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mining) to environmental characterization, simulation, & analysis
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Introduction
● Building Resilient Communities across Global Landscapes requires 

understanding of
○ What constitutes resilience in the context of climate change
○ Community dynamics, population, and societal needs
○ Global Earth system dynamics and feedbacks to the carbon cycle
○ Regional to local environmental science and responses to climate change
○ Geographic characterization of human systems, ecosystems, and their 

interactions across space and time scales in global landscapes

● We must be able to apply advanced technologies to
○ Characterize environmental conditions and monitor change
○ Model the interactive dynamics of Earth system components
○ Perform model-data integration for sophisticated analysis of Big Data
○ Develop new understanding of Earth system processes



Introduction
● Observations of the Earth system are increasing in spatial resolution and 

temporal frequency, and will grow exponentially over the next 5–10 years

Frontier at Oak Ridge National Laboratory is the #1 fastest 
supercomputer on the TOP500 List and the first 
supercomputer to break the exaflop barrier (May 30, 2022).

● With Exascale computing, simulation 
output is growing even faster, 
outpacing our ability to analyze, 
interpret and evaluate model results

● Explosive data growth and the 
promise of discovery through 
data-driven modeling necessitate 
new methods for feature extraction, 
change/anomaly detection, data 
assimilation, simulation, and analysis

https://top500.org/
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https://www.scientificamerican.com/article/the-do-it-yourself-superc/


Multivariate Geographic Clustering
● Ecoregions have traditionally been 

created by experts
● Our approach has been to objectively 

create ecoregions using continuous 
continental-scale data and clustering

● We developed a highly scalable k-means 
cluster analysis code that uses distributed 
memory parallelism

● Originally developed on a 486/Pentium 
cluster, the code now runs on the largest 
hybrid CPU/GPU architectures on Earth

Hargrove, W. W., F. M. Hoffman, and T. Sterling (2001), The Do-It-Yourself 
Supercomputer, Sci. Am., 265(2):72–79, 
https://www.scientificamerican.com/article/the-do-it-yourself-superc/

https://www.scientificamerican.com/article/the-do-it-yourself-superc/


Network Representativeness
● The n-dimensional space formed by the 

data layers offers a natural framework for 
estimating representativeness of 
individual sampling sites

● The Euclidean distance between individual 
sites in data space is a metric of similarity 
or dissimilarity

● Representativeness across multiple 
sampling sites can be combined to 
produce a map of network 
representativeness

Hargrove, W. W., and F. M. Hoffman (2003), New Analysis Reveals 
Representativeness of the AmeriFlux Network, Eos Trans. AGU, 
84(48):529, 535, doi:10.1029/2003EO480001.

https://doi.org/10.1029/2003EO480001


Optimizing Sampling Networks

● Our group produced this network 
representativeness map for the authors 
from global climate, edaphic, and 
elevation and topography data

● Dark areas, including most of the Indian 
subcontinent, were poorly represented 
by the constellation of eddy covariance 
flux towers participating in FLUXNET in 
the year 2007

Sundareshwar, P. V., et al. (2007), Environmental Monitoring Network 
for India, Science, 316(5822):204–205, doi:10.1126/science.1137417.

https://doi.org/10.1126/science.1137417


Optimizing Sampling Networks
● The CTFS-ForestGEO global forest monitoring 

network is aimed at characterizing forest 
responses to global change

● The figure at left shows the global 
representativeness of the CTFS-ForestGEO 
sites in 2014

● Non-forested areas are masked with 
hatching, and as expected, they are 
consistently darker than the forested 
regions, which are represented to varying 
degrees by the monitoring sites

Anderson-Teixeira, K. J., et al. (2015), CTFS-ForestGEO: A Worldwide Network 
Monitoring Forests in an Era of Global Change, Glob. Change Biol., 
21(2):528–549, doi:10.1111/gcb.12712.

https://doi.org/10.1111/gcb.12712


Representativeness for Alaska
Data Layers

Hoffman, F. M., J. Kumar, R. T. Mills, and W. W. Hargrove (2013), 
Representativeness-Based Sampling Network Design for the State of Alaska, 
Landscape Ecol., 28(8):1567–1586, doi:10.1007/s10980-013-9902-0.

https://doi.org/10.1007/s10980-013-9902-0


10 Alaska Ecoregions, Present and Future

● Since the random colors are the same in both maps, a change in color represents an 
environmental change between the present and the future.

● At this level of division, the conditions in the large boreal forest become compressed onto the 
Brooks Range and the conditions on the Seward Peninsula “migrate” to the North Slope.

(Hoffman et al., 2013)



20 Alaska Ecoregions, Present and Future

● Since the random colors are the same in both maps, a change in color represents an 
environmental change between the present and the future.

● At this level of division, the two primary regions of the Seward Peninsula and that of the 
northern boreal forest replace the two regions on the North Slope almost entirely.

