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A B S T R A C T

Spatial heterogeneity in environmental factors on the land surface moderates exchanges of water, energy, and
greenhouse gases between the land and the atmosphere. However, appropriately representing this heterogeneity
in earth system models remains a critical scientific challenge. We used a large dataset of environmental factors
(n = 31) representing soil-forming factors, field observations of soil organic carbon (SOC) (n = 6213), and a
machine-learning algorithm (Cubist) to analyze the scaling behavior of SOC across the conterminous United
States. We found that various environmental factors are significant predictors of SOC stocks at different spatial
scales. Out of the 31 environmental factors we investigated, only 13 were significant predictors of SOC stocks at
spatial scales ranging from 100 m to 50 km. Overall, topographic variables had higher influence at finer scales,
whereas climatic variables were more important at coarser scales. The model performance worsened with in-
creasing scale or the spatial resolution of prediction (R2 = 0.38–0.65). The strength of environmental controls
(median regression coefficient) on SOC weakened with scale, and we represented them using mathematical
functions (R2 = 0.38–0.98). Both the mean and variance of SOC stocks decreased linearly with increasing the
scale in soils of the conterminous United States. Fitted linear functions accounted for 81% and 82% of the
variability in the mean and variance of SOC, respectively. We also found linear relationships among mean and
high-order moments of SOC (R2 = 0.51–0.97). Improved understanding of the scaling behavior of SOC stocks
and their environmental controllers can improve earth system model benchmarking and may eventually improve
representation of the spatial heterogeneity of land surface biogeochemistry.

1. Introduction

Observation-based estimates of global soil organic carbon (SOC)
stocks show large spatial heterogeneity (Batjes, 2016; FAO and ITPS,
2018; Hengl et al., 2014). This heterogeneity in SOC is primarily con-
trolled by soil-forming factors: climate, topography, organisms, parent
material, and time (Jenny, 1941; McBratney et al., 2003). Very often, it
is also conditioned by soil use and management (Follett, 2001; Paustian
et al., 1997). As a result, these environmental factors have been widely
used to predict soil properties including SOC at a variety of spatial
scales (Adhikari and Hartemink, 2015; Adhikari et al., 2014; Adhikari
et al., 2013; Minasny et al., 2013; Mishra et al., 2017).

Despite their key roles in determining the spatial heterogeneity of

SOC and regulating the rate of SOC decomposition, many soil-forming
factors and pedogenic processes are not adequately represented in
current land surface models. As a result, current land surface models
poorly represent the baseline SOC spatial heterogeneity (Carvalhais
et al., 2014; Todd-Brown et al., 2013) and show large uncertainties in
predicting future carbon climate feedbacks (Friedlingstein et al., 2014).
Burke et al. (2012) reported that the quantity, spatial distribution, and
decomposability of SOC stocks accounted for half of the overall un-
certainty in predicting future carbon climate feedbacks and associated
climate changes. Therefore, to reduce the uncertainty in future carbon
climate feedback projections, it is critical to appropriately represent
environmental controllers and the spatial heterogeneity of SOC in land
surface models.
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One way to improve the spatial heterogeneity of SOC stocks in land
surface models could be to represent the environmental controls on SOC
stocks consistent with field observations. To achieve this, scaling
functions could be developed to examine the relationship between the
strength of environmental controllers and SOC stocks as they scale. We
could then use these scaling functions to infer the appropriate en-
vironmental controllers of SOC across scales (Mishra and Riley, 2015).

Although several digital soil mapping (DSM) studies have used
different environmental controllers to predict the spatial variation of
SOC stocks (Adhikari et al., 2014; Adhikari et al., 2019; Hengl et al.,
2014; Ramcharan et al., 2018; Viscarra Rossel et al., 2019), examina-
tion of the quantitative scaling relationship between SOC and its en-
vironmental controllers is sparse in the literature. In spatial prediction
of soil properties, mathematical or statistical relationships are typically
developed using a limited number of soil observations and environ-
mental predictors without paying much attention to scaling behavior;
the derived relationship is then applied using environmental predictors
across the study area to produce spatially explicit estimates of soil
properties (Lagacherie et al., 2007; McBratney et al., 2003). Several
geospatial approaches have been used to predict the spatial hetero-
geneity of SOC, depending upon the available data density and en-
vironmental data on soil-forming factors (Adhikari et al., 2014;
Minasny et al., 2013; Mishra et al., 2010).

Recently, Wiesmeier et al. (2019) reported on the variables that con-
trol SOC at different spatial scales. They reported that there are eight main
drivers of SOC stocks operating at multiple spatial scales (soil particles or
pedons to global scales): climate, topography, vegetation, microorganisms,
soil physicochemistry, parent material, soil texture, and land use and
management. Among these drivers, climate was highly influential at sub-
regional to global scales, whereas topography was more closely related to
SOC at local to sub-regional scales. Vegetation and climate showed com-
parable control on SOC stocks, except in areas smaller than 10,000 m2.
Parent material influenced SOC stocks at sub-regional to sub-conterminous
scales, whereas land use and management was mostly related to scales
other than global and micro-scale. Guo et al. (2019) showed that the
spatial distribution of SOC scales because the controllers are scale de-
pendent. Miller et al. (2015) also reported that SOC controllers are scale
dependent, and that this influences model performance-models exhibit
better performance when they include controllers from multiple scales
rather than those from a single scale.

Many studies have also evaluated the scaling behavior and en-
vironmental controllers of soil moisture (e.g., Biswas and Si, 2011;
Blöschl and Sivapalan, 1995; Famiglietti et al., 2008; Kachanoski and
de Jong, 1988; Western et al., 2002). Biswas and Si (2011) character-
ized the spatial variation of soil water storage and its controllers across
scales using empirical mode decomposition method. Sun et al. (2019)
applied a similar approach to terrain attributes and mapped soil prop-
erties with increased model accuracy. Additional studies modeled the
spatial variability of soil moisture patterns from relatively fine to coarse
scales and attempted to characterize the spatial structure based on
system properties and climate forcing (Crow et al., 2012; Pau et al.,
2014; Riley and Shen, 2014; Shen et al., 2016; Western et al., 2002).
For some systems, the spatial variance of soil moisture follows a power-
law decay as a function of spatial area (Manfreda et al., 2007); in other
systems, there are clear scale breaks in this relationship (e.g., Das and
Mohanty, 2008; Joshi and Mohanty, 2010; Pau et al., 2014).
Gebremichael et al. (2009) reported that, in a watershed located in the
U.S. Southern Great Plains, soil moisture showed scale invariance, and
that if the scaling parameters could be estimated from large-scale soil
moisture fields, it might be feasible to change spatial soil moisture re-
presentations between scales. Consistent spatial scaling behavior was
also recently reported for the spatial structure of high-latitude lake
distributions (Muster et al., 2019). Despite the progress made in mod-
eling these scaling properties, to our knowledge, no study has examined
the statistical structure of SOC scaling behavior in temperate soils at
large spatial scales.

