
1

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

ESGF-Assistant:
A Domain-Specific Large
Language Model for
Navigating Earth System Data

November 12, 2025

PRESENTER/AUTHOR:

Daniel Saedi Nia
Computational Sciences and Engineering Division, ORNL

CO-AUTHORS: Elias C. Massoud, Bharat Sharma,
Jitendra Kumar, Nathan Collier, Forrest M. Hoffman
(ORNL)

CONFERENCE: Eleventh Workshop on Data Mining in
Earth System Science (DMESS 2025)

2

Earth System Grid
Federation
(ESGF)

● A globally distributed data
infrastructure supporting
Earth system science
research

● Provides standardized
discovery and access to
petabytes of Earth system
observational and model
simulation data

3

MOTIVATION
Increasing Accessibility to ESGF Data

● Existing methods to access ESGF data (e.g.,
MetaGrid, intake-esgf), while powerful, can often
require some technical expertise (programming
knowledge, metadata understanding)

● Users range from domain experts like researchers
and students to less technical users like policy
makers and stakeholders

● Question: Can a domain-specific large language
model (LLM) be used to build an intuitive natural
language assistant to bridge the gap between
users and Earth system data?

 intake-esgf

MetaGrid

4

Why a domain-specific LLM?

● Trained on broad web text datasets to
achieve a general understanding

● While offers broad utility, limited accuracy
when applied to specific scientific domains
(Pal et al., 2023)

● Often produces incomplete or hallucinated
responses (e.g., incorrect variable names
or misunderstanding metadata)

● Trained on curated data of our choosing

● Understands domain terms and meanings

● Generate accurate code snippets pertaining
to our domain

● Can be updated alongside our data as
needed

General purpose LLMs (e.g., ChatGPT) Domain-Specific LLMs

5

Overview: Building the ESGF LLM Assistant

● Fine-tuned an existing base model using our curated ESGF dataset
● Integrated Retrieval Augmented Generation (RAG) for factual grounding in

documentation
● Deployed through OpenWebUI, offering an intuitive, chat interface

6

Dataset Curation & Preparation
Goal: Create a high quality dataset to teach the model how we intend for
ESGF users to interact with it

● Curated a total of 3,648 instruction-output pairs consisting of user prompts written in
natural language along with outputs containing the ideal responses we expect the model
to reply with.

● Each instruction-output pair followed consistent formatting suitable for instruction
fine-tuning and then collated into JSONL format (each line is a separate pair) for training.

● Drawn from key sources like official ESGF, CMIP6 documentation (particularly metadata
tables) and custom written code snippets utilizing intake-ESGF.

7

Three Main Dataset Categories

Producing ready to use
Python scripts for querying
and accessing ESGF data
(using intake-ESGF library)
e.g.,

Can you list the models that
contain variables gpp, pr and tas
for the ssp585 scenario using
intake-esgf?

Answering natural language
questions about available
models, experiments, or
variables without
generating code.
e.g.,

List every source id or model in
the ESGF database.

Clarifying and describing
ESGF’s Controlled Vocabulary
(CV), which includes terms and
dataset naming conventions
(currently CMIP6)

e.g.,

Define the experiment/scenario
“ssp585”.

Code Generation Dataset Discovery Metadata Explanation

Note: Currently, our dataset mainly focuses on code generation, as we plan to expand other categories
later. This focus reflects that many users, especially beginners, benefit most from practical, ready-to-use
scripts.

8

● Opted to Fine-tune an open source model
○ The process of re-training a pre-trained, general model on a task specific dataset (as

described earlier) to improve its performance on a specific domain.
○ Provides a more direct and stable method to embed domain knowledge into a model

while still maintaining general conversational capabilities vs prompt engineering.

● We selected Meta’s Llama 3.1 (8B parameter) - Instruct model
○ Open-Source license suitable for research and integration into external platforms.
○ Strong performance on general language understanding.
○ Instruct model already supports conversational chat and instruction following
○ Why 8B parameters?

■ relatively small size (compared to 80 & 405 Billion parameter counterparts)
while still being able to achieve the tasks we need.

Model Selection and Fine-Tuning

9

Fine-Tuning Method and Process

● Fine-Tune Pipeline: Since full fine-tuning is too
computationally intensive and requires significantly more
training time, we have opted for Parameter Efficient
Fine-Tuning (PEFT) by utilizing the Unsloth and Hugging Face
Transformer Python libraries.
○ Enables rapid iteration, lower GPU memory use, and

faster training cycles while retaining performance.

● Low Rank Adaptation(LoRA)
○ Method that optimizes small, trainable matrices, then

adds them into each model layer instead of modifying
the base weights.

○ Significantly reducing number of trainable parameters.
○ Decreases GPU memory and training time without

sacrificing model quality.

10

Fine-Tuning Method and Process
● Prep Dataset:

○ Dataset of curated ESGF instruction-output pairs is converted to match a chat
template specified by the Llama 3.1 model card for compatibility.

