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Introduction

Outline

Introduction: Delineation of ecoregions

Computational challenges: Spatio-temporal scales of data and data
set size

Design: Parallel k-means algorithm and enhancements

Performance: Parallel performance and scaling
Application: Forest threat detection using MODIS NDVI products
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Introduction

Introduction

@ Ecoregions are geographical regions of generally similar combination
of ecologically relevant conditions like temperature, precipitation
and soil characteristics.

@ Understanding and delineation of ecoregions are useful for predicting
suitable species range, stratification of ecological samples, and to
help prioritize habitat preservation and remediation efforts.

@ In the case of threatened or endangered species, a well-executed
ecoregion classification can be used to identify and locate the extent
of suitable habitat for the purposes of preserving or improving it.

@ Large amount of data sets are available from satelite, airborne and
ground based remote sensing; GCM model outputs

@ Data mining tools can be used to extract knowledge from these
data sets o
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Overview of the Forest Incidence Recognition and State Tracking (FIRST) System
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Introduction

Normalized Difference Vegetation Index (NDVI)

@ NDVI exploits the strong differences in plant reflectance between
red and near-infrared wavelengths to provide a measure of
from remote sensing measurements.

(Unir - Jred)

NDVI =
(Unir + Ured)

(1)

@ These spectral reflectances are ratios of reflected over incoming
radiation, o = I,/1;, hence they take on values between 0.0 and 1.0.
As a result, NDVI varies between —1.0 and +1.0.

@ Dense vegetation cover is 0.3-0.8, soils are about 0.1-0.2, surface
water is near 0.0, and clouds and snow are negative.
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Computational challenges

Data Mining for Change Detection

@ Changes in forest states are captured by the remote sensing.

@ Difficult to use map arithmetic, since the appropriate choice of
parameters may vary by region and/or type of forest disturbance.

@ An automated, unsupervised change detection system is desired.

@ We apply geospatiotemporal data mining techniques to perform
unsupervised classification

@ Further analysis of clustering outputs for change detection

@ Identify unexpected changes in forest states.
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Computational challenges

means cluster algorithm

Read initial seeds
and data
Calculate distance
Assign cluster

Recalculate centroid

If converged
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Computational challenges

k-means cluster algorithm

@ Serial algorithm

Read initial seeds
and data
Calculate distance
Assign cluster

@ Requires enough memory to hold
all the data

@ Not adequate for the large data

Recalculate centroid sets of our interest

If converged

National Laboratory

Kumar, Mills, Hoffman, and Hargrove Parallel k-Means Clustering for Large Data Sets



Computational challenges

Clustering the MODIS NDVI data

@ Data from MODIS: Continental US at 250m resolutions, 16 days

@ The -22B NDVI values in the data set are arranged as annual NDVI
traces of 22 values, for each grid cell (-146.4M records) in each of
the seven yearly maps (2003-2009),

@ The entire set of NDVI traces for all years and map cells is combined
into one 84 GB (single precision binary) data set of 22-dimensional
“observation” vectors that are analyzed via the k-means algorithm.

@ After applying k-means, cluster assignments are mapped back to the
map cell and year from which each observation came, yielding seven
maps in which each cell is classified into one of k phenoclasses

@ The phenoclasses form a “dictionary” of representative or prototype
annual NDVI traces (the cluster centroids) derived from the full
spatiotemporal extent of the observations in the input EEEs
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Design

Parallel k-means cluster algorithm

Initialize MPI processes

1]
‘ P-N

[Receive seeds]

Read seedfile

[Broadcast to alﬂ [Recelve seeds]

¥ ¥
Read data Read data Read data
MPI_Fileread MPI_Fileread MPI_Fileread

Clustering step

v

S| Perform k-means
Clustering step Clustering step } [ }

v !