The land surface interacts with the atmosphere at multiple spatial
scales (Anderegg et al., 2019; Zhou et al., 2016). As a result, land
surface spatial heterogeneity affects land–atmosphere exchanges of
energy, moisture, and greenhouse gases (Clark et al., 2011; Riley and
Shen, 2014). The current generation of earth system models (ESMs)
typically operate at spatial scales larger than 50 km and use a nested
sub-grid hierarchy approach to represent land surface heterogeneity
(Lawrence et al., 2012). Attempts are being made to increase the spatial
scale of these models to more accurately represent localized features of
Earth systems that affect energy, water, and greenhouse gas fluxes (Pan
et al., 2016; Pau et al., 2014).

Our goal is to model changes in SOC heterogeneity that result from
changing the scales of environmental factors. Therefore, we used field
observations of SOC, high-resolution environmental information, and a
machine-learning approach to predict SOC at different spatial scales
(from S = 100 m to 50 km). Throughout this paper, we refer to the
“scale” (S) as either the area across which SOC properties are assumed
to be homogeneous or the square root of the pixel area satisfying that
criteria; note that the terms “scale” and “resolution” are often inter-
changeable in this context. We use the term “scaling” to mean the
transfer of information about environmental controls (aggregation of
environmental factors) and the statistical properties of SOC stocks from
one scale to another. For the first time, in this study, we used a large set
of the most recent SOC field observations available across the con-
terminous United States and a wide range of spatially explicit soil-
forming factors to characterize the scaling behavior of SOC, and we
developed scaling functions that could be used to improve land-surface
representation of SOC in models. The specific objectives of our study
were to (1) identify the dominant controllers of SOC at various scales,
(2) quantify the change in the strength of environmental controllers of
SOC at different spatial scales, and (3) develop scaling functions that
relate the statistical properties of SOC to scale.

2. Materials and methods

2.1. SOC observations

SOC measurements in this study came from the rapid carbon as-
sessment project initiated by the Natural Resources Conservation
Service’s Soil Science Division of the U.S. Department of Agriculture
(USDA) (Soil Survey Staff and Loecke, 2016). The main goal of the rapid
carbon assessment project was to produce a robust estimate of SOC
stocks across the conterminous United States based on state-of-the-art
soil sampling and modeling. More than 6200 sites across the con-
terminous United States (Fig. 1) were established according to a multi-
level stratified random sampling scheme-a hierarchical sampling design
that included region, land-use and land-cover classes, and groups of
similar soil types (nested within regions).

The first level of sampling strata corresponds to the USDA’s major
land resource area (MLRA) grouped into regions (17 MLRAs across the
conterminous United States). Each region was further divided into 8 to
20 soil groups by clustering of numerical scores calculated for soil
taxonomy, particle size, soil depth, soil temperature regime, and drai-
nage class (Wills et al., 2013). The soil groups were then combined with
land use and land cover classes of national land-use and land-cover
data, and sampling sites were randomly assigned to each combination.

At each site, five pedons were sampled: one at the plot center and
one 30 m away in each cardinal direction. However, this study con-
sidered only the sample from the central pedon. Soil samples were
collected from each soil horizon and analyzed for SOC concentration
according to the Soil Survey Laboratory Methods Manual (Burt, 2004)
and bulk density (volumetric method). SOC stock for a fixed soil depth
(0–30 cm, in this case) was then calculated after correcting for non-soil
materials (rock or coarse fragments) (Eq. (1)). Although bulk density is
a key soil property in SOC stock calculations and should be a routine
measurement, not all samples had bulk density measurements. The
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missing values for bulk density were estimated using pedotransfer
functions in which the prediction error ranged from 0.10 to
0.15 g cm−3. The pedotransfer functions were derived through a
random forest model using 20,045 soil horizon data from 2680 pedons,
and nine variables were used as predictors: four from the sampled
horizon (horizon designation, textural class, depth [at the middle of the
horizon], and thickness), and five from a neighbor horizon (bulk den-
sity, horizon designation, textural class, depth, and thickness) (Sequeira
et al., 2014). Additional details about the rapid carbon assessment
methodology can be found in Soil Survey Staff and Loecke (2016). The
SOC stock for sampled depth was calculated using the following
equation:

= × × ×SOC SOC BD D CF( ) (1
100

)stk (1)

where SOCstk is the SOC stock (Mg ha−1), SOC is the SOC content (g
100 g−1), BD is the soil bulk density (Mg m−3), D is the given soil layer
thickness (cm), and CF is the volumetric fraction of the coarse frag-
ments.

2.2. SOC predictors at multiple scales

A wide range of environmental variables were collected and eval-
uated as SOC predictors. These variables fall into four main categories
and represent the state factors of soil formation as proposed by Jenny
(1941): climate (cl), land use and land cover (lulc), soil or soil-related
variables (s), and topographic (r) variables (Table 1). The cl variables
included a 30-yr (1981 to 2010) annual average of temperature
(minimum, mean, maximum, dew point), precipitation (rainfall, rain-
fall during the wettest and driest quarter in a year), and potential

evapotranspiration. The lulc variables included the national land-use
and land-cover database of the conterminous United States, potential
vegetation cover, remote sensing imagery (spectral bands and vegeta-
tion index), net primary production, and ecological regions-areas re-
presentative of specific flora and fauna whose presence is conditioned
and mediated by regional topography and prevailing climate. The s-
related variables included soil types, geology, drainage condition, hy-
drological unit, and soil temperature regime. Similarly, r variables
corresponded to terrain attributes (e.g., slope aspect, wetness index)
derived from the national digital elevation model (DEM) of 30-m spatial
resolution obtained from the U.S. Geological Survey. The original DEM
was resampled to a 100-m raster and was hydrologically corrected by
removing unnecessary pits and sinks before deriving terrain attributes.