(Hoffman et al., 2013)



Sampling Site Representativeness

● This representativeness analysis uses the standardized n-dimensional data 
space formed from all input data layers

● In this data space, the Euclidean distance between a sampling location (like 
Barrow) and every other point is calculated

● These data space distances are then used to generate grayscale maps showing 
the similarity, or lack thereof, of every location to the sampling location

● In the subsequent maps, white areas are well represented by the sampling 
location or network, while dark and black areas as poorly represented by the 
sampling location or network

● This analysis assumes that the climate surrogates maintain their predictive 
power and that no significant biological adaptation occurs in the future



Network Representativeness: Barrow vs. Barrow + Council

Light-colored regions are well represented and dark-colored regions are poorly represented by 
the sampling location listed in red.

(Hoffman et al., 2013)



State Space Dissimilarities: 8 Sites, Present (2000–2009)



State Space Dissimilarities: 8 Sites, Present and Future



(Maddalena et al., in prep.)

NSF’s NEON Sampling Domains

Triple-Network Global Representativeness
2000–2009 2090–2000
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Gridded data from satellite and 
airborne remote sensing, models, and 
synthesis products can be combined to 
design optimal sampling networks and 
understand representativeness as it 
evolves through time

Sampling Network Design



50 Phenoregions for year 
2012 (Random Colors)

250m MODIS NDVI
Every 8 days (46 images/year)

Clustered from year 2000 to present

50 Phenoregion Prototypes 
(Random Colors)

(Hargrove et al., in prep.)EarthInsights



50 Phenoregions Persistence
and

50 Phenoregions Max Mode 
(Similarity Colors)

(Hargrove et al., in prep.)EarthInsights

Principal Components 
Analysis

PC1 ~ Evergreen
PC2 ~ Deciduous
PC3 ~ Dry Deciduous



(Kumar et al., in prep.)EarthInsights

Extracted canopy height and structure from
airborne LiDAR 



(Kumar et al., in prep.)EarthInsights



Global Fire Regimes

(Norman et al., submitted)EarthInsights

Regions that exhibit similar fire seasonality globally
From MODIS “Hotspots” at 1 km resolution from 2002–2018



Vegetation Distribution at Barrow Environmental Observatory

In situ data from field measurement activities inform the 
development of wide-scale maps of vegetation distribution 
through inference using remote sensing data as surrogate 
variables, and relationships with environmental controls 
can be extracted

Representativeness map for vegetation 
sampling points in sites A, B, C, and D with 
phenology (left) and without (right) from 
WorldView2 multispectral imagery for the 
year 2010 and LiDAR data

Example plant functional type (PFT) 
distributions scaled up from vegetation 
sampling locations

Langford, Z. L., et al. (2016), Mapping Arctic Plant Functional Type 
Distributions in the Barrow Environmental Observatory Using 
WorldView-2 and LiDAR Datasets, Remote Sens., 8(9):733, 
doi:10.3390/rs8090733.

https://doi.org/10.3390/rs8090733


Arctic Vegetation Mapping from Multi-Sensor Fusion
Used Hyperion Multispectral and IfSAR-derived Digital Elevation Model, applied cluster analysis, and
trained a convolutional neural network (CNN) with Alaska Existing Vegetation Ecoregions (AKEVT) 

Langford, Z. L., et al. (2019), Arctic Vegetation Mapping Using Unsupervised Training Datasets and Convolutional Neural 
Networks, Remote Sens., 11(1):69, doi:10.3390/rs11010069.

https://doi.org/10.3390/rs11010069


Satellite Data Analytics Enables Within-Season Crop Identification
Earliest date for crop type classificationa)

b)

Figure: a) Comparison of cluster-then-label crop map with 
USDA Crop Data Layer (CDL) shows similar patterns at 
continental scale. b) Good spatial agreement is found at 
three selected regions, but cluster-then-label crop maps 
lack sharpness at field boundaries due to coarser 
resolution of MODIS data.

Konduri, V. S., J. Kumar, W. W. Hargrove, F. M. Hoffman, and A. R. 
Ganguly (2020), Mapping Crops Within the Growing Season 
Across the United States, Remote Sens. Environ., 251, 112048, 
doi:10.1016/j.rse.2020.112048.

https://doi.org/10.1016/j.rse.2020.112048


Watershed-Scale Plant Communities Determined from DNN and AVIRIS-NG

(Konduri et al., in prep.)EarthInsights

At the watershed scale, vegetation community distribution follows topographic and water controls. 
At a fine scale, nutrients limit the distribution of vegetation types.



Climate Change Mitigation through Climate Intervention
● The increasing severity of extreme events 

and wildfire is threatening utilities, built 
infrastructure, and economic & national 
security

● Loss of life and property is motivating 
consideration of climate intervention or 
geoengineering

● In addition to carbon dioxide removal (CDR) 
through direct air capture (DAC) and other 
means, interest is growing in reducing or 
stabilizing Earth’s surface temperature

● Solar radiation management (SRM) is an 
approach to partially reduce warming, and 
stratospheric aerosol intervention (SAI) by 
injecting sulfur into the lower stratosphere 
is considered the most feasible scheme

A wide variety of natural solutions and geoengineering techniques are 
proposed for mitigating the effects of climate change. Adopted from 
Lawrence et al. (2018).



