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Human-caused long-term changes in global aridity
Rongfan Chai1,2,6, Jiafu Mao 2,6✉, Haishan Chen 1✉, Yaoping Wang3, Xiaoying Shi2, Mingzhou Jin 3, Tianbao Zhao 4,
Forrest M. Hoffman5, Daniel M. Ricciuto2 and Stan D. Wullschleger2

Widespread aridification of the land surface causes substantial environmental challenges and is generally well documented.
However, the mechanisms underlying increased aridity remain relatively underexplored. Here, we investigated the anthropogenic
and natural factors affecting long-term global aridity changes using multisource observation-based aridity index, factorial
simulations from the Coupled Model Intercomparison Project phase 6 (CMIP6), and rigorous detection and attribution (D&A)
methods. Our study found that anthropogenic forcings, mainly rising greenhouse gas emissions (GHGE) and aerosols, caused the
increased aridification of the globe and each hemisphere with high statistical confidence for 1965–2014; the GHGE contributed to
drying trends, whereas the aerosol emissions led to wetting tendencies; moreover, the bias-corrected CMIP6 future aridity index
based on the scaling factors from optimal D&A demonstrated greater aridification than the original simulations. These findings
highlight the dominant role of human effects on increasing aridification at broad spatial scales, implying future reductions in aridity
will rely primarily on the GHGE mitigation.
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INTRODUCTION
Aridity, and associated water scarcity, is a long-term hydrologic
and climatic condition, exerting pervasive influences on dynamics
in human society and terrestrial ecosystems (e.g., more frequent
hydrologic and ecosystem droughts, increased economic losses,
decreased land carbon sink)1–3. Recent studies indicate that
aridity, defined in terms of atmospheric supply (precipitation) and
demand of water (potential evapotranspiration, PET), has
increased globally during recent decades and is projected to
increase significantly in the future2,4,5. However, uncertainty
remains in the natural and anthropogenic mechanisms leading
to changes in such aridity. Natural variability (e.g., Pacific Decadal
Oscillation and El Niño–Southern Oscillation [ENSO]) has been
found to modulate large-scale aridity via atmosphere-ocean
feedbacks and atmospheric teleconnections6,7; however, the
natural variability alone cannot explain increasing aridification at
long timescales8–10. Overall, anthropogenic greenhouse gas
emissions can enhance global precipitation11 and modify stomatal
conductance and plant water use12, likely relieving the aridity
stress; however, the ubiquitous increase in PET associated with
greenhouse gas-induced warming may aggravate the aridity13.
Thus, the net greenhouse gas effects on global aridity remain
uncertain and require further research1,12. Given the much shorter
residence time and more complex effects of aerosols than those of
greenhouse gas emissions14, aerosols have been identified as the
second-largest anthropogenic driver in the Earth system, partially
offsetting the greenhouse gas effects on drying15,16. Nevertheless,
the identification of aerosol aridity effects is challenging because
of their heterogeneous spatial distribution and direct and indirect
interactions with hydrological cycles17,18.
Defined as the ratio of annual precipitation to PET, the aridity

index (AI) has been widely used to characterize the degree of

meteorological drought4,5,13,19. Compared with other meteorolo-
gical drought indices (e.g., Standardized Precipitation Index and
Palmer Drought Severity Index), the AI is more climatically suitable
for the characterization of aridity/wetness condition and for the
classification of climate and vegetation over certain regions.
Moreover, the AI has been shown to closely correlate with the
changes of other drought types (e.g., hydrologic drought,
agricultural drought, ecosystem drought), although it represents
background climatological aridity more than specific drought
events19–21. Previous AI studies typically used a single set of
observation5,22 or merely model results23–25, thereby limiting the
robustness of their findings. Investigations of AI changes were also
primarily focused on the roles played by meteorological variables,
such as precipitation and PET4,23,26, without strict quantification of
the contributions from major human and natural forcings.
Moreover, little effort has been made to constrain future AI
simulations using multiple historical observations5,27, which could
induce significant uncertainty in the AI projections.
In this study, we aim to comprehensively disentangle the