To generate topographic variables at multiple scales, the 100-m
raster DEM was subsequently resampled to the eight different spatial
scales (grid sizes) considered in this study (i.e., grid sizes of 250 m,
500 m, 1 km, 2.5 km, 5 km, 10 km, 25 km, and 50 km), and the new
DEM thus generated at each scale was used to derive terrain attributes
for that scale (n = 9). Similarly, the multiscale cl-, lulc-, and s-related
variables were compiled by resampling the original raster layer to the
nine different spatial resolutions. Resampling of cl-, t-, and lulc-related
variables (e.g., spectral band, vegetation index, and net primary pro-
duction) was based on bilinear interpolation (distance-weighted
average value of the surrounding 4 pixels), whereas that of s- and other
lulc-related variables (e.g., national land use and land cover, potential
vegetation cover, and ecological regions) was based on the nearest
neighbor. Altogether, there were 31 environmental predictors at each of
the nine scales, and all the raster layers and point SOC observations
were remapped to a common projection to extract predictor values at
the sampling locations. Table 1 provides information about the

Fig. 1. Geographical distribution of soil sampling sites (n= 6213) across the conterminous United States. Inset: Histogram and box plots of SOC measurements (left)
and after the log-transformation (right).
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environmental variables used in this study and their data sources.

2.3. Selection of SOC predictors, model development, and accuracy
assessment

From the pool of 31 SOC predictors, only the significant predictors
(p-value < 0.1) were selected to build a prediction model at each
scale. We applied a stepwise regression technique that uses forward
selection and backward elimination to select significant variables in the
model. Once the significant variables were identified, we used data-
mining algorithms from the Cubist tool (Quinlan, 1993) to develop SOC
prediction models at each scale. For this purpose, we extracted the
values of environmental predictors at SOC observation locations, and

the entire dataset was randomly divided into training (75%) and test
(25%) datasets to calibrate and validate prediction models, respec-
tively. The Cubist model built a set of hierarchical regression rules such
that each rule was defined by certain environmental conditions based
on the prevailing soil-landscape relationships. Once each condition was
met, a rule-specific multiple linear regression (MLR) function was used
to predict SOC stocks (Adhikari and Hartemink, 2015; Minasny and
McBratney, 2008; Ugbaje and Reuter, 2013).

The performance of the prediction model at each scale was eval-
uated using the test dataset. To test model accuracy across scales, we
used statistical indices of the coefficient of determination (R2), root-
mean square error (RMSE), mean error or bias in prediction (ME), and
relative error (RE). The RE was calculated following Eq. (2) (Ugbaje and

Table 1
Environmental variables used as predictors of SOC across the conterminous United States.

Environmental variable and its
abbreviation

Brief description Data source Resolution

Climate variable (cl)
Precipitation (PPT) 30-yr (1981 to 2010) annual average

precipitation
http://www.prism.oregonstate.edu/normals 800 m

Precipitation of the driest season
(PDRY)

30-yr (1971–2000) annual average
precipitation of the driest month

http://worldclim.org/bioclim 1 km

Potential evapotranspiration (PET) 30-yr (1971–2000) potential
evapotranspiration

Trabucco, Antonio; Zomer, Robert (2019): Global Aridity Index and
Potential Evapotranspiration (ET0) Climate Database v2. Figshare,
https://doi.org/10.6084/m9.figshare.7504448.v3

1 km

Precipitation of the wettest season
(PWET)

30-yr (1971–2000) annual average
precipitation of the wettest month

http://worldclim.org/bioclim 1 km

Dew point temperature (TD) 30-yr (1981–2010) annual average dew point
temperature

http://www.prism.oregonstate.edu/normals 800 m

Minimum temperature (TMIN) 30-yr (1981–2010) annual average minimum
temperature

http://www.prism.oregonstate.edu/normals 800 m

Mean temperature (TMEAN) 30-yr (1981–2010) annual average
temperature

http://www.prism.oregonstate.edu/normals 800 m

Maximum temperature (TMAX) 30-yr (1981–2010) annual average maximum
temperature

http://www.prism.oregonstate.edu/normals 800 m

Land use and land cover variable (lulc)
Ecological region (ECOL3) Ecological zone map at level 3 legend Derived from gSSURGO. 100 m
Net primary production (NETPP) Annual terrestrial primary production

(kg C m−2) for 2018
Derived from Landsat 30 m

Landsat Band 3 (RED) Landsat Band 3 for 2014 http://earthenginepartners.appspot.com/science-2013-global-forest/
download_v1.6.html

30 m

Landsat Band 5 (SW1) Landsat Band 5 for 2014 http://earthenginepartners.appspot.com/science-2013-global-forest/
download_v1.6.html

30 m

Landsat Band 7 (SW2) Landsat Band 7 for 2014 http://earthenginepartners.appspot.com/science-2013-global-forest/
download_v1.6.html

30 m

National land cover database (NLCD) Land cover of the United States for 2011 30 m
Potential vegetation (PVEG) U.S. Potential natural vegetation Original Kuchler Types, v2.0 5 km
Normalized difference vegetation index

(NDVI)
Calculated as (NIR – RED)/(NIR + RED),
where, NIR is near-infrared band (Landsat
Band 4)

http://earthenginepartners.appspot.com/science-2013-global-forest/
download_v1.6.html

30 m

Topographic variable (r)
Elevation (DEM) Land surface elevation Derived from the national digital elevation dataset (NDEM) from U.S.

