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1. Introduction

• The increasing availability of high-resolution geospatiotemporal
data sets from sources such as observatory networks, remote sensing
platforms, and computational Earth system models has opened new
possibilities for knowledge discovery and mining of ecological data
sets fused from disparate sources.

• Traditional algorithms and computing platforms are impractical for
the analysis and synthesis of data sets of this size; however, new al-
gorithmic approaches that can effectively utilize the complex memory
hierarchies and the extremely high levels of available parallelism in
state-of-the-art high-performance computing platforms can enable
such analysis.

• We examine some of these approaches and a few practical appli-
cations to the analysis of climatic and remotely-sensed vegetation
phenology data sets and speculate on some of the other applications
that such scalable analysis methods may enable.

2. Accelerated k-means Clustering

• We have two implementations of accelerated k-means clustering,
following two parallel programming models
– A master-worker (MW) model: Central master assigns “aliquots”

of work to workers. Facilitates dynamic load balancing but has
memory and performance scalability limits due to single, central
process.

– Fully distributed (FD): All processes use static distribution of
work. Very scalable, but no dynamic load balancing.

• We “accelerate” the k-means process using two techniques described
by Phillips (doi:10.1109/IGARSS.2002.1026202):
– Use the triangle inequality to eliminate unnecessary point-to-

centroid distance computations based on the previous cluster as-
signments and the new inter-centroid distances.

– Reduce evaluation overhead by sorting inter-centroid distances
so that new candidate centroids cj are evaluated in order of their
distance from the former centroid ci. Once the critical distance2d(p, ci) is surpassed, no additional evaluations are needed, as
the nearest centroid is known from a previous evaluation.

d(i, j) ≤ d(p, i) + d(p, j)
d(i, j)− d(p, i) ≤ d(p, j)
if d(i, j) ≥ 2d(p, i) :

d(p, j) ≥ d(p, i)
without calculating the distance d(p, j)

Figure 1: The triangle inequality is used to eliminate unnecessary
distance calculations.

• We also improve cluster quality by moving or “warping” clusters
that become empty to locations in data space where points that are
farthest from their current cluster centroids reside.

2.1 Parallel Performance
• In 2011, we would use ∼ 1024 AMD Opteron cores on a machine

like Jaguar, the Cray XT5 at ORNL, for our analyses.
• In 2015, we can do larger analyses on a single compute node of

Intel’s Endeavor cluster with Intel® Xeon® E7-8890 v3 (“Haswell-
EX”) processors.
– AVX2 instruction set: 256-bit (8 single precision floats) vector

registers with dual-issue fused multipy-add
– Four 18 core (36 thread) CPUs; over 500 GB DRAM
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Figure 2: Times to cluster different versions of the 2000–2009 ForWarn
phenology data set on (a) 1024 cores of the Jaguar Cray XT5, ca. 2011
at ORNL and (b) a single 72-core “Haswell-EX” node on Intel’s En-
deavor cluster. The data set used on Jaguar is the 16 day product,
while the one on Endeavor is the 8 day product and is therefore twice
as large (251 GB in single precision).

• With acceleration, an equal distribution of observation vectors
among processes does not guarantee load balance. Figure 2b il-
lustrates the benefit of using smaller aliquots to enable dynamic
load balancing in the MW clustering code.

• It may be possible to improve the percentage of peak FLOPS:
– The distance calculations vectorize, but are expressed as level-1

BLAS operations and do not get good cache reuse.
– It is possible to calculate the matrix of squared distances via level-

2 (rank-1 updates) and level-3 (GEMM) BLAS operations, but
calculates all distances.

– Perhaps use a hybrid approach that uses level-2/3 BLAS part of
the time, or to calculate only a portion of the distance matrix?

2.2 Applications: Quantitative Ecoregionalization and
Change Detection

1000 km
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1000 km
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Figure 3: Geospatiotemporal clustering of a combination of observa-
tional data and downscaled general circulation model results projects
dramatic shifts in location of Alaska ecogregions using downscaled
4km GCM results. Artic tundra projected to be at 0.78% of current
extent by 2099. DOI: 10.1007/s10980-013-9902-0.

Figure 4: A map of “phenoregion” assignments for the year 2012,
based on k-means analysis with k = 50 of the entire MODIS-derived
ForWarn NDVI product for years 2000–2012. The body of observation
vectors being clustered consists of the year-long NDVI time series for
every map pixel, for each year. The map indicates cluster membership
(in random colors) for the phenology observed in 2012 at each map
pixel.
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Figure 5: The fifty centroids (corresponding to “phenoregion” proto-
types) used for the membership assignments in the map in Figure 4.
The colors the centroid plot correspond to the map colors.