Potential Ecological Impacts of Climate Intervention
● While climate research has focused on 

predicted climate effects of SRM, few 
studies have investigated impacts that 
SRM would have on ecological systems

● Impacts and risks posed by SRM would 
vary by implementation scenario, 
anthropogenic climate effects, 
geographic region, and by ecosystem, 
community, population, and organism

● A transdisciplinary approach is 
essential, and new modeling 
paradigms are required, to represent 
complex interactions across Earth 
system components, scales, and 
ecological systems

Although some effects of SRM with SAI on climate are known from certain 
SAI scenarios, the effects of SAI on ecological systems are largely unknown. 
Adopted from Zarnetske et al. (2021).



Climate Intervention Research
A 2021 report from the National Academies of 
Sciences, Engineering, and Medicine (NASEM) 
concludes a strategic investment in research is 
needed to advance policymakers’ understanding 
of climate response options.

The US should develop a transdisciplinary 
research program, in collaboration with other 
nations, to advance understanding of solar 
geoengineering’s technical feasibility and 
effectiveness, possible impacts on society and the 
environment, and social dimensions such as 
public perceptions, political and economic 
dynamics, and ethical and equity considerations.



Geoengineering Increases the Global Land Carbon Sink
Objective: To examine stratospheric aerosol intervention (SAI) impacts 
on plant productivity and terrestrial biogeochemistry.

Approach: Analyze and compare simulation results from the 
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project 
from 2010 to 2097 under RCP8.5 with and without SAI.

Results/Impacts: In this scenario, SAI causes terrestrial ecosystems to 
store an additional 79 Pg C globally as a result of lower ecosystem 
respiration and diminished disturbance effects by the end of the 21st 
century, yielding as much as a 4% reduction in atmospheric CO2 mole 
fraction that progressively reduces the SAI effort required to stabilize 
surface temperature.
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia,  D. G. MacMartin, B. Kravitz, J. H. 
Richter, M. Mills, and J. S. Fu (2020), Assessing Terrestrial Biogeochemical Feedbacks in a 
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7.

Figure: The larger sink under SAI 
increased land C storage by 79 Pg C 
by 2097, which would reduce the 
projected atmospheric CO2 level.

http://iopscience.iop.org/10.1088/1748-9326/abacf7


Exploring Feedbacks of SAI
● To fill research gaps in understanding Earth system feedbacks of 

SAI on ecosystems, we are conducting a series of increasingly 
complex geoengineering simulations with DOE’s Energy Exascale 
Earth System Model (E3SM)

● Simulations will mimic effects of CDR, SAI, and CDR plus SAI

● Start with SSP5-3.4-OS mid-range overshoot CO2 trajectory from 
CMIP6, which prescribes a drawdown of CO2

● Global surface temperatures will rise by >2.5°C around 2040, above 
the 2°C threshold that may induce irreversible impacts

● Next, introduce SAI to simultaneously cool the surface until 
drawdown is sufficient to assure < 2°C warming, called 
temperature “peak shaving”

● To quantify feedbacks from reducing, not increasing, atmospheric 
CO2, but may not capture all the as yet unobserved processes
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Leveraging Advances in Machine Learning for Earth Sciences
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Existing machine learning techniques can improve understanding of biospheric 
processes and representation in Earth system models



Machine Learning for Understanding Biospheric Processes
● Widening adoption of deep neural networks and growth of climate data are fueling interest 

in AI/ML for use in weather and climate and Earth system models
● ML potential is high for improving predictability when (1) sufficient data are available for 

process representations and (2) process representations are computationally expensive
● Example methods for improving ELM capabilities

by exploring ML and information theory
approaches:
○ Soil organic carbon & radiocarbon
○ Wildfire 
○ Methane emissions
○ Ecohydrology

● All of these applications involve
unresolved, subgrid-scale
processes that strongly influence
results at the largest scales



Hybrid Modeling of Wildfire Activities
● Improve model simulations of wildfire 

processes, including ignition, fire duration, and 
spread rate with Deep Neural Network models

● Improve simulated wildfire emissions and 
their impacts on atmospheric properties, 
including aerosols, greenhouse gases, 
phosphorus transport, and pollutants

● Improve the projection of near-future and 
long-term dynamics of wildfire activities

● Accelerate E3SM coupled land–atmosphere 
modeling activities for wildfire research

● Explore online ML training/validation strategy 
for E3SM coupled model simulations

Zhu et al. (2022)



Hybrid ML/Process-based Modeling for Terrestrial Modeling
In the hierarchy of land 
model processes, we start 
with the photosynthesis 
parameterization because

● Multiple hypotheses
● Many leaf-level 

measurements
● Most computationally 

intensive part of the land 
model

(Figure from P. E. Thornton)



Hybrid ML/Process-based Modeling for Terrestrial Modeling
Individual processes can be 
represented by a 
multi-hypothesis approach, 
and ML provides an 
opportunity for a 
data-derived hypothesis that 
can be further explored or 
used to calibrate other 
hypotheses, when sufficient 
data are available.