Geological Survey
100 m

Slope aspect (ASPECT) Direction of the steepest slope from the north Derived from the DEM 100 m
Slope length factor (LSFACTOR) Slope length factor calculated as in the USLE

(universal soil-loss equation)
Derived from the DEM 100 m

Multi-resolution valley bottom flatness
index (MRVBF)

Potential depositional areas Derived from the DEM 100 m

Melton ruggedness number (MRN) Melton ruggedness number Derived from the DEM 100 m
Mid-slope position (MSPOS) Covers the warmer zones of slopes Derived from the DEM 100 m
Wetness index (SAGAWI) Topographic wetness index with modified

catchment area
Derived from the DEM 100 m

Slope height (SLOPEHT) Height of the local slope Derived from the DEM 100 m
Slope gradient (SLOPE) Local slope gradient in percent Derived from the DEM 100 m
Valley depth (VALDEP) Calculates the extent of valley depth Derived from the DEM 100 m

Soil variable (s)
Drainage class (DRNG) Natural soil drainage class Derived from gSSURGO 100 m
Surface geology (GEOSUR) Surficial geology class Derived from gSSURGO 1 km
Hydrological group (HYDRO) Hydrologic soil group class Derived from gSSURGO 100 m
Soil order class (SOIL) Taxonomy soil order class Derived from gSSURGO 100 m
Soil temperature regime (SOILTR) Soil temperature regime class Derived from gSSURGO 100 m
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Reuter, 2013). RE is the ratio of the average error (AE) value—which is
equivalent to the mean absolute error—to the AE that would result from
always predicting the observation mean (AEm). All these indices were
calculated for both the training and test datasets.

= = =

=

RE AE
AE

obs pred

obs pred

| |

| |m

n i
n

i i

n i
n

i i

1
1

1
1 (2)

where obsi, predi, and predi are observed, predicted, and mean predicted
SOC values, respectively, and n is the number of observations.

2.4. Key SOC predictors and their scaling properties

To identify key SOC predictors, the relative importance (RI) of the
variables in predicting SOC stocks at each spatial scale was quantified
as its relative usage in the prediction model. As the prediction model
developed a set of conditions and associated MLR functions, the RI was
calculated for both. Similarly, to quantify the strength of a variable in
SOC prediction, we calculated its median regression coefficient (β) as-
sociated with each MLR function in the set of hierarchical regression
rules for each scale. We then normalized it by multiplying it with the
average raster value of the corresponding predictor. The β values for
each predictor were plotted against prediction scales, and a mathema-
tical function was fitted to model its scaling behavior across scales. To
further analyze the scaling properties of SOC, and to characterize SOC
variability across scales, the mean and variance of predicted SOC stocks
were plotted against the spatial scales and against each other. Similarly,
the mean of predicted SOC stocks was plotted against standard devia-
tion, coefficient of variation, skewness, and with the standard error of
mean. In addition, we grouped the range of predicted SOC means into
bins equivalent to an SOC stock of 1 [log(Mg ha−1)]. To quantify the
magnitude of spatial heterogeneity at different ranges of SOC stocks,
the mean SOC from each bin was plotted against its standard deviation,
coefficient of variation, skewness, and the standard error of the mean.

3. Results

3.1. SOC field observations

SOC in the study area was extremely variable (CV= 157%) and log-
normally distributed. SOC measurements ranged from 0.1 to over
1200 Mg ha−1, with mean and standard deviations of 95 and
150 Mg ha−1, respectively (Fig. 1, inset). The distribution was highly
and positively skewed (skewness coefficient: 4.3; median:
51.6 Mg ha−1). After the data were log-transformed, the skewness
coefficient and mean dropped to −0.04 and 3.9 Mg ha−1, respectively,
with a standard deviation of 1.0 and a CV of 25.7%. For modeling, SOC
data were randomly split into training and test datasets; Table 2 shows
the general statistics and distributions of SOC in the datasets. Most of
the statistical parameter values for these datasets are comparable to
each other, which validates the data split (Table 2).

3.2. Significance of environmental predictors of SOC stocks changes with
scale

Among the 31 environmental variables used as SOC predictors, only
13 were significant (p < 0.1) at all spatial scales (Fig. 2), which shows
that a clear scale dependency on the SOC distribution. For example,
temperature-related variables, such as maximum temperature (TMAX),
minimum temperature (TMIN), and dew point temperature (TD), were
not significant at 100 m but were significant at spatial scales greater
than 1 km. Almost all topographic variables were significant at scales
≤250 m except for melton ruggedness number (MRN) and slope height
(SLOPEHT). The effect of SLOPEHT was significant at scales greater
than 1 km. On the other hand, precipitation-related variables, such as
precipitation (PPT), potential evapotranspiration (PET), precipitation

of the wettest season (PWET), and precipitation of the driest season
(PDRY), were significant at all scales, indicating a significant control of
moisture on SOC distributions across scales. Similarly, variables like
drainage class (DRNG), surface geology (GEOSUR), hydrological group
(HYDRO), soil order class (SOIL), and soil temperature regime (SOILTR)
were significant at all scales, suggesting that soil and its drainage
played significant roles in the spatial distribution of SOC across the
conterminous United States. Land-use- and land-cover-related vari-
ables, like ecological regions (ECOL3), landsat band 3 (RED), and
landsat band 7 (SW2), were significant at all scales. Normalized dif-
ference vegetation index (NDVI) was found to be significant between
the 100-m and 1-km scales, and it was not significant at scales greater
than 1 km. National land cover database (NLCD) showed an inter-
mittent contribution, playing a significant role at 100 m, 5 km, and
50 km, but not at other scales. Potential vegetation (PVEG), on the
other hand, was significant at all scales except at 10 km. In general,
most topographic variables were significant at smaller scales (< 5 km),
whereas climate variables, particularly those related to temperature,
were significant at larger scales (> 1 km). Soil and land-use- and land-
cover-related variables were important at all scales.

3.3. Importance and strength of environmental predictors of SOC changes
with scale

The importance of environmental predictors quantified as relative
importance in the prediction model is shown in Fig. 3. Because the
prediction model was based on regression rules, Fig. 3A represents the
RI of variables in rule-setting conditions, and Fig. 3B shows the RI in
MLR functions within rule-setting conditions. In principle, the condition
rules divided the study area into different sub-units or strata where the
SOC distribution could be predicted using the specific MLR function
associated with the rule. Results showed that ECOL3 was one of the
main prediction variables, which was used in setting condition rules at
all scales, followed by RED and GEOSUR.