( a ) 2004− 2003 ( b ) 2005− 2003

( c ) 2006− 2003 ( d ) 2007− 2003

( e ) 2008− 2003
Figure 6: Maps showing the relative state space transition distances
(how different phenoregion assignments are for given years) between
years in Colorado and southern Wyoming. Pine beetle mortality corre-
lates strongly with high transition distances. Black-outlined polygons
are disturbed areas indicated on aerial sketch maps.

3. Principal Components Analysis

Principal Components Analysis (PCA) determines, for a p-dimensional
data set, an orthogonal set of p new axes (linear combinations of
the original p variables) such that the first axis explains the great-
est variance, the second explains the next most variance, and so on.

• Commonly used to determine dominant patterns in data
• But can also be used to determine the anomalous patterns: Obser-

vations that score strongly on low order components do not follow
the correlation structure of the data.

Figure 7: The loadings (coefficients in the linear combination of the
46 original variables) along the three varimax-rotated principal axes.
The x-axis corresponds to the eight-day NDVI-acquisition windows
and loadings are shown on the y-axis.

Figure 8: Phenoregion assignment map for year 2000 with k = 1000.
Similarity colors are used to indicate cluster membership.

3.1 Parallel Principal Components Analysis Tool
• We have developed a prototype parallel tool to perform PCA.
• Rather than explicitly forming the covariance matrix, computes thin

SVD of the adjusted data matrix.
• Uses the Lawson-Hanson-Chan factorization to exploit the “tall and

skinny” (m >> n) nature of our matrices: (m >> n)
– Form reduced factorization A = QR (via parallel PLAPACK rou-

tine)
– Gather the matrix R to process 0.
– Process 0 calls LAPACK DGESVD to compute the SVD R =

USVT .
– Optionally, back transform Q to get Q← QU.
– Final SVD is: A = QSVT

• A serial bottleneck exists where the SVD of R is computed, but this
matrix is so small (only 46 × 46 for our NDVI data set) that this
serial portion is essentially negligible.

3.2 Detecting anomalous observations with PCA
• Can identify anomalies two complementary ways:

• Look at sum of scores onto r lowest-order components:
p∑

i=p−r+1
y2
i
λi

greater than some outlier threshold
• Look at squared prediction error: How well an observation can be

represented in subspace of q highest order components?
– Idea: decompose into modeled and residual parts: x = x̂ + x̃
– P = [v1 v2 . . . vq]
– x̂ = PPT x = Cx and x̃ = (I − PPT )x = C̃ x

– Abnormal if SPE = ∥∥x̃∥∥2 = ∥∥∥C̃ x∥∥∥2
exceeds threshold

• Can also do cross-comparison: Construct subspace from one data
set, then see how well observations from another can be represented
in that space.

3.3 Detecting anomalies within a single year, single
NEON domain
• These approaches will flag any observations that are somehow “un-

usual” for the collection of data from which the principal components
have been calculated.

• Some judgement required: choice of NDVI data subset used in the
PCA calculation will affect what constitutes a “normal” or “abnormal”
observation.

• E.g., Extremely low NDVI may appear normal when using PCA based
on national dataset due to presence of areas like the Mohave; ap-
pears anomalous when using PCA based only on humid Southeast.

• Here we use PCAs computed over single years and within a spatial
domain conforming to the eco-climatic domains established by the
National Ecological Observatory Network.

• In all examples, PC vectors 10–46 are used as the basis for the
“abnormal” space, which explains 5–10% of the variance.

• In all of examples, certain features that are not disturbances but
possess very anomalous NDVI traces (e.g., bodies of water) show up
very strongly.

Figure 10: Portion of the Southern Rockies–Colorado Plateau NEON Domain for year 2008,
showing map cells scoring in the 85th percentile. Black polygons show damaged areas noted in
aerial detection surveys; extensive damage due to mountain pine beetle and sudden aspen decline
are evident.

Figure 11: Portions of the PCA-based anomaly maps (map cells scoring in the 90th percentile
are shown) for the Southeast NEON Domain for years 2004–2009, showing the area in the vicinity of
the Louisiana coast. From left to right, the top row shows years 2004, 2005, and 2006, respectively,
and the bottom row years 2007, 2008, and 2009. The affected regions are circled in the 2005 and
2008 maps. The prominent red features are water bodies.

Figure 12: NDVI trajectory as viewed via the Forest Change Assessment Viewer for a location
(close to the center of the circled region in Figure 11) near the coast in southwestern Louisiana
showing apparent hurricane-induced mortality from events in 2005 and 2008.

Figure 13: At left, a portion of the PCA-based anomaly map (map cells scoring in the 90th
percentile are shown) for the Southern Appalachians/Cumberland Plateau NEON Domain for year
2010. The arrow indicates a location thought to be affected by hemlock woolly adelgid, and the
corresponding NDVI trajectory is shown at right.
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