(Fisher and Koven, 2020)



AI-Constrained Ecohydrology for 
Improving Earth System Predictions

Nature

McDowell et al. (2019)

Project to prototype machine learning-based parameterizations 
for stomatal conductance and photosynthesis

○ Photosynthesis is a computationally expensive part of land 
models and leaf-level flux and phenology data are available

○ Use combinations of leaf-level and plant hydrodynamics data 
to build ML models of C3, C4, and CAM vegetation

○ Investigate ML approaches for scaling to canopies and 
watersheds

○ Prototype hybrid ML-/process-based components within the 
E3SM Land Model (ELM)

○ Future efforts:
• Conduct regional and global simulations to benchmark different combinations 

of process-based and ML modules
• Explore approaches for building hybrid modeling interfaces within ELM

Collaboration among ORNL, 
LANL, Penn State, et al.

Contact: Forrest M. Hoffman



The Future is Bright for AI/ML in Earth System Science
A Convergence of New Technology, Explosive Data Growth, and Free Tools

○ High performance computing (exascale in big centers and commercial cloud) 
○ Large data storage resources (commercial and on-premise cloud)
○ High speed networks (e.g., ESnet) and data movement technologies (Globus)
○ Satellites (shoebox CubeSats) and airborne (drones) platforms
○ Cheap (free!) and easy-to-use ML tools (PyTorch, Keras, Scikit-Learn)

Future Applications Could Revolutionize Our Understanding and Ability to Predict
○ Poorly understood processes and mechanisms can be mimicked with adequate 

amounts of data and advanced ML techniques
○ Explainable AI and systematic approaches to modeling could lead to new scientific 

discoveries and improved understanding of the Earth system
○ Predictions of complex, nonlinear, large-scale phenomena and natural hazards 

could be predicted with increasing accuracy



International Land Model Benchmarking 
(ILAMB)



What is a Benchmark?
● A benchmark is a quantitative test of model 

function achieved through comparison of model 
results with observational data

● Acceptable performance on a benchmark is a 
necessary but not sufficient condition for a fully 
functioning model

● Functional relationship benchmarks offer tests 
of model responses to forcings and yield insights 
into ecosystem processes

● Effective benchmarks must draw upon a broad 
set of independent observations to evaluate 
model performance at multiple scales

Models often fail to capture the amplitude of 
the seasonal cycle of atmospheric CO2

Models may reproduce correct responses over 
only a limited range of forcing variables
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Why Benchmark Models?
● To quantify and reduce uncertainties in carbon cycle feedbacks to improve 

projections of future climate change (Eyring et al., 2019; Collier et al., 2018)
● To quantitatively diagnose impacts of model development on hydrological 

and carbon cycle process representations and their interactions
● To guide synthesis efforts, such as the Intergovernmental Panel on Climate 

Change (IPCC), by determining which models are broadly consistent with 
available observations (Eyring et al., 2019)

● To increase scrutiny of key datasets used for model evaluation
● To identify gaps in existing observations needed to inform model 

development
● To accelerate delivery of new measurement datasets for rapid and 

widespread use in model assessment



What is ILAMB?
A community coordination activity created to:
● Develop internationally accepted benchmarks 

for land model performance by drawing upon 
collaborative expertise

● Promote the use of these benchmarks for 
model intercomparison

● Strengthen linkages between experimental, 
remote sensing, and Earth system modeling 
communities in the design of new model tests 
and new measurement programs

● Support the design and development of open 
source benchmarking tools

Energy and Water Cycles

Carbon and Biogeochemical Cycles



Third ILAMB Workshop was held May 16–18, 2016
● Workshop Goals

○ Design of new metrics for model benchmarking
○ Model Intercomparison Project (MIP) evaluation needs
○ Model development, testbeds, and workflow processes
○ Observational datasets and needed measurements

● Workshop Attendance
○ 60+ participants from Australia, Japan, China, Germany, 

Sweden, Netherlands, UK, and US (10 modeling centers)
○ ~25 remote attendees at any time

2016 International Land Model Benchmarking (ILAMB) Workshop
May 16–18, 2016, Washington, DC

(Hoffman et al., 2017)



Development of ILAMB Packages
● ILAMBv1 released at 2015 AGU Fall Meeting Town 

Hall, doi:10.18139/ILAMB.v001.00/1251597

● ILAMBv2 released at 2016 ILAMB Workshop, 
doi:10.18139/ILAMB.v002.00/1251621

● Open Source software written in Python; runs in 
parallel on laptops, clusters, and supercomputers

● Routinely used for land model evaluation during 
development of ESMs, including the E3SM Land 
Model (Zhu et al., 2019) and the CESM Community 
Land Model (Lawrence et al., 2019)