For the rule-setting conditions, ECOL3 RI ranged from 87% at 500 m
to 100% at the 50 km scale. SOIL and DRNG were also important in rule
setting; however, DRNG was important at scales below 2.5 km with a
maximum RI of 63% at 500 m. The prediction variable SOIL was im-
portant at almost all scales with its maximum RI (53%) at 2.5 km and its
minimum (9%) at 25 km. PET was found to be important at scales
beyond 250 m; a maximum contribution of 56% was reported at 10 km
and a minimum (20%) at 250 m. PPT showed a similar RI trend; its
importance began at 1 km with the lowest RI (16%) and reached the
highest RI (56%) at 10 km. The model also identified DEM as a main
prediction variable in rule-setting conditions at all scales; however, its
contribution was lower than ECOL3, RED, and GEOSUR, with an RI
ranging from 17 to 26%. Temperature-related environmental predictors
were also used in rule-setting condition, but their contributions were

Table 2
Summary statistics of measured SOC data across the study area before and after
the data split into training and tests sets for model building and validation.

Parameter SOC stock (Mg ha−1)

All data Training data Test data

Number of observations 6213 4660 1553
Mean 94.9 94.7 95.7
Std. Dev. 149.9 148.0 152.1
Std. Error Mean 1.8 2.1 3.8
Skewness 4.3 4.3 4.3
Kurtosis 21.8 21.8 21.7
Coeff. of variation 156.9 156.2 158.9
Minimum 0.1 0.1 0.4
Maximum 1268.2 1268.2 1257.7
Median 51.6 51.5 52.2
Interquartile range 60.7 60.8 60.7
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minimal and started at scales greater than 2.5 km.
For the MLR prediction function, topographic predictors such as

DEM and mid-slope position (MSPOS) were important at all scales with
RI ranging from 23% (50 km) to 51% (10 km) for DEM, and 25%
(50 km) to 76% (1 km) for MSPOS (Fig. 3B). Other topographic pre-
dictors such as wetness index (SAGAWI) were important at scales
≤5 km, and multi-resolution valley bottom flatness index (MRVBF) and
MRN were important at scales ≤500 m. Slope aspect (ASPECT) was
found to be important at all scales except for 1 km, with a maximum RI
at 100 m (RI 37%) and a minimum (3%) at 2.5 km and 10 km. The
contribution of temperature-related variables started from scales
greater than 1 km, reaching a maximum RI of 100% at 50 km for TMAX,
TMIN, and mean temperature (TMEAN). TD was only important at
scales of 25 and 50 km. Precipitation-related variables, such as PPT,
PET, PDRY, and PWET, were important in predicting SOC at all scales,
with RI ranging from 52 to 100%; higher RI values were reported for
scales greater than 1 km. We also noticed that there were no tem-
perature-related predictors in the MLR function at the 100-m scale;
their significant contributions started at scales greater than 1 km, ex-
cept for TMIN, which was also important at 250 and 500 m. Of the land-
use- and land-cover-related predictors, NDVI and net primary produc-
tion (NETPP) were important up to 1 km, SW2 and RED at all scales,
and landsat band 5 (SW1) between the 250-m and 5-km scales.

Maximum RI values for NDVI (100%), NETPP (61%), and SW1 (75%)
were found at 1 km, and the minimum was at 250 m.

Fig. 3C–F show the RI of the variables at the 100-m and 50-km
scales. A total of 11 environmental predictors were used to set rule
conditions at 100 m. Five were related to land-use and land-cover types,
three were related to soil properties, two were related to topographic
attributes, and one was related to climate (Fig. 3C). The RI of land-use-
and land-cover-related variables was much higher than that of the other
environmental variables, and climate-related variables had the lowest
RI of all. On the other hand, out of 17 variables used in the MLR pre-
diction function at the same scale, eight were related to topographic
attributes. These had a higher RI than climatic variables other than
PWET, which had an RI of 98% (Fig. 3D). Unlike at the 100-m scale, the
climate variables showed a higher influence (~30% RI) even in setting
prediction rule conditions at this scale. The RI of topographic variables
ranged from 23% for valley depth (VALDEP) to 75% for MRVBF,
whereas land-use- and land-cover-type variables (four variables) ranged
from 43% (NETPP) to 97% (RED). Similarly, at the 50-km scale
(Fig. 3E,F), only seven variables were used to set rule conditions, and
17 were used in the MLR prediction function. Out of these, almost 50%
were climate variables; two were land-use and land-cover types and the
rest were topographic variables. Among all variables, climate variables
had a maximum RI reaching up to 100%: six out of seven variables had

Fig. 2. Scales over which environmental variables are significant predictors (p-value < 0.1) of SOC distribution across the conterminous United States. ASPECT:
slope aspect; DEM: digital elevation model; DRNG: natural soil drainage class; ECOL3: ecological region at level 3 legend; GEOSUR: surface geology; HYDRO:
hydrological group; NETPP: net primary production; LSFACTOR: slope-length factor; MRVBF: multi-resolution valley bottom flatness index; MRN: melton ruggedness
number; MSPOS: mid-slope position; NDVI: normalized difference vegetation index; NLCD: national land cover data; PDRY: total precipitation of the driest season;
PET: potential evapotranspiration; PPT: annual precipitation; PVEG: potential vegetation; PWET: total precipitation of the wettest season; RED: red band; SAGAWI:
wetness index; SLOPE: slope gradient; SLOPEHT: slope height; SOIL: soil order; SOILTR: soil temperature regime;; SW1: landsat band 5; SW2: landsat band 7; TD: dew
point temperature; TMIN: minimum temperature; TMEAN: mean temperature; TMAX: maximum temperature; VALDEP: valley depth.
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RI ≥ 97%. Topographic variables had a minimum RI as low as 17%: six
out of seven variables had RI ≤ 54%. Overall, a higher influence of
topographic variables was found at finer scales, whereas climatic
variables were more important at larger scales.

