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Earth System Grid 
Federation
(ESGF)

● A globally distributed data 
infrastructure supporting 
Earth system science 
research

● Provides standardized 
discovery and access to 
petabytes of Earth system 
observational and model 
simulation data
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MOTIVATION
Increasing Accessibility to ESGF Data

● Existing methods to access ESGF data (e.g., 
MetaGrid, intake-esgf), while powerful, can often 
require some technical expertise (programming 
knowledge, metadata understanding)

● Users range from domain experts like researchers 
and students to less technical users like policy 
makers and stakeholders

● Question: Can a domain-specific large language 
model (LLM) be used to build an intuitive natural 
language assistant to bridge the gap between 
users and Earth system data?

 intake-esgf

MetaGrid
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Why a domain-specific LLM?

● Trained on broad web text datasets to 
achieve a general understanding

● While offers broad utility, limited accuracy 
when applied to specific scientific domains 
(Pal et al., 2023)

● Often produces incomplete or hallucinated 
responses (e.g., incorrect variable names 
or misunderstanding metadata)

● Trained on curated data of our choosing

● Understands domain terms and meanings

● Generate accurate code snippets pertaining 
to our domain

● Can be updated alongside our data as 
needed

General purpose LLMs (e.g., ChatGPT ) Domain-Specific LLMs
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Overview: Building the ESGF LLM Assistant 

● Fine-tuned an existing base model using our curated ESGF dataset
● Integrated Retrieval Augmented Generation (RAG) for factual grounding in 

documentation
● Deployed through OpenWebUI, offering an intuitive, chat interface 
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Dataset Curation & Preparation
Goal: Create a high quality dataset to teach the model how we intend for 
ESGF users to interact with it 

● Curated a total of 3,648 instruction-output pairs consisting of user prompts written in 
natural language along with outputs containing the ideal responses we expect the model 
to reply with.

● Each instruction-output pair followed consistent formatting suitable for instruction 
fine-tuning and then collated into JSONL format (each line is a separate pair) for training.

● Drawn from key sources like official ESGF, CMIP6 documentation (particularly metadata 
tables) and custom written code snippets utilizing intake-ESGF.
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Three Main Dataset Categories

Producing ready to use 
Python scripts for querying 
and accessing ESGF data 
(using intake-ESGF library)
e.g.,

Can you list the models that 
contain variables gpp, pr and tas 
for the ssp585 scenario using 
intake-esgf?

Answering natural language 
questions about available 
models, experiments, or 
variables without 
generating code.
e.g.,

List every source id or model in 
the ESGF database.

Clarifying and describing 
ESGF’s Controlled Vocabulary 
(CV), which includes terms and 
dataset naming conventions 
(currently CMIP6)

e.g.,

Define the experiment/scenario 
“ssp585”.

Code Generation Dataset Discovery Metadata Explanation

Note: Currently, our dataset mainly focuses on code generation, as we plan to expand other categories 
later. This focus reflects that many users, especially beginners, benefit most from practical, ready-to-use 
scripts.
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● Opted to Fine-tune an open source model 
○ The process of re-training a pre-trained, general model on a task specific dataset (as 

described earlier) to improve its performance on a specific domain.
○ Provides a more direct and stable method to embed domain knowledge into a model 

while still maintaining general conversational capabilities vs prompt engineering.

● We selected Meta’s Llama 3.1 (8B parameter) - Instruct model
○ Open-Source license suitable for research and integration into external platforms.
○ Strong performance on general language understanding.
○ Instruct model already supports conversational chat and instruction following
○ Why 8B parameters?

■ relatively small size (compared to 80 & 405 Billion parameter counterparts) 
while still being able to achieve the tasks we need.

Model Selection and Fine-Tuning
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Fine-Tuning Method and Process

● Fine-Tune Pipeline: Since full fine-tuning is too 
computationally intensive and requires significantly more 
training time, we have opted for Parameter Efficient 
Fine-Tuning (PEFT) by utilizing the Unsloth and Hugging Face 
Transformer Python libraries. 
○ Enables rapid iteration, lower GPU memory use, and 

faster training cycles while retaining performance.

● Low Rank Adaptation(LoRA)
○ Method that optimizes small, trainable matrices, then 

adds them into each model layer instead of modifying 
the base weights.

○ Significantly reducing number of trainable parameters.
○ Decreases GPU memory and training time without 

sacrificing model quality.
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Fine-Tuning Method and Process
● Prep Dataset: 

○ Dataset of curated ESGF instruction-output pairs is converted to match a chat 
template specified by the Llama 3.1 model card for compatibility. 

○ Dataset is then tokenized, allowing the model to interpret the instructions/outputs.

