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Tremendous progress has been achieved in the 

development of land models and their inclusion 

in Earth system models (ESMs). However, we still 

have very limited knowledge on the performance 

skills of these land models. This chapter intro-

duces benchmark analysis, which is a procedure 

to measure performance of models against a set 

of defined standards. The benchmark analysis 

includes: (1) defining targeted aspects of model 

performance to be evaluated; (2) testing model 

performance in comparison with a set of bench-

marks; (3) measuring model performance skill 

through quantitative metrics; and (4) evaluating 

model performance and offering suggestions for 

future model improvement.

INTRODUCTION

Over the past decades, tremendous progress has 

been achieved in the development of land models 

and their inclusion in Earth system models (ESMs). 

State- of- the- art land models now account for bio-

physical processes (exchanges of water and energy) 

and biogeochemical cycles of carbon, nitrogen, 

and trace gases. They also simulate vegetation 

dynamics and disturbances. When coupled as com-

ponents in ESMs, land models now allow simula-

tion of land- atmosphere biophysical interactions 

and climate- carbon feedbacks. These models are 

now widely used for policy- relevant assessment of 

climate change and its impact on ecosystems or ter-

restrial resources. However, there is still very lim-

ited knowledge of the performance skills of these 

land models, especially when embedded in ESMs. 

Quantifying the performance skills of land models 

would promote confidence in their predictions of 

future states of ecosystems and climate, and iden-

tify those models whose predictions are more likely 

to be accurate, where ensemble members diverge.
Model performance has traditionally been 

evaluated via comparison with observed data 
sets. ‘Validation’ by plotting model data side-by-
side with observed data, or computing mismatch 
metrics such as root- mean- square- error, is tra-
ditionally the most common approach to model 
evaluation (Oreskes, 2003; Rykiel, 1996; see also 

http://dx.doi.org/10.1201/9780429155659-24
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Chapter 2). However, a land model typically simu-
lates hundreds of biophysical, biogeochemical, 
and ecological processes at regional and global 
scales over hundreds of years. It would be unrealis-
tic to undertake validation of so many processes at 
all spatial and temporal scales, even if observations 
were available. The complex behavior of these 
interacting processes can be realistically under-
stood only if we holistically assess land models 
and their major components. Benchmark analysis 
is an approach that has been recently developed to 
evaluate the performance of land models.

Benchmark analysis is a standardized evalua-
tion of one system’s performance against defined 
reference data (i.e., benchmarks) that can be used 
to diagnose the system’s strengths and deficien-
cies for future improvement (Luo et al., 2012). 
Benchmark analysis has been recently applied to 
evaluate land models against observations (Collier 
et al., 2018). A benchmark analysis has four ele-
ments: (1) targeted aspects of model performance 
to be evaluated; (2) benchmarks as defined ref-
erence data to evaluate model performance; (3) 
a scoring system of metrics to measure relative 

performance among models; and (4) evaluated 
performance of models and future improvement 
(Figure 19.1).

ASPECTS OF LAND MODELS TO BE EVALUATED

Land models typically simulate many processes. 

Although individual studies may assess only a 

few aspects of model performance, a comprehen-

sive benchmark analysis is required to evaluate all 

these major components when land models are 

integrated with ESMs. The performance of a model 

should be evaluated for its baseline simulations 

over broad spatial and temporal scales, and mod-

eled responses of land processes to global change.

The baseline state for biogeochemical cycles 

includes simulated global totals, spatial distribu-

tions, and temporal dynamics of gross primary 

production, net primary production, vegetation 

and soil carbon stocks, ecosystem respiration, litter 

production, litter mass, and net ecosystem produc-

tion. For example, the International Land Model 

Benchmarking (ILAMB) project evaluated bio-

mass, burned area, gross primary productivity, leaf 

Figure 19.1. Schematic diagram of the benchmarking framework for evaluating land models. The framework includes four 

major components: (1) defining model aspects to be evaluated, (2) selecting benchmarks as standardized references to test 

models, (3) developing a scoring system to measure model performance skills, and (4) stimulating model improvement. 

(Adopted from Luo et al., 2012).
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area index, global net ecosystem carbon balance, 

net ecosystem exchange, ecosystem respiration, 

and soil carbon (Collier et al., 2018).

To reliably predict future states of ecosystems 

under a changing environment, land models have 

to realistically simulate responses of land processes 

to disturbances and global change. Major global 

change factors include rising atmospheric CO2 

concentration, increasing land use and surface air 

temperature, altered precipitation amounts and 

patterns, and changing nitrogen (N) deposition. 

The direct effects of these global change factors 

are relatively easily benchmarked since we have 

direct knowledge of how ecosystems respond to 

rising atmospheric CO2 concentration, increasing 

temperature, altered precipitation, and changing 

nitrogen deposition. However, indirect effects of 

these factors on ecosystem carbon processes are 

not well understood, although many field experi-

ments have been conducted. Thus, it is more 

difficult to benchmark model performance in pre-

dicting future states of ecosystems.