The regression coefficient (β) of SOC predictors in the MLR function
quantified the strength of predictors in SOC distributions across scales,
and the median β of the selected predictors (i.e., three topographic, one
land-use and land-cover, and four climate variables) are shown in

Fig. 3. Relative importance (RI) of SOC predictors across scales. (A) RI for rule-setting conditions; (B) RI in the MLR prediction function; (C) and (D) RI for rule-
setting conditions, and MLR function at 100 m, respectively; and (E) and (F) RI for rule-setting conditions, and MLR function at 50 km, respectively. ASPECT: slope
aspect; DEM: digital elevation model; DRNG: natural soil drainage class; ECOL3: ecological region at level 3 legend; GEOSUR: surface geology; HYDRO: hydrological
group; NETPP: net primary production; LSFACTOR: slope-length factor; MRVBF: multi-resolution valley bottom flatness index; MRN: melton ruggedness number;
MSPOS: mid-slope position; NDVI: normalized difference vegetation index; NLCD: national land cover data; PDRY: total precipitation of the driest season; PET:
potential evapotranspiration; PPT: annual precipitation; PVEG: potential vegetation; PWET: total precipitation of the wettest season; RED: red band; SAGAWI:
wetness index; SLOPE: slope gradient; SLOPEHT: slope height; SOIL: soil order; SOILTR: soil temperature regime; SW1: landsat band 5; SW2: landsat band 7; TD: dew
point temperature; TMIN: minimum temperature; TMEAN: mean temperature; TMAX: maximum temperature; VALDEP: valley depth.
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Fig. 4. As mentioned above, NDVI was important at spatial scales be-
tween 100 m and 1 km, and its median β values ranged from 0.07 at
100 m to 0.24 at 500 m. Similarly, SAGAWI was important at scales
≤5 km, and its strength increased linearly; it reached its peak at 1 km
and decreased thereafter to a minimum of 0.18 at 5 km. The lowest
control of SAGAWI in the SOC distribution was at 100 m. Similarly, the
influence of slope gradient (SLOPE) was negative, occurred at scales
less than 5 km, and increased (more negative) with scale. DEM exerted
an influence at all scales (e.g., higher influence at 1 and 2.5 km; lower
influence at 5 and 50 km), and the relationship was negative except at
100 m. where the relationship was positive. DEM’s strength was highest

at 1 km (β = −0.36). It decreased thereafter to 50 km, which suggests
1 km as a cutoff scale from which to observe DEM’s influence.

For the climatic variables, PPT and PWET both had positive coef-
ficients at all scales. However, a small negative coefficient was recorded
for PPT at the 1- and 2.5-km scales. Overall, the coefficients increased
with increasing scale, reaching a maximum value at 25 km for PPT and
at 10 km for PWET. On the other hand, PET had a negative coefficient
with SOC; its influence was negative at scales greater than 1 km. The
influence of TMEAN was almost always negative, and the influence
increased with increasing scale. These results further reinforced that the
SOC distributions at finer scales were mostly controlled by topographic

Fig. 4. Control of environmental factors on SOC stocks as a function of spatial scale. Each dot is a median regression coefficient multiplied by the average value of the
environmental predictor across the conterminous United States. Error bars represent standard error. NDVI: normalized difference vegetation index; SAGAWI: wetness
index; PPT: annual precipitation; PET: potential evapotranspiration; TMEAN: annual mean temperature; PWET: total precipitation of the wettest season; SLOPE: slope
gradient; DEM: elevation.
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variables, whereas climatic variables had greater influence at coarser
scales. This generally agrees with recent results from Wiesmeier et al.
(2019).

3.4. Scaling impacts on the spatial heterogeneity of SOC

Results showed that the mean and variance of predicted SOC stocks
decreased with scale, and this relationship could be modeled with a
linear function (R2 > 0.80) (Fig. 5A). The highest predicted SOC mean
and variance were at 250 m, and the lowest at 50 km. It was fairly
constant between 100 and 500 m, then decreased. The predicted mean
and variance had a strong positive linear relationship (R2 = 0.96)
(Fig. 5B). Similarly, the relationships among mean predicted SOC and
its standard deviation, CV, skewness, and standard error of mean at
each spatial scale showed that these relationships could be described
with linear functions (Fig. 6) that increased positively. The R2 ranged
between 0.51 and 0.97, with the highest value for the standard devia-
tion and the lowest for the skewness coefficient. Those for CV and
standard error were 0.96 and 0.94, respectively. The kurtosis coefficient
was weakly and linearly related with the mean predicted SOC stocks
(R2 = 0.15) (not shown in Fig. 6).

We examined relationships among the statistical properties of the
SOC distributions and the mean stock to identify spatial scaling prop-
erties. To compare SOC variability across scales, the range of log-
transformed mean SOC stock between 0 and 7.5 (log [Mg ha−1]) was
divided into a bin size of 1 (log [Mg ha−1]), and the standard deviation,
CV, and skewness were derived and plotted against the mean for each
bin (Fig. 7). Fig. 7A and 7B compare bin-averaged SOC standard de-
viation and CV across scales.

A wider range of standard deviation and CV was observed at SOC
less than 1.5 (log [Mg ha−1]); a convex and upward trend in standard
deviation and a decreasing trend in CV were observed with increasing
predicted SOC mean. For the same mean range, the standard deviation
increased with scale, except at 100 m and 10 and 25 km. It reached a
peak at an SOC between 3.0 and 4.5 and decreased thereafter. At all
scales, a maximum CV was found at SOC < 1.5 and a minimum at
SOC > 6.0 (log [Mg ha−1]).

The skewness coefficient, on the other hand, had a mixed response
to the SOC mean at different scales (Fig. 7C). The range of skewness was
smaller for SOC between 3.0 and 4.5, and remained greater beyond that
mean SOC range. A similar trend was observed for the standard error of
mean (Fig. 7D), which was at its minimum for SOC between 3.0 and 4.5
(log [Mg ha−1]). The scaling impact of predictors was more obvious at
a specific SOC range (i.e., < 3.5 and> 4.5). Outside that range, the
influence was less pronounced. Moreover, we observed similar patterns
in all the fitted curves for all scales and all statistics, indicating a
general pattern across scales.

3.5. Model validation and prediction accuracy

Prediction model accuracy was assessed using common validation
indices such as R2, ME, RMSE, and RE. The results for both the training
and the test datasets are listed in Table 3. R2 values ranged from 0.38 to
0.65, and decreased with the scale of prediction for both datasets-the
highest value at 100 m and the lowest at 50 km. The ME fluctuated
around zero, and at a spatial scale of 5 km, the prediction was nega-
tively biased. The RMSE values ranged between 0.41 and 0.54 and
changed little across the predicted scales. A minimum RMSE was ob-
served at 100 m for both datasets. With regard to RE, 100 m had the
lowest and 50 km had the highest value. Overall, the model was more
accurate in predicting SOC at 100 m and less accurate at 50 km, in-
dicating that prediction accuracy decreased with increasing spatial
scale.