● Models are scored based on statistical comparisons 
and functional response metrics

https://dx.doi.org/10.18139/ILAMB.v001.00/1251597
https://dx.doi.org/10.18139/ILAMB.v002.00/1251621


ILAMB Produces Diagnostics and Scores Models
● ILAMB generates a top-level portrait plot of models scores
● For every variable and dataset, ILAMB can automatically produce

○ Tables containing individual metrics and metric scores (when relevant to the data), including
■ Benchmark and model period mean
■ Bias and bias score (Sbias)
■ Root-mean-square error (RMSE) and RMSE score (Srmse)
■ Phase shift and seasonal cycle score (Sphase)
■ Interannual coefficient of variation and IAV score (Siav)
■ Spatial distribution score (Sdist)
■ Overall score (Soverall)

○ Graphical diagnostics
■ Spatial contour maps
■ Time series line plots
■ Spatial Taylor diagrams (Taylor, 2001)

● Similar tables and graphical diagnostics for functional relationships



ILAMBv2.6 Package Current Variables
● Biogeochemistry: Biomass (Contiguous US, Pan Tropical Forest), Burned area (GFED3), 

CO2 (NOAA GMD, Mauna Loa), Gross primary production (Fluxnet, GBAF), Leaf area index 
(AVHRR, MODIS), Global net ecosystem carbon balance (GCP, Khatiwala/Hoffman), Net 
ecosystem exchange (Fluxnet, GBAF), Ecosystem Respiration (Fluxnet, GBAF), Soil C 
(HWSD, NCSCDv22, Koven)

● Hydrology: Evapotranspiration (GLEAM, MODIS), Evaporative fraction (GBAF), Latent heat 
(Fluxnet, GBAF, DOLCE), Runoff (Dai, LORA), Sensible heat (Fluxnet, GBAF), Terrestrial 
water storage anomaly (GRACE), Permafrost (NSIDC)

● Energy: Albedo (CERES, GEWEX.SRB), Surface upward and net SW/LW radiation (CERES, 
GEWEX.SRB, WRMC.BSRN), Surface net radiation (CERES, Fluxnet, GEWEX.SRB, 
WRMC.BSRN)

● Forcing: Surface air temperature (CRU, Fluxnet), Diurnal max/min/range temperature 
(CRU), Precipitation (CMAP, Fluxnet, GPCC, GPCP2), Surface relative humidity (ERA), 
Surface down SW/LW radiation (CERES, Fluxnet, GEWEX.SRB, WRMC.BSRN)



CMIP5 vs. CMIP6 Models
● The CMIP6 suite of land models (right) 

has improved over the CMIP5 suite of 
land models (left)

● The multi-model mean outperforms 
any single model for each suite of 
models

● The multi-model mean CMIP6 land 
model is the “best model” overall

● Why did CMIP6 land models improve?

(Hoffman et al., in prep)





Gross Primary Productivity
● Multimodel GPP is compared with global 

seasonal GBAF estimates

● We can see
Improvements
across generations
of models (e.g.,
CESM1 vs. CESM2,
IPSL-CM5A vs. 6A)

● The mean CMIP6
and CMIP5 models
perform best

Spatial Taylor Diagram





Reasons for Land Model Improvements
ESM improvements in climate forcings (temperature, precipitation, radiation) likely 
partially drove improvements exhibited by land carbon cycle models

(Hoffman et al., in prep)



Reasons for Land Model Improvements

Differences in bias 
scores for 
temperature, 
precipitation, and 
incoming radiation 
were primarily 
positive, further 
indicating more 
realistic climate 
representation

(Hoffman et al., in prep)



Reasons for Land Model Improvements

While forcings got better, the largest 
improvements were in 
variable-to-variable relationships, 
suggesting that increased land model 
complexity was also partially responsible 
for higher CMIP6 model scores



● (a) ILAMB and (b) IOMB have been used to 
evaluate how land and ocean model 
performance has changed from CMIP5 to CMIP6

● Model fidelity is assessed through comparison 
of historical simulations with a wide variety of 
contemporary observational datasets

● The UN’s Intergovernmental Panel on Climate 
Change (IPCC) Sixth Assessment Report (AR6) 
from Working Group 1 (WG1) Chapter 5 contains 
the full ILAMB/IOMB evaluation as Figure 5.22

         ...

         ...

ILAMB & IOMB CMIP5 vs 6 Evaluation



Oak Ridge National Laboratory (ORNL)
and the

Computational Earth Sciences Group



Frontier at Oak Ridge National Laboratory is the #1 fastest 
supercomputer on the TOP500 List and the first supercomputer 
to break the exaflop barrier (May 30, 2022).

 Spallation Neutron Source (SNS)

https://top500.org/


Computational Earth Sciences Group
The Computational Earth Sciences Group (CESG) 
improves process understanding of the global Earth system 
by developing and applying models, machine learning, and 
computational tools at scale; integrating observational data; 
and quantifying Earth system predictability and uncertainty 
associated with interactions between water, energy, 
biogeochemical cycles, and aerosols.