REFERENCE DATA SETS AS BENCHMARKS

A comprehensive benchmarking analysis usu-

ally uses a set of benchmarks, against which land 

model performance can be evaluated (Table 19.1). 

Benchmarks could consist of direct observations, 

results from manipulative experiments, data- model 

products, or data- derived functional relationships. 

Direct observations and experimental results are 

generally accepted to be the most reliable bench-

marks for model performance and are typically 

referred to as reference data. Reference data that 

are often used for benchmarking biogeochemical 

cycle models include global data products of gross 

primary production (GPP), net primary produc-

tion (NPP), soil respiration, ecosystem respiration, 

plant biomass, and soil carbon. When they are used 

in a benchmarking analysis, reference data sets are 

usually assessed and weighted for their degree of 

certainty, scale appropriateness, and overall impor-

tance of the constraint or process to model pre-

dictions (Collier et al., 2018). The ILAMB project 

evaluates eight variables using a variety of refer-

ence data as listed in Table 19.1.

Land models can also be evaluated on their 

simulated variable- to- variable relationships in 

comparison with relationships in observations. 

For example, model representations of the rela-

tionships that GPP exhibits with precipitation, 

TABLE 19.1
Reference data sets used to measure ecosystem and 

carbon cycle performance

Variables

Reference data 

sets Description

Biomass Tropical (Saatchi 

et al., 2011)

forest carbon stocks 

in tropical 

regions across 

three continents

NBCD2000 

(Kellndorfer 

et al., 2013)

aboveground 

biomass and 

carbon baseline 

data in north 

America

USForest 

(Blackard 

et al., 2008)

U.S. forest biomass

Burned area GFED4S (Giglio 

et al., 2010)

variability and long- 

term trends in 

burned area

GPP Fluxnet (Lasslop 

et al., 2010)

net ecosystem 

exchange, 

photosynthesis, 

and respiration

Leaf area 

index

AVHRR (Myneni 

et al., 1997)

global land cover, 

LAI and FPAR

MODIS (De 

Kauwe et al., 

2011)

leaf area index 

product for a 

region of mixed 

coniferous forest

Global NECB GCP (Le Quéré 

et al., 2016)

global carbon budget 

2016

Net 

ecosystem 

exchange

Fluxnet (Lasslop 

et al., 2010)

net ecosystem 

exchange, 

photosynthesis, 

and respiration

Ecosystem 

respiration

Fluxnet (Lasslop 

et al., 2010)

net ecosystem 

exchange, 

photosynthesis, 

and respiration

Soil carbon HWSD (Todd- 

Brown et al., 

2013)

Harmonized World 

Soil Data

NCSCDV22 

(Hugelius 

et al., 2013)

organic carbon 

storage to 3m 

depth in soils 

of the northern 

circumpolar 

permafrost 

region.

NECB = net ecosystem carbon balance



160 BENCHMARK ANALYSIS

evapotranspiration, and temperature are often 

assessed. Such variable- to- variable relationships 

are quantified over a time period from reference 

data sets and used as benchmarks for the relation-

ships diagnosed in models. This approach is par-

ticularly effective to understand the consistency 

between the observed and simulated sensitivity of 

ecosystem responses to climate change.

BENCHMARKING METRICS

A comprehensive benchmarking study usually 

uses a suite of metrics across several variables to 

holistically assess model performance at the rel-

evant spatial and temporal scales. Many statistical 

measures are available to quantify mismatches 

between multiple modeled and observed variables. 

Five metrics were developed for ILAMB to evaluate 

model performance. The five metrics are to mea-

sure bias, root- mean- square- error (RMSE), phase 

shift, interannual variability, and spatial distribu-

tions (Collier et al., 2018).

The bias measures differences between the 

mean value of the reference data and that of the 

model over the same time period and the same 

spatial area. For example, the bias of gross primary 

productivity between the reference data and the 

model (e.g., Community Land Model version 4.5, 

CLM4.5) is calculated between their respective 

means in each grid cell where both reference data 

and modeled values are available. To account for 

the bias due to the variability at any given spatial 

location, the bias is nondimensionalized as a rela-

tive error to measure the bias score.

RMSE is computed as the square root of the 

mean square error between modeled values and 

the reference data over a time period. The RMSE 

is normalized by the centralized RMSE of the ref-

erence data set to get a relative error as a score. 

By scoring the centralized RMSE, the bias is 

removed from the RMSE, allowing the RMSE score 

to be focused on an orthogonal aspect of model 

performance.

The phase shift is evaluated for the annual 

cycle of many data sets that have monthly variabil-

ity by comparing the timing of the maximum of 

the annual cycle of the variable at each spatial cell 

across the time period of the reference data set. The 

phase shift is calculated as the difference between 

the reference and model data sets by subtracting 

their respective maximum values in days.