● Adjust training parameters: 
○ To control facets and prevent model overfitting or underfitting 
○ some key parameters:

■ learning rate: 2e-4
■ rank: 32   

● Controls the number of trainable parameters in the LoRA adapter matrices. 
A higher rank increases model capacity but also memory usage

■ LoRA Alpha: 32 
● Scales the strength of the fine-tune adjustments 

■ # of training epochs: 1
● Note: We found it best to start from the Unsloth documentation recommended defaults 

and work from there → https://docs.unsloth.ai/ 

https://docs.unsloth.ai/
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Fine-Tuning Method and Process
Training Hardware:
● Trained on a single 40GB Nvidia A100 GPU using NERSC Perlmutter supercomputer node

Fine-Tune Outputs:
● LoRA Adapters:

○ Contains only the task-specific parameter updates
○ Lightweight, can be applied to base model

● Merged Model
○ Combines LoRA adapter weights directly with the model 
○ Exported in Generative Pre-trained Transformer Unified Format (GGUF).
○ Optimized for fast, local inference. 
○ Format compatible with Ollama, enabling efficient integration with OpenWebUI.

● Both are uploaded to public Hugging Face Hub after training
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Deployment and User Interface
● Ollama: Inference Engine/Backend 

○ Enables efficient local execution of the 
fine-tuned GGUF model

● OpenWebUI: Frontend Interface
○ Open-source, chat-interface for interacting 

with LLMs through natural language 
queries.

○ Seamless integration with Ollama
○ Selected for its ease of setup, flexible 

backend integration, and native RAG 
(Retrieval-Augmented Generation) support.

○ Built-in RAG pipeline integration

+
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A look at the 
out-of-box 
OpenWebUI 

interface 
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● Enables dynamic access of external documentation without the need for re-formatting 
data 

● Helpful for tasks that rely on information that is either too detailed to be memorized by the 
model or subject to frequent updates.

● Because the retrieval documents can be updated independently of the model weights, the 
system remains adaptable to newly published datasets or revised meta-data without the 
additional fine-tuning

● Benefit of fine-tuning + RAG:
○ While fine-tuning builds domain knowledge and behavior, RAG can inject factual 

precision and adaptability
○ Where RAG falls short of fine-tuning → Does not teach behavior

Retrieval Augmented Generation(RAG)
Retrieving more context from an external knowledge base 
based on the user’s query
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Retrieval Augmented Generation(RAG)
Implementation

● Framework:
○ Using OpenWebUI’s built-in RAG framework.
○ Orchestrates document retrieval and contextual injection at inference time.

● Knowledge Base:
○ Built from existing ESGF and CMIP6 documentation

■ includes: variable tables, controlled vocabularies (CVs) and definitions.
○ Text split into 1000-token chunks with 100-token overlap to balance retrieval 

precision and context, then stored in a vector database for efficient semantic search.
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Retrieval Augmented Generation(RAG)
Implementation

● Retrieval Workflow:
○ User submits a query via the OpenWebUI interface.
○ Query embedded using all-MiniLM-L6-v2 (SentenceTransformer).

■ A lightweight embedding model that converts text into numerical vectors for 
semantic similarity search.

○ Top - k most relevant chunks are retrieved and injected into the user prompt (k = 3)
○ Our fine-tuned LLaMA 3.1 model generates a grounded, context-aware response.

● Why it works?
○ Leverages existing ESGF documentation without significant re-formatting or 

retraining.
○ Stays up-to-date as metadata evolves (e.g., CMIP7).
○ Enables accurate, verifiable metadata lookups directly through natural language.
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Evaluations Metrics
Two Complementary Approaches

● Expert Visual Review (Qualitative)
○ Conducted by ESGF-experienced developers, researchers.
○ Evaluated factual accuracy, contextual relevance, and practical usability.
○ Ensured generated intake-esgf code executed correctly.

● BERTScore (Quantitative)
○ Measures semantic similarity between model and expected outputs
○ Captures meaning beyond exact wording (better than BLEU/ROUGE).
○ Provides:

■ Precision: How much of the generated content is relevant.
■ Recall: How much relevant information is captured.
■ F1: Harmonic mean → overall similarity score. 
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Results: ESGF-Assistant in Action
User Prompt

Response



19 

Results: Prompts chosen for evaluation
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Results: BERTScore

● Closer F1 score represents 
more semantic similarity with 
our expected outputs(1 = exact 
match)

● fine-tuned model consistently 
achieved higher F1 scores 
compared to the base model on 
ESGF related prompts.

● Responses more similar to and 
semantically aligned with the 
expected outputs.
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Conclusion

● Developed a domain-specific LLM fine-tuned and integrated with RAG, tailored to Earth 
System Grid Federation (ESGF) data and workflows.

● Represents a generalizable framework for applying LLMs to other scientific data 
infrastructures facing similar complexity.

● Looking ahead, as the assistant is deployed more broadly, we anticipate it will enhance 
accessibility and reduce technical barriers for researchers, students, and policymakers 
engaging with Earth system data.