● Advances predictive understanding and simulation of atmospheric, 
terrestrial, cryospheric, and marine coupled systems

● Quantifies interactions and feedbacks within and between the Earth 
system and terrestrial, marine, and subsurface biogeochemical cycles

● Develops and applies methods and tools, including AI and machine 
learning, for quantitative assessment and benchmarking of coupled, 
multiscale Earth system models at global and regional scales

● Provides metrics for stakeholders through projects that connect to 
integrated and vulnerability assessment and adaptation projects

Forrest M. Hoffman
Group Leader

(IPCC AR6 WG1, 2021, Figure 5.22)

(Ashfaq et al., Clim. Dyn., 2020)

(Batibeniz et al., Earth’s Future, 2020)



Sensitivity of ENSO Teleconnection to Extremes: Model Resolution and Air-sea Coupling 

Objective: Evaluate representation of ENSO teleconnection to precipitation 
extremes over North America in DOE E3SM historical simulations.
New Science: Extreme value analysis reveals that high resolution models 
generally improve the simulation of precipitation extremes over North 
America. However, the improvement in ENSO teleconnection to 
precipitation extremes is marginal. Model bias over Western North America 
and Southeastern US  is associated with a stronger and more widespread 
reduction of extratropical cyclone activity during El Nino years than 
observed. Air-sea coupling enhances this behavior as evident from 
prescribed SST simulations.
Results/Impacts: The deficiencies in the simulation of ENSO teleconnection 
to precipitation extremes appears to be due to ENSO associated large scale 
atmospheric drivers of precipitation extremes. Improving mid-latitude 
atmosphere-ocean coupled response to ENSO events in models could 
alleviate these biases. 
Mahajan, Salil, Q. Tang, N. Keen, C. Golaz, L. Van-Roekel (2020), Sensitivity 
of the simulation of ENSO teleconnections to precipitation extremes over 
North America in an ESM: Model resolution and air-sea coupling, Journal of 
Climate (in preparation).

ENSO impacts on extra-tropical cyclone (storm track) activity in MERRA2 
reanalysis product (1980-2018), and low-resolution (1-degree) E3SM v1 
coupled and prescribed SST (uncoupled) historical ensembles (1979-2015).



Revisiting Recent U.S. Heat Waves in a Warmer and More Humid Climate 
Contact: Deeksha Rastogi, E-mail: rastogid@ornl.gov

Citation - Rastogi, D., Lehner, F., & Ashfaq, M. Revisiting Recent U.S. Heat Waves in a 
Warmer and More Humid Climate. Geophysical Research Letters, 47, 
e2019GL086736, https://doi.org/10.1029/2019GL086736

Objective: Investigate the characteristics of temperature-based (dry) 
and temperature-humidity-based (humid) temporally compounded heat 
waves in present and a warmer climate across the United States using a 
pair of high resolution spectrally nudged numerical model simulations. 

New Science: 
1) We show that humidity exacerbated the geographical footprint of 

heat waves more for some years (e.g. higher humidity impacts were 
identified during 2010 as compared to 2012 over the Southeast).

2) In a warmer climate, dry heat waves are projected to become drier, 
while humid heat waves remain humid. However, the overall increase 
in daily maximum temperature intensifies the heat stress during both 
future humid and dry heat waves across all regions.

Significance: There is a projected increase in apparent (or feels like) 
temperature and human exposure to extreme heat by the 21st century. 
This study utilized a set of high-resolution numerical simulations with 
large-scale circulation constrained, to emphasize the importance of 
thermodynamic drivers in determining future heat wave characteristics.

Humid versus Dry Heat Wave Characteristics over the 
Southeast U.S. during 2010 and 2012 Summers 

Figure: Daily maximum temperature (Tmax) and daily maximum apparent 
temperature (ATmax) heatwaves during 2010 and 2012 summer over the southeast 
United States. Line plots show mean percentage area under heatwaves over the 
Southeast United States for summer (June-July-August) during (a) 2010 (d) 2012. 
Spatial maps show average differences between ATmax and Tmax during the 
heatwave days in 2010 for (b) model (WRF) and (l) observations (PRISM) and 
2012 for (m) model and (n) observations.

Funding: 
Energy Exascale Earth System Model (E3SM), US DOE, Office of Science, Office 
of Biological and Environmental Research (BER) 

Advance Study Program fellowship awarded by Graduate Visitor Program at 
National Center for Atmospheric Research (NCAR). 

Support for data storage and analysis is provided by Computational Information 
Systems Laboratory at National Center for Atmospheric Research, Boulder, CO.

https://doi.org/10.1029/2019GL086736
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Objective
•Use limited expensive earth system model simulation 
data to build a fast-to-evaluate surrogate model for 
accurate predictions in large-scale earth systems. 

New science

•Advanced singular value decomposition method has 
been developed to produce a simple neural network 
(NN) surrogate model which greatly reduces the 
number of required training data.