The interannual variability in model simula-

tions is evaluated by removing the annual cycle 

from both the reference data and the model. A 

score is then computed as a function of their dif-

ferences over space.

The spatial distribution of any time- averaged 

variable is evaluated by computing the standard 

deviation of modeled values over space normalized 

by the standard deviation of the reference data. The 

spatial correlation is also calculated for the period 

mean values of reference data and modeled values. 

A score is assigned by the penalty for large devia-

tion of the normalized standard deviations and the 

spatial correlation from a value of 1.

The overall score for a given variable and data 

product is a weighted sum of the five metrics, pro-

ducing a single scalar score for each variable for 

every model or model version. Readers who are 

interested in details of these metrics may study the 

paper by Collier et al. (2018).

PERFORMANCE OF THREE CLM VERSIONS AND 

FUTURE IMPROVEMENTS

The metrics for bias, RMSE, seasonal cycle phase, 

spatial distribution, interannual variability, and 

variable- to- variable assessments were applied to 

evaluate three CLM versions (CLM4 vs. CLM4.5 vs. 

CLM5) under two forcing data sets (GSWP3v1 vs. 

CRUNCEPv7) (Lawrence et al., 2019). The quality 

of the simulations across model generations was 

found to be generally improving. CLM5 outper-

forms CLM4 for the majority of assessed variables 

(Figure 19.2). The improvements from CLM4.5 to 

CLM5 were relatively subtle in that several vari-

ables show improvement (e.g., biomass, burned 

area, LAI, net ecosystem carbon balance, net eco-

system exchange, and ecosystem respiration) but 

others show degradation (e.g., soil carbon).

The functional relationships were also assessed 

between two variables (e.g., precipitation vs. GPP 

or LAI) (Figure 19.3). CLM5 performed bet-

ter than CLM4 or CLM4.5 for the relationships 

between GPP and climate variables. However, the 

relationship between GPP and surface air tempera-

ture slightly degraded from CLM4.5 to CLM5.

The ILAMB benchmark analysis provides some 

insights into model development. An improve-

ment or degradation trend between two CLM ver-

sions can result from a mix of scores for individual 

metrics. The degradation in the simulations of 
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Figure 19.2. Evaluation of performance of CLM4, CLM4.5, and CLM5 under two sets of forcing, GSWP3v1 and CRUNCEPv7. 

A stoplight color scheme is used to indicate aggregate performance for each model by variable. (Adopted from Lawrence et al., 

2019).

Figure 19.3. Variable-to-variable comparison between annual precipitation and LAI for CLM4, CLM4.5, and CLM5 under the 

GSWP3v1 forcing. The black line is the observationally derived relationship. Error bars indicate the ±1 standard deviation of LAI 

for all grid cells that lie within that precipitation bin. Values in parentheses are the scores for that comparison. (Adopted from 

Lawrence et al., 2019).
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soil carbon stocks from CLM4.5 to CLM5 is par-

tially due to high uncertainty in the observational 

estimates. Another metric evaluates the models 

against apparent soil carbon turnover time, show-

ing an improvement from CLM4.5 to CLM5. The 

disagreement between two metrics of soil carbon 

may suggest the need for future improvement of 

observationally constrained estimates.

Model performance depends on three elements: 

model structure, parameterization, and forcing 

(see Chapters 21 and 33). The model structure 

that simulates soil carbon dynamics in CLM is pri-

marily based on first- order kinetics. Although this 

model structure has been questioned, almost all 

data sets from studies of litter decomposition and 

soil incubation suggest the structure may be highly 

reliable (Chapter 1). Model parameterization is 

likely the main cause of the model- data mismatch. 

Chapter 37 discusses methods to improve model 

parameterizations of CLM5 to improve model 

performance.

CONCLUSIONS

A four- component benchmark analysis was out-

lined: (1) identification of aspects of models to be 

evaluated; (2) selection of benchmarks as standard-

ized references to evaluate models; (3) a scoring 

system to measure model performance skills; and 

(4) evaluation of model performance to inform 

model improvement. The International Land Model 

Benchmarking (ILAMB) project has developed an 

open- source model benchmarking software pack-

age to score model performance. ILAMB has devel-

oped a suite of reference data sets as benchmarks, 

five metrics plus variable- to- variable relationships 

as the scoring system to evaluate models or model 

versions. The ILAMB package has been applied to 

perform comprehensive model assessment across 

a wide range of land variables. Such benchmark 

analysis offers insights into strengths and weak-

nesses of different models or model versions for 

identifying future improvements.
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QUIZZES

 1. What are the similarities and differences between 

model validation and benchmark analysis?

 2. How does benchmark analysis evaluate model 

performance?

 3. What variables in carbon cycle models would 

you choose to be evaluated by a benchmark 

analysis?

 4. What data sets do you think would be important 

to be used as benchmarks to evaluate models?

 5. What five metrics does the ILAMB package use 

to score model performance?
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