human fingerprints from natural internal variability for the AI
changes during the 1965 to 2014 period. To decrease the
uncertainty of long-term AIs, we developed a collection of
historical AI products based on multisource observational
precipitation and reanalysis PET data sets (see Methods and
Supplementary Note 1). The PET data were derived from the
modified Penman–Monteith algorithm28 that includes the effects
of temperature, humidity, solar radiation, wind speed, and
atmospheric CO2 concentrations. For both the global scale and
two hemispheres, a formal detection and attribution (D&A)
analysis was conducted to separate the individual contributions
from human activities and natural variability using optimal
fingerprinting methods29,30, the new AI products, and the latest
factorial experiments from the Coupled Model Intercomparison
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Project phase 6 (CMIP6). These CMIP6 ensemble experiments (see
Supplementary Note 2) comprise those driven by historical
anthropogenic and natural forcings (ALL), greenhouse gas forcing
only (GHG), natural forcing only (NAT), aerosol forcing only (AER),
and preindustrial control (piControl). We further applied the D&A-
derived scaling factors, which indicate the amount by which the
amplitude of the model-simulated responses to forcing must be
altered to be consistent with the observations29–31, to correct the
future aridity trends under different CMIP6 Shared Socioeconomic
Pathways (e.g., SSP3− 7.0 and SSP5− 8.5).

RESULTS
Spatiotemporal patterns of historical aridity
The observed AI trends (OBS), averaged across 12 combinations of
source precipitation and PET datasets (see Methods), showed
negative (drier) trends over the vast majority of North America,
Western Europe, central South America, and South Africa. Positive
(wetter) trends were shown to be scattered over north Africa,
India, tropical southeast Asia, and northwest Australia (Fig. 1a).
Such more widespread drying (61.2% of the global area in OBS)
than wetting patterns were generally captured by the ALL
experiments (57.8% of the global area showed drying), albeit
with over or underestimated magnitudes (Fig. 1b). However, a
notable difference of the ALL results from the OBS occurred over
central Africa, possibly from the African wetting produced by the
AER forcing (Supplementary Fig. 1c) (see Discussion). The model
biases in the simulated responses of precipitation and PET to the
ALL forcing may have also contributed to the ALL-OBS differences
in various regions, including the Sahel region, the Arabian
Peninsula, South America, and Australia (Supplementary Fig. 1).
In terms of percentage changes in AI, the OBS (Supplementary Fig.
2a) showed greater percentage increases or decreases in northern
Africa, western Asia, western Australia than the other parts of the
world, which was likely due to the dryness (i.e., low climatological
AI values) of these regions (Supplementary Fig. 2c). The ALL
simulations generally agreed with the observations, except for
failing to reproduce the higher decreased changes over western
Asia (Supplementary Fig. 2b). In contrast to the ALL simulations,
the NAT simulations had much weaker trend magnitudes of AI
than those of both the OBS and ALL simulations, and little inter-
model agreement on the signs of the trends (Fig. 1c). The average
AI trends under the NAT forcing were slightly positive over central
North America and central Eurasia, and mainly negative over
Africa, East Asia, and Australia (Fig. 1c). The AI changes simulated
by the anthropogenic forcing (ANT, obtained by subtracting the
NAT from the ALL simulations; Fig. 1d) resembled the ALL results
and generally agreed with the OBS (Fig. 1a), indicating that the
combined anthropogenic effects dominated the AI changes,
especially the extensive drying trends. For individual anthropo-
genic effects, the GHG determined long-term drying tendencies
across most regions around the globe (Fig. 1e), whereas the AER
caused evident drying over western Europe and wetting across
other continents, especially Africa, East Asia, and Australia (Fig. 1g).
For the global AI anomalies (relative to 1973 to 2002), the OBS

showed an