective: To examine stratospheric aerosol intervention (SAI) impacts 
on plant productivity and terrestrial biogeochemistry.

Approach: Analyze and compare simulation results from the 
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project 
from 2010 to 2097 under RCP8.5 with and without SAI.

Results/Impacts: In this scenario, SAI causes terrestrial ecosystems to 
store an additional 79 Pg C globally as a result of lower ecosystem 
respiration and diminished disturbance effects by the end of the 21st 
century, yielding as much as a 4% reduction in atmospheric CO2 mole 
fraction that progressively reduces the SAI effort required to stabilize 
surface temperature.
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia,  D. G. MacMartin, B. Kravitz, J. H. 
Richter, M. Mills, and J. S. Fu (2020), Assessing Terrestrial Biogeochemical Feedbacks in a 
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7.

Figure: The larger sink under SAI 
increased land C storage by 79 Pg C 
by 2097, which would reduce the 
projected atmospheric CO2 level.

http://iopscience.iop.org/10.1088/1748-9326/abacf7


Computational Earth Sciences Group Members
1. Moet Ashfaq <mashfaq@ornl.gov> – regional climate modeling, climate change downscaling for societally relevant applications
2. Kevin Birdwell <birdwellkr@ornl.gov> – ORNL/Heritage Center site meteorology, meteorological data acquisition systems, mesoscale modeling, 

mountain meteorology, air pollutant dispersion, and Quaternary paleoclimate
3. Marcia Branstetter <branstetterm@ornl.gov> – data processing and management, dataset synthesis, large scale simulation
4. Nathan Collier <collierno@ornl.gov> – applied math, numerical algorithms, land surface model–data comparison and benchmarking
5. Patrick Fan <fanm@ornl.gov> – machine learning, uncertainty quantification, subsurface flow and transport modeling, geomechanics modeling
6. Forrest Hoffman <hoffmanfm@ornl.gov> – Earth system modeling, global biogeochemical cycles, model evaluation and benchmarking, artificial 

intelligence/machine learning/data mining
7. Hyun Kang <kangh@ornl.gov> – Earth system modeling, dynamical core development, implicit solvers and numerical algorithms, high 

performance computing
8. Gaurab Kc <kcg1@ornl.gov> – full stack software engineering, database development and management, DevOps engineering
9. Mike Kelleher <kelleherme@ornl.gov> – atmospheric science, ice sheet–atmosphere interactions, model analysis, model–data comparison

10. Youngsung Kim <kimy@ornl.gov> – computational performance optimization, algorithm development, tools for computational kernel extraction 
and performance management

11. Siyan Liu <lius1@ornl.gov> – postdoctoral scholar focused on groundwater modeling, machine learning, uncertainty quantification
12. Dan Lu <lud1@ornl.gov> – uncertainty quantification, machine learning, surrogate modeling, sensitivity analysis, high-dimensional optimization, 

groundwater flow and transport modeling, optimal sensor network design
13. Salil Mahajan <mahajans@ornl.gov> – atmospheric science, models and analyzes atmospheric aerosols and cloud–aerosol interactions
14. Sarat Sreepathi <sarat@ornl.gov> – computational performance engineering, numerical methods and algorithms, systems design and deployment
15. Min Xu <xum1@ornl.gov> – land–atmosphere interactions with focus on global biogeochemical cycles and effects of changes in large-scale 

circulation, computational technologies, and Earth system models
16. Wei Zhang <zhangw3@ornl.gov> – cloud microphysics, cloud resolving models, refactoring and porting models to graphical processing unit (GPU) 

supercomputers
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Computational Earth Sciences Group Members

Staff and Postdoctoral Scholars

Administrative Professional
and Graduate Students

Located in the ORNL Climate Change 
Science Institute (CCSI) in 
Building 4500N, F Corridor



University of Tennessee
and the Bredesen Center



University of Tennessee, Knoxville



Leadership PhD Programs:
- Energy Science & Engineering
- Data Science & Engineering
- Genome Science & Technology

Project Areas Include:
• Quantum Information Science & 

Autonomous Systems
• Energy Storage
• Materials & Manufacturing
• Predictive Biology

Length and Cost:
- Tuition-waiver, Insurance, Stipend
- Graduate Assistantship
- Estimated Completion in 4-6 years

Interdisciplinary Aspects:
•Research at ORNL
•Customizable Curriculum
•Knowledge Breadth Courses
•Team Science

More Info (ESE/DSE):  https://bredesencenter.utk.edu  (GST): https://gst.tennessee.edu/ 

Timothy Guthrie | tguthrie@utk.edu | 865-974-1088 

https://bredesencenter.utk.edu
https://gst.tennessee.edu/
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