4. Discussion

Most SOC resides in the soil surface, and thus it can be rapidly al-
tered by anthropogenic and climatic factors. Therefore, the spatial
heterogeneity of SOC impacts the magnitude of greenhouse gas fluxes
from the land surface. We predicted SOC distributions across the con-
terminous United States using recent SOC measurement data, a suite of
environmental variables, and a data-mining technique proved pro-
mising in several previous studies (e.g., Adhikari et al., 2014, 2019;
Bonfatti et al., 2016; Dorji et al., 2014; Lacoste et al., 2014). However,
the knowledge found using such techniques must be treated with cau-
tion, especially in soil attribute predictions where the selection of
pedologically relevant variables, and map interpretation is crucial
(Wadoux et al., 2020). We document different environmental factors
that control SOC at different scales. The strength of the control of dif-
ferent environmental factors on SOC stocks weakened as scale in-
creased; as a result, the model performance (R2) decreased as scale
increased. The relationship between variance and mean values of SOC
stocks and scale can be modeled using simple linear functions. We also
observed a linear relationship between the mean and the variance of the
predicted SOC stocks, and nonlinear but consistent relationships with
its higher-order moments.

In this study, we used a variety of environmental factor datasets
from various sources (Table 1). These datasets had different spatial
resolutions but were resampled to specific spatial resolutions for mod-
eling. The mismatch in original spatial detail among the environmental
covariates could have influenced the prediction performance and model
outputs. However, this issue seems inevitable at regional-/continental-
scale studies that use a large number of secondary datasets. We believe
future DSM activities should prioritize research in harmonizing multi-
scale-multisource data together with increasing the usefulness of legacy
data for a seamless product.

Fig. 5. (A) Predicted SOC mean and variance across multiple scales. (B) Relationship between mean and variance. Error bars in panel A represent standard error.

K. Adhikari, et al. Geoderma 375 (2020) 114472

9



Fig. 6. Relationship between predicted SOC and (A) standard deviation, (B) coefficient of variation, (C) skewness coefficient, and (D) standard error of mean at
corresponding spatial scales.

Fig. 7. Predicted SOC mean (log [Mg ha−1]) plotted against (A) standard deviation, (B) coefficient of variation, (C) skewness, and (D) standard error of mean derived
for the binned data of 1 log (Mg ha−1) across spatial scales.
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4.1. Decrease of the strength of environmental controls on SOC stocks

We observed that the strength of environmental controls on SOC
stocks decreased with increased spatial scale. Among the environmental
predictors, DEM and SLOPE had maximum strengths (median β) at
100 m and minimum strengths at 5 and 50 km. SLOPE and SAGAWI had
important controls only between 100 m and 5 km; the latter had its
maximum strength at 1 km and decreased thereafter. Similarly, the
strength of NDVI was observed only at scales between 100 m and 1 km,
reaching its maximum value at 500 m and a minimum at 1 km. Beyond
this point, no strength was observed.

Among the climatic variables, PET and TMEAN had the largest
strength at 1 km and the smallest at 50 km. However, an opposite trend
was observed for PPT, which had the highest strength at 25 km and
lowest at 1 km. Overall, the largest strength or control on the SOC
stocks distribution was governed by temperature (TMEAN, TMIN, and
TMAX), followed by land use and land cover (NDVI) and topography
(SLOPE and MSPOS). Mishra and Riley (2015) reported a similar de-
creasing trend for the strength of environmental controls of SOC stocks
of arctic/boreal soils. They found elevation, temperature, potential
evapotranspiration, and land cover to be significant environmental
predictors of SOC at all scales. In addition to these four environmental
predictors, we also found that drainage, soil type, precipitation, eco-
logical zone, and surficial geology were significant predictors of SOC at
all investigated spatial scales in the conterminous United States. These
environmental variables represent the major soil-forming factors
(Jenny, 1941), or “scorpan” factors (McBratney et al., 2003), driving
the spatial heterogeneity of SOC. The systematic reviews of Minasny
et al. (2013), Wiesmeier et al. (2019), and Lamichhane et al. (2019)
listed these variables as key SOC predictors that control SOC spatial
variability. Vasques et al. (2012) showed inconsistent controls of en-
vironmental factors in predicting SOC stocks as the scale of environ-
mental factors increased from 30 to 1920 m. Our findings are partially
consistent with these results, and we report mathematical functions that
represent the scaling behaviors of several additional environmental
factors on SOC distributions.

We found that changing the scale of predictors greatly affected pre-
diction accuracy; that is, the accuracy decreased with increasing spatial
scale. Guo et al. (2019) also reported that Cubist model performance
decreased while predicting SOC using 22 terrain attributes at 71 different
scales ranging from 12.8 to 2304 m. They also observed that scale in-
fluences variable importance, which is consistent with our results. There
is a wealth of literature on the relationship between scale and soil prop-
erty predictions (e.g., Florinsky and Kuryakova, 2000; Kuo et al., 1999;
McBratney, 1998; Thompson et al., 2001; Zhang and Montgomery, 1994),
and which suggested that the coarsening of scale progressively diminishes
the information contained, and thereby affects soil-predictor correlations
and prediction accuracies (Behrens et al., 2010; Maynard and Johnson,
2014). This idea was also verified in this study.

4.2. Scaling impacts on spatial heterogeneity of SOC

We observed a linear decrease in variance and mean of SOC stocks
with spatial scale. In contrast with our findings, Mishra and Riley
(2015) reported a nonlinear (exponentially decreasing) relationship
between the variance of SOC and spatial scale. They reported that in
arctic and boreal systems, the spatial heterogeneity of SOC stocks de-
creased exponentially up to the 500-m spatial scale and then remained
constant. There is a lack of SOC scaling studies in different systems, but
the scaling behavior of soil moisture is well documented (Crow et al.,
2012; Famiglietti et al., 2008; Li and Rodell, 2013). Some studies report
that the variance of soil moisture follows a power-law relationship with
scale (Manfreda et al., 2007; Rodriguez-Iturbe et al., 1995), while
others show complex scaling behaviors (Joshi and Mohanty, 2010; Pau
et al., 2014; Riley and Shen, 2014). These soil moisture scaling studies
suggest that further work is needed to understand the influence of en-
vironmental factors (topography, vegetation, soil properties, and rain-
fall) on soil moisture to enhance the mechanistic understanding of
scaling properties; we argue here that future studies should prioritize
similar analyses to better understand the scaling behavior of SOC, other
soil attributes, and environmental controllers.