Synchronize MPI_Allrefluce

Perform k-means} [Perform k-mean:

> |l
STOP
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Design

Parallel k-means cluster algorithm

@ Masterless parallel algorithm

@ Data partitioned acrosss

[Broadcast to alﬂ [Recelve seeds] [Receive seeds] d iStri bUted memOl’y ProceSSOFS
¥ : : :
Read data Read data Read data @ Triangular inequality based
MPI_Fileread MPI_Fileread MPI_Fileread K
acceleration
Perform k-means| |Perform k-means Perform k-means )
Clustering step | | Clustering step Clustering step @ Wa rping to handle a ny nu 1

v ' v

Synchronize MPI_Allrefluce

clusters

@ Suitable for very large data sets

National Laboratory

Kumar, Mills, Hoffman, and Hargrove Parallel k-Means Clustering for Large Data Sets



Design

Enhancements to k-means algorithm

Triangular inequality based

acceleration (Phillips 2002):

d(p, i)

d(i,j) < d(p,i) + d(p,J)
if d(i,j) > 2d(p, ) :
d(p.j) = d(p, i)
without calculating the distance

d(p,J)
@ Calculate inter-centroidal OAK
distances RIDGE
National Laboratory
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Design

Enhancements to k-means algorithm

Triangular inequality based Warping to handle null clusters:

acceleration (Phillips 2002): o Avoid empty clusters

‘

i @ Move “worst of the worst” point
to the empty cluster

d(p, i)

dd, j .
1) @ Update cluster sizes and
recalculate centroid
j
d(i,j) < d(p,i) + d(p,J)
d(i,j) — d(p,i) < d(p.J)
if d(/’J) Z 2d(p7 [) : Phillips, S. J. (2002) “Acceleration of K-Means and Related
d(paj) 2 d(p7 ’) Clustering Algorithms”, ALENEX '02: Revised Papers from
without calculating the distance ) ) o
) the 4th International Workshop on Algorithm Engineering
d(piJ) 1 E ts, S Verl 2288
and Experiments, Springer-Verlag, 2282
@ Calculate inter-centroidal ¢ OAK
distances RIDGE
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Performance

Data sets and resources used

Summary of data sets used

Dataset No. of dimensions | No. of records | Dataset size

fullUS 25 7,801,710 745 MB
AmeriFlux 30 7,856,224 900 MB
Phenology 22 1,024,767,667 84 GB
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Performance

Data sets and resources used

Summary of data sets used

Dataset No. of dimensions | No. of records | Dataset size

fullUS 25 7,801,710 745 MB
AmeriFlux 30 7,856,224 900 MB
Phenology 22 1,024,767,667 84 GB

Jaguar Cray XT5 (ORNL):
@ 18,688 compute nodes

o Dual hex-core AMD Opteron 2435 (istanbul) processors
2.6GHz

e 16GB DDR2-800 memory
@ Seastar 2+ router

@ Parallel lustre filesystem
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Effect of acceleration: Scaling with increasing k and n: No. of distance calculations
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Performance

Effect of acceleration: Scaling with increasing k and n: CPU time
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Strong scaling test: Phenology data set
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CrayPat summary: Phenology data set, 1000 clusters
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Performance results: Phenology data set, 1000 clusters
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Performance results: Phenology data set, 1000 clusters, 1024 procs

Phenology clustering 2003-2009 Phenology clustering 2003-2009
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nsition distance map (2003-2008)
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Conclusions

Conclusions

@ Parallel k-means cluster analysis tool enables the analysis of very
large earth sciences data dets

@ Enhancements for improved performance of the algorithm
@ Scalable design for large data sets

@ Good parallel performance and scaling achieved on state-of-the-art
supercomputers

@ Promising results for geospatiotemporal cluster analysis of
phenology from MODIS NDVI

@ Successfully applied for forest threat detection; global climate model
data comparison (CMIP)
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Conclusions

Future Work

@ Two-phase 1/O for improved parallel I/O performance

@ Improved load balancing: block cyclic distribution of data, dynamic
load balance

@ Support for fuzzy and hierarchical clustering

@ Cluster analysis of updated NDVI data sets: 2000-2010(part), every
8 days (200 GB data)

@ Cluster analysis for comparison of global climate model results for
CMIP5
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