B14C-01 – Integrating Statistical and Expert Knowledge to Develop Phenoregions for the Continental United States (Invited)

Authors

Forrest M. Hoffman (forrest at climatemodeling dot org)
Oak Ridge National Laboratory
Jitendra Kumar
Oak Ridge National Laboratory
William Walter Hargrove
USDA Forest Service Southern Research Station
Steven P. Norman
USDA Forest Service Southern Research Station
Bjorn-Gustaf Brooks
USDA Forest Service Southern Research Station

Session

Ecological (A)synchrony of Forest Responses to Climate II
Monday, December 12, 2016 16:05–16:25
Moscone West 2004

Abstract

Vegetated ecosystems exhibit unique phenological behavior over the course of a year, suggesting that remotely sensed land surface phenology may be useful for characterizing land cover and ecoregions. However, phenology is also strongly influenced by temperature and water stress; insect, fire, and weather disturbances; and climate change over seasonal, interannual, decadal and longer time scales. Normalized difference vegetation index (NDVI), a remotely sensed measure of greenness, provides a useful proxy for land surface phenology. We used NDVI for the conterminous United States (CONUS) derived from the Moderate Resolution Spectroradiometer (MODIS) every eight days at 250 m resolution for the period 2000–2015 to develop phenological signatures of emergent ecological regimes called phenoregions. We employed a “Big Data” classification approach on a supercomputer, specifically applying an unsupervised data mining technique, to this large collection of NDVI measurements to develop annual maps of phenoregions. This technique produces a prescribed number of prototypical phenological states to which every location belongs in any year. To reduce the impact of short-term disturbances, we derived a single map of the mode of annual phenological states for the CONUS, assigning each map cell to the state with the largest integrated NDVI in cases where multiple states tie for the highest frequency of occurrence. Since the data mining technique is unsupervised, individual phenoregions are not associated with an ecologically understandable label. To add automated supervision to the process, we applied the method of Mapcurves, developed by Hargrove and Hoffman, to associate individual phenoregions with labeled polygons in expert-derived maps of biomes, land cover, and ecoregions. We will present the phenoregions methodology and resulting maps for the CONUS, describe the “label-stealing” technique for ascribing biome characteristics to phenoregions, and introduce a new polar plotting scheme for processing NDVI data by localized seasonality.


Forrest M. Hoffman (forrest at climatemodeling dot org)