○ Dataset is then tokenized, allowing the model to interpret the instructions/outputs.

● Adjust training parameters:
○ To control facets and prevent model overfitting or underfitting
○ some key parameters:

■ learning rate: 2e-4
■ rank: 32

● Controls the number of trainable parameters in the LoRA adapter matrices.
A higher rank increases model capacity but also memory usage

■ LoRA Alpha: 32
● Scales the strength of the fine-tune adjustments

■ # of training epochs: 1
● Note: We found it best to start from the Unsloth documentation recommended defaults

and work from there → https://docs.unsloth.ai/

https://docs.unsloth.ai/

11

Fine-Tuning Method and Process
Training Hardware:
● Trained on a single 40GB Nvidia A100 GPU using NERSC Perlmutter supercomputer node

Fine-Tune Outputs:
● LoRA Adapters:

○ Contains only the task-specific parameter updates
○ Lightweight, can be applied to base model

● Merged Model
○ Combines LoRA adapter weights directly with the model
○ Exported in Generative Pre-trained Transformer Unified Format (GGUF).
○ Optimized for fast, local inference.
○ Format compatible with Ollama, enabling efficient integration with OpenWebUI.

● Both are uploaded to public Hugging Face Hub after training

12

Deployment and User Interface
● Ollama: Inference Engine/Backend

○ Enables efficient local execution of the
fine-tuned GGUF model

● OpenWebUI: Frontend Interface
○ Open-source, chat-interface for interacting

with LLMs through natural language
queries.

○ Seamless integration with Ollama
○ Selected for its ease of setup, flexible

backend integration, and native RAG
(Retrieval-Augmented Generation) support.

○ Built-in RAG pipeline integration

+

13

A look at the
out-of-box
OpenWebUI

interface

14

● Enables dynamic access of external documentation without the need for re-formatting
data

● Helpful for tasks that rely on information that is either too detailed to be memorized by the
model or subject to frequent updates.

● Because the retrieval documents can be updated independently of the model weights, the
system remains adaptable to newly published datasets or revised meta-data without the
additional fine-tuning

● Benefit of fine-tuning + RAG:
○ While fine-tuning builds domain knowledge and behavior, RAG can inject factual

precision and adaptability
○ Where RAG falls short of fine-tuning → Does not teach behavior

Retrieval Augmented Generation(RAG)
Retrieving more context from an external knowledge base
based on the user’s query

15

Retrieval Augmented Generation(RAG)
Implementation

● Framework:
○ Using OpenWebUI’s built-in RAG framework.
○ Orchestrates document retrieval and contextual injection at inference time.

● Knowledge Base:
○ Built from existing ESGF and CMIP6 documentation

■ includes: variable tables, controlled vocabularies (CVs) and definitions.
○ Text split into 1000-token chunks with 100-token overlap to balance retrieval

precision and context, then stored in a vector database for efficient semantic search.

16

Retrieval Augmented Generation(RAG)
Implementation

● Retrieval Workflow:
○ User submits a query via the OpenWebUI interface.
○ Query embedded using all-MiniLM-L6-v2 (SentenceTransformer).

■ A lightweight embedding model that converts text into numerical vectors for
semantic similarity search.

○ Top - k most relevant chunks are retrieved and injected into the user prompt (k = 3)
○ Our fine-tuned LLaMA 3.1 model generates a grounded, context-aware response.

● Why it works?
○ Leverages existing ESGF documentation without significant re-formatting or

retraining.
○ Stays up-to-date as metadata evolves (e.g., CMIP7).
○ Enables accurate, verifiable metadata lookups directly through natural language.

17

Evaluations Metrics
Two Complementary Approaches

● Expert Visual Review (Qualitative)
○ Conducted by ESGF-experienced developers, researchers.
○ Evaluated factual accuracy, contextual relevance, and practical usability.
○ Ensured generated intake-esgf code executed correctly.

● BERTScore (Quantitative)
○ Measures semantic similarity between model and expected outputs
○ Captures meaning beyond exact wording (better than BLEU/ROUGE).
○ Provides:

■ Precision: How much of the generated content is relevant.
■ Recall: How much relevant information is captured.
■ F1: Harmonic mean → overall similarity score.

18

Results: ESGF-Assistant in Action
User Prompt

Response

19

Results: Prompts chosen for evaluation

20

Results: BERTScore

● Closer F1 score represents
more semantic similarity with
our expected outputs(1 = exact
match)

● fine-tuned model consistently
achieved higher F1 scores
compared to the base model on
ESGF related prompts.

● Responses more similar to and
semantically aligned with the
expected outputs.

21

Conclusion

● Developed a domain-specific LLM fine-tuned and integrated with RAG, tailored to Earth
System Grid Federation (ESGF) data and workflows.

● Represents a generalizable framework for applying LLMs to other scientific data
infrastructures facing similar complexity.

● Looking ahead, as the assistant is deployed more broadly, we anticipate it will enhance
accessibility and reduce technical barriers for researchers, students, and policymakers
engaging with Earth system data.

