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The USDA Forest Service, NASA Stennis Space Center, and DOE
Oak Ridge National Laboratory are creating a system to monitor
threats to U.S. forests and wildlands at two different scales:

Tier 1: Strategic — An Early Warning System (EWS) that
routinely monitors wide areas at coarser resolution, repeated
frequently — a change detection system to produce alerts or
warnings for particular locations may be of interest

Tier 2: Tactical — Finer resolution airborne overflights and
ground inspections of areas of potential interest — Aerial
Detection Survey (ADS) monitoring to determine if such
warnings become alarms

Tier 2 is largely in place, but Tier 1 is needed to optimally direct
its labor-intensive efforts and discover new threats sooner.
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Overview of the Forest Incidence Recognition and State Tracking (FIRST) System
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Normalized Difference Vegetation Index (NDVI)

NDVI exploits the strong differences in plant reflectance
between red and near-infrared wavelengths to provide a
measure of “greenness” from remote sensing measurements.

NDVI =
(σnir − σred)

(σnir + σred)
(1)

These spectral reflectances are ratios of reflected over
incoming radiation, σ = Ir/Ii , hence they take on values
between 0.0 and 1.0. As a result, NDVI varies between −1.0
and +1.0.

Dense vegetation cover is 0.3–0.8, soils are about 0.1–0.2,
surface water is near 0.0, and clouds and snow are negative.
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MODIS MOD13 NDVI Product

The Moderate Resolution Imaging Spectroradiometer
(MODIS) is a key instrument aboard the Terra (EOS AM,
N→S) and Aqua (EOS PM, S→N) satellites.

Both view the entire surface of Earth every 1 to 2 days,
acquiring data in 36 spectral bands.

The MOD 13 product provides Gridded Vegetation Indices
(NDVI and EVI) to characterize vegetated surfaces.

Available are 6 produces at varying spatial (250 m, 1 km,
0.05◦) and temporal (16-day, monthly) resolutions.

The Terra and Aqua products are staggered in time so that a
new product is available every 8 days.

Results shown here are derived from the 16-day Terra MODIS
product at 250 m resolution, processed by NASA Stennis
Space Center.
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Phenology is the study of periodic
plant and animal life cycle events and
how these are influenced by seasonal
and interannual variations in climate.

FIRST is interested in deviations from
the “normal” seasonal cycle of
vegetation growth and senescence.

NASA Stennis Space Center has
developed a new set of National
Phenology Datasets based on MODIS.

Outlier/noise removal and temporal
smoothing are performed, followed by
curve-fitting and estimation of
descriptive curve parameters.

Up-looking photos of a scarlet oak showing the timing of
leaf emergence in the spring (Hargrove et al., 2009).
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Idealized Phenology Curve

An idealized seasonal NDVI curve is fit through data for each
MODIS cell, and seven parameters are extracted.

Each parameter results in two maps: one for the NDVI value
and one for the time of the event.

Cumulative NDVI shows the annual “greening” of the U.S.

The Large Integral is strongly correlated with annual gross
primary production (GPP) of the conterminous U.S.
(CONUS).
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To detect vegetation
disturbances, the current
NDVI measurement is
compared with the normal,
expected baseline for the
same location.

Substantial decreases from
the baseline represent
potential disturbances.

Any increases over the
baseline may represent
vegetation recovery.

Maximum, mean, or
median NDVI may provide
a suitable baseline value.

June 10–23, 2009, NDVI is loaded
into blue and green; maximum NDVI
from 2001–2006 is loaded into
red (Hargrove et al., 2009).
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Three Hurricanes

Computed by assigning 2006 20% left value to green & blue, and 20%
left from 2004 to red (Hargrove et al., 2009). Red depicts areas of
reduced greenness, primarily east of storm tracks and in marshes.
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Arkansas Ozarks Ice Storm, Jan. 26–29, 2009

Computed by assigning 2009 max NDVI for June 10–July 15 into blue &
green, and 2001–2006 max NDVI for June 10–July 27 into red. Storm

resulted in 35,000 without power and 18 fatalities.
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Data Mining for Change Detection

Map arithmetic on selected parameters is good for studying
the impact of known disturbances, but what is desired is an
automated, unsupervised change detection system.

A data mining approach, utilizing high performance
computing (HPC) for the entire history of the high resolution
NDVI data, may provide a basis for determining “expected” or
“normal” phenological variability.

Hoffman and Hargrove previously employed a highly scalable
k-means algorithm to automatically detect brine scars from
hyperspectral remote sensing data (Hoffman, 2004) and for
land surface phenology from monthly climatology and 17 years
of 8 km NDVI from AVHRR (White et al., 2005).

For only the current MODIS NDVI data for six years
(2003–2008), 22 maps per year, at 250 m over the CONUS,
single-precision data exceed 77 GB, requiring HPC resources.
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Geospatiotemporal Data Mining
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50 Phenoregions for Year 2008 (Clustering 2003–2008)
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50 Phenoregion Prototypes
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Clustering MODIS NDVI Data

Cluster analysis yields six maps, one for each year, that
classify each cell into one of the k phenoclasses. Here k = 50.

The time evolution of phenoclass assignment, or phenostate,
of each cell indicates a trajectory of change in the
phenological behavior observed at that location due to natural
or anthropogenic disturbance and ecosystem responses to
interannual climate variability and long term climate trends.

Comparison of the current phenostate with the nominal
historical phenostate for each cell forms the basis for an early
warning system for forest threats.

Frequency of phenostate occupation for each map cell across
all years provides insights into the phenological persistence or
variability at every location in the CONUS.
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Cluster Persistence Map (2003–2008)
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Euclidean Transition Distance as an Indicator of Change

Cluster persistence is strongly dependent on the choice of k ; if
k is too large, normal interannual variability may result in a
different phenostate assignment each year; if k is too small,
important phenological change may be missed.

A preferable alternative may be to use a larger value of k and
to create maps of Euclidean transition distance between
phenostate assignments.

The transition distance between phenostates provides a
relative measure of the strength of the observed change in
phenological behavior between any two years.

A large transition distance at any location indicates a
significant change in the annual phenological cycle between
the initial and final year.
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Cluster Transition Distances for (2008− 2003)
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Mountain Pine Beetle in Colorado for (2004− 2003)
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Mountain Pine Beetle in Colorado for (2005− 2003)
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Mountain Pine Beetle in Colorado for (2006− 2003)
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Mountain Pine Beetle in Colorado for (2007− 2003)
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Mountain Pine Beetle in Colorado for (2008− 2003)
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Conclusions and Future Work

Initial results of geospatiotemporal cluster analysis of phenology
from MODIS NDVI are promising, suggesting such analysis could be
a key component in an early warning system.

The enhanced, accelerated k-means clustering algorithm enables the
analysis of very large, high resolution remote sensing data.

Determining “normal” phenological patterns is difficult due to
interannual climate variability, spatially variable climate change
trends, and a relatively short satellite record.

However, significant mortality events, like progressive Mountain
Pine Beetle damage, are easily detected.

The next step is to establish biome-specific thresholds based on
interannual variability, obtain validation from ADS and ground
surveys, and track and accumulate both loss and new growth for
carbon accounting.

Future work will build a library of phenostate transitions attributed
to pests or pathogens for individual biomes, allowing the system to
hypothesize about causes of future disturbances detected.
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