4.3. Scaling impacts on statistical properties of SOC

One way to represent the spatial heterogeneity of soil properties in
ESMs could be to relate their statistical properties to the mean state. For
example, several soil moisture studies examined the relationships
among soil moisture mean and higher-order statistics, such as skewness
and kurtosis (Famiglietti et al., 2008; Li and Rodell, 2013; Riley and
Shen, 2014; Ryu and Famiglietti, 2005). Results from these studies
suggest that mean soil moisture is often related to its skewness and
kurtosis. However, they have different functional forms that depend on
various ecosystem properties and scales. Mishra and Riley (2015) re-
ported moderate but statistically significant linear relationships among
the mean and higher-order moments of SOC (i.e., variance, skewness,
and kurtosis). Consistent with these results, our study also found that
mean SOC had linear relationships with variance, skewness, and CV and
its standard deviation across scales (R2 > 0.96). However, the linear
relationship was moderate with skewness and weak with kurtosis.
These results suggest that with the known average value of SOC stocks
in an area at a given spatial scale, the statistical distribution of SOC
stocks could be predicted using linear functions.

4.4. Implications for ESMs and DSM

Current land models use a nested sub grid hierarchy approach to
represent land-surface heterogeneity (Koven et al., 2013; Lawrence
et al., 2012; Tang et al., 2013). In this approach, the model grid cells are
divided into non-spatially explicit land units, such as natural

Table 3
Model validation indices derived for training and test datasets at multiple spatial scales.

Validation index 100 m 250 m 500 m 1 km 2.5 km 5 km 10 km 25 km 50 km

R2 Training 0.65 0.62 0.60 0.56 0.55 0.53 0.52 0.49 0.48
Test 0.53 0.51 0.49 0.48 0.47 0.47 0.41 0.40 0.38

ME Training 0.006 −0.007 0.004 0.008 0.004 −0.003 0.01 0.014 0.018
Test 0.035 0.02 0.025 −0.001 0.01 −0.01 −0.006 0.035 0.01

RMSE Training 0.41 0.43 0.45 0.46 0.46 0.45 0.45 0.45 0.44
Test 0.51 0.52 0.53 0.53 0.52 0.52 0.51 0.54 0.54

RE Training 0.59 0.62 0.63 0.66 0.66 0.67 0.68 0.70 0.71
Test 0.67 0.69 0.69 0.71 0.73 0.71 0.75 0.76 0.76

R2: coefficient of determination; ME: mean error; RMSE: root mean squared error; RE: relative error.
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vegetation, lakes, urban, glaciers, and crops. We demonstrated that this
type of representation cannot characterize the environmental controls
and scaling properties of SOC; therefore, rectifying this problem would
require substantial restructuring of the model’s sub-grid hierarchy. One
potential application of the relationships we developed in this study
could be to apply them with coarse-resolution ESM results to generate
fine-scale spatial heterogeneity parameters of SOC that are more re-
presentative of the natural landscape.

Currently, most ESM land models have a spatial scale of 50 or
100 km. In the next 5–10 years, ESM land models will likely function
within the spatial resolutions we identify in our study as being re-
presentative of the observed SOC landscape heterogeneity (i.e., be-
tween 100 m and 50 km). As model resolution becomes finer in the next
generation of ESMs, datasets such as the one we describe in this study
will be critical for model benchmarking. We note that many environ-
mental factors that we found significant at various scales are not re-
presented in current land models. However, representing these factors
in future land model developments could improve the prediction and
understanding of SOC dynamics.

Digital mapping of soil carbon utilizes a wide range of SOC pre-
dictors; however, there are no fixed rules for selecting an appropriate
scale at which SOC should be mapped. Our study tested nine different
scales ranging from 100 m to 50 km for SOC predictions, and we believe
our results could inform the pedometrics and DSM community about
scale-dependent environmental variable selection and appropriate scale
considerations for spatial predictions. The scaling knowledge relation-
ships we developed here could benefit the modeling community by
identifying scale-dependent SOC predictors for research and manage-
ment applications. Moreover, our study highlighted some knowledge
gaps regarding scaling issues for development and verification of re-
search relevant to the soil mapping and modeling communities.

5. Conclusions

Understanding the causes and consequences of spatial heterogeneity
in ecosystem function is challenging. We modeled the spatial relation-
ships of observed SOC stocks and their prediction variables at nine
different spatial scales, ranging from 100 m to 50 km, by using machine
learning-based regression rules and quantified the scaling behavior of
SOC stocks across the conterminous United States. Key SOC predictors
at each prediction scale were identified, and their strengths of influence
were quantified. Based on the results, the following conclusions can be
drawn:

• SOC distribution in the study area was highly variable (CV = 157%)
with a mean and standard deviation of 95 and 150 Mg ha−1, re-
spectively.
• Out of the 31 predictors used, only 13 were significant at all scales.
Almost all topographic variables were significant at scales< 250 m;
however, precipitation-, land-use- and land-cover-, and soil-related
variables were significant at all scales.
• Topographic variables had higher importance at finer scales,
whereas climatic variables were more important at coarser scales.
Specifically, at a spatial scale of 100 m, close to 50% of the variables
in the MLR prediction function were related to topography, and
almost 50% were related to climate at 50 km. Similarly, at setting
condition rules, climate variables had the least impact at 100 m (RI:
4%) and the most impact at 50 km (RI: ~30%).
• The strengths of SOC predictors depend upon spatial scale or grid
size. For example, the largest influence of NDVI, which was sig-
nificant at scales ≤1 km, was at 500 m. Similarly, SAGAWI was a
key predictor at scales up to 5 km, showing a maximum influence at
1 km. The strengths of PPT and PET increased with scale, with PPT
showing positive and PET showing negative influences on SOC
distribution.
• Predicted SOC mean and variance decreased linearly with scale

(R2 > 0.80), and both mean, and variance had a strong, positive
linear relationship (R2 = 0.96). Mean SOC also had strong linear
relationships with higher order moments.
• The scaling impact of predictors was more obvious at a specific SOC
range (i.e., < 3.5 and> 4.5 log [Mg SOC ha−1]); the influence was
less pronounced between these SOC values.
• Prediction model performance decreased with spatial scale.
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