•Efficient Bayesian optimization algorithm has been 
developed to generate an accurate NN surrogate. 

Significance

•An accurate and fast-to-evaluate surrogate enables 
efficient model-data integration in earth system 
modeling.

•Advanced application of machine learning techniques 
for Earth and environmental systems sciences.

Lu, D. and D. Ricciuto, Efficient surrogate modeling methods for large-scale 
Earth system models based on machine learning techniques. 
https://doi.org/10.5194/gmd-2018-327 

Advancing a predictive understanding of large-scale earth 
systems through machine learning

The resulted simple and optimized NN 
enables only 20 training data to produce 
accurate predictions of regional GPPs 
otherwise 200 data are needed for the 
similar accuracy.



Monsoon seasons will shift and shrink at the higher levels of radiative forcing
Objective: Quantification of future changes in the global monsoons at 
various levels of radiative forcing.

New Science:
● For the first time, a global view of changes in monsoon characteristics 

using an unprecedented ensemble of high-resolution regional 
climate model experiments for two different radiative forcing 
scenarios.

● A spatially robust delay in the start of global monsoons and shrinking 
of monsoon seasons at higher levels of radiative forcing.

● Deeper boundary layer and reduced atmospheric saturation during 
pre-monsoons suppress convective precipitation, which weakens 
atmospheric diabatic heating and delays the transitioning of 
monsoon regions into deep convective states. 

● No significant changes in monsoons at lower radiative forcing levels.

Significance: Two-thirds of global population relies on monsoons 
precipitation. Projected changes in the global monsoons will impact energy, 
health, agricultural and water resource sectors and has the potential to 
disrupt global economic supply chains. The possibility that a major change 
in global monsoons can be avoided at lower levels of radiative forcing 
highlights the urgent need for steps towards emissions stabilization.

Ashfaq, Moetasim, T. Cavazos, M. S. Reboita, J. A. 
Torres-Alavez, E.-S. Im, C. F. Olusegun, L. Alves, 
Kesondra Key, M. O. Adeniyi, M. Tall, M. Bamba 
Sylla, Shahid Mehmood, Q. Zafar, S. Das, I. Diallo, E. 
Coppola, and F. Giorgi (2020), Robust late 
twenty-first century shift in the regional monsoons in 
RegCM-CORDEX simulations, Clim. Dyn., 
doi:10.1007/s00382-020-05306-2.

Delay in the start of global monsoons at higher 
radiative forcing levels

Part of the climate model simulations, analyses, and 
data storage were supported by the OLCF resources.

https://doi.org/10.1007/s00382-020-05306-2


The Earth Has Humans, So Why Don’t Our Climate Models?
Objective: To inspire an interdisciplinary effort to couple
models of human behavior and social systems with climate
models to overcome deficiencies in representing feedbacks.
Approach: A multi-model approach that considers a range
of theories and representations of human perception and
behavior, driven by a suite of social factors, is proposed.
Results/Impacts: We describe the importance of linking
social factors with climate processes and identify four
priorities for advancing the development of coupled
social-climate models: 1) evaluate an array of behavioral theories, 2) identify regional climate 
impacts on humans, 3) incorporate influence of diverse social systems, and 4) improve 
representation of how perceptions and behavior influence greenhouse gas emissions.

Beckage, B., K. Lacasse, J. M. Winter, L. J. Gross, N. Fefferman, Forrest M. Hoffman, S. S. Metcalf, T. Franck, E. Carr, A. Zia, and 
A. Kinzig (2020), The Earth Has Humans, So Why Don’t Our Climate Models? Clim. Change, doi:10.1007/s10584-020-02897-x.

Figure: Schematic diagram demonstrating a strategy 
for coupling social models with climate models.

https://doi.org/10.1007/s10584-020-02897-x


A Semi-implicit Barotropic Mode Solver for the E3SM Ocean Model Enables 
Faster and More Stable Ocean Simulations
Objective: To solve the barotropic mode in the E3SM ocean 
model more efficiently and stably as a competitor of an existing 
scheme.
Approach: Implement the semi-implicit method for the 
barotropic mode using a more scalable iterative method with an 
optimized preconditioner.
Results/Impacts: Several numerical experiments demonstrate 
that the semi-implicit barotropic mode solver has almost the 
same accuracy and better parallel scalability compared with the 
existing scheme while allowing faster and more stable 
simulations. The semi-implicit solver accelerates the barotropic 
mode up to 2.9 faster than the existing scheme on 16,320 
processors. In addition, this semi-implicit solver provides a more 
flexible choice of a time step size to model users. 
Kang, H.-G., K. J. Evans, M. R. Petersen, and P. W. Jones (2020), A scalable barotropic 
mode solver for the MPAS-Ocean, J. Adv. Model Earth Sy., in preparation. 

Figure: Strong scaling results for the 
barotropic mode solved by the 
explicit-subcycling scheme (ES, the existing 
scheme) and the semi-implicit method (SI). 
The MPAS-O model was run on the National 
Energy Research Scientific Computing 
Center’s Cori supercomputer. 



Geoengineering Increases the Global Land Carbon Sink
Objective: To examine stratospheric aerosol intervention (SAI) impacts 
on plant productivity and terrestrial biogeochemistry.

Approach: Analyze and compare simulation results from the 
Stratospheric Aerosol Geoengineering Large Ensemble (GLENS) project 
from 2010 to 2097 under RCP8.5 with and without SAI.

Results/Impacts: In this scenario, SAI causes terrestrial ecosystems to 
store an additional 79 Pg C globally as a result of lower ecosystem 
respiration and diminished disturbance effects by the end of the 21st 
century, yielding as much as a 4% reduction in atmospheric CO2 mole 
fraction that progressively reduces the SAI effort required to stabilize 
surface temperature.
Yang, C.-E., F. M. Hoffman, D. M. Ricciuto, S. Tilmes, L. Xia,  D. G. MacMartin, B. Kravitz, J. H. 
Richter, M. Mills, and J. S. Fu (2020), Assessing Terrestrial Biogeochemical Feedbacks in a 
Strategically Geoengineered Climate, Environ. Res. Lett., doi:10.1088/1748-9326/abacf7.

Figure: The larger sink under SAI 
increased land C storage by 79 Pg C 
by 2097, which would reduce the 
projected atmospheric CO2 level.

http://iopscience.iop.org/10.1088/1748-9326/abacf7


Computational Earth Sciences Group Members
1. Moet Ashfaq <mashfaq@ornl.gov> – regional climate modeling, climate change downscaling for societally relevant applications
2. Kevin Birdwell <birdwellkr@ornl.gov> – ORNL/Heritage Center site meteorology, meteorological data acquisition systems, mesoscale modeling, 

mountain meteorology, air pollutant dispersion, and Quaternary paleoclimate
3. Nathan Collier <collierno@ornl.gov> – applied math, numerical algorithms, land surface model–data comparison and benchmarking
4. Patrick Fan <fanm@ornl.gov> – machine learning, uncertainty quantification, subsurface flow and transport modeling, geomechanics modeling
5. Forrest Hoffman <hoffmanfm@ornl.gov> – Earth system modeling, global biogeochemical cycles, model evaluation and benchmarking, artificial 

intelligence/machine learning/data mining
6. Hyun Kang <kangh@ornl.gov> – Earth system modeling, dynamical core development, implicit solvers and numerical algorithms, high 

performance computing
7. Mike Kelleher <kelleherme@ornl.gov> – atmospheric science, ice sheet–atmosphere interactions, model analysis, model–data comparison
8. Youngsung Kim <kimy@ornl.gov> – computational performance optimization, algorithm development, tools for computational kernel extraction 

and performance management
9. Siyan Liu <lius1@ornl.gov> – postdoctoral scholar focused on groundwater modeling, machine learning, uncertainty quantification

10. Dan Lu <lud1@ornl.gov> – uncertainty quantification, machine learning, surrogate modeling, sensitivity analysis, high-dimensional optimization, 
groundwater flow and transport modeling, optimal sensor network design

11. Salil Mahajan <mahajans@ornl.gov> – atmospheric science, models and analyzes atmospheric aerosols and cloud–aerosol interactions
12. Elias Massoud <massoudec@ornl.gov> - hydrology, Earth system model analysis, uncertainty quantification
13. Sarat Sreepathi <sarat@ornl.gov> – computational performance engineering, numerical methods and algorithms, systems design and deployment
14. Min Xu <xum1@ornl.gov> – land–atmosphere interactions with focus on global biogeochemical cycles and effects of changes in large-scale 

circulation, computational technologies, and Earth system models
15. Wei Zhang <zhangw3@ornl.gov> – cloud microphysics, cloud resolving models, refactoring and porting models to graphical processing unit (GPU) 

supercomputers
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Computational Earth Sciences Group Members

Staff and Postdoctoral Scholars

Administrative Professional
and Graduate Students

Located in the ORNL Climate Change 
Science Institute (CCSI) in 
Building 4500N, F Corridor



University of Tennessee
and the Bredesen Center



University of Tennessee, Knoxville



Leadership PhD Programs:
- Energy Science & Engineering
- Data Science & Engineering
- Genome Science & Technology

Project Areas Include:
• Quantum Information Science & 

Autonomous Systems
• Energy Storage
• Materials & Manufacturing
• Predictive Biology

Length and Cost:
- Tuition-waiver, Insurance, Stipend
- Graduate Assistantship
- Estimated Completion in 4-6 years

Interdisciplinary Aspects:
•Research at ORNL
•Customizable Curriculum
•Knowledge Breadth Courses
•Team Science

More Info (ESE/DSE):  https://bredesencenter.utk.edu  (GST): https://gst.tennessee.edu/ 

Timothy Guthrie | tguthrie@utk.edu | 865-974-1088 

https://bredesencenter.utk.edu
https://gst.tennessee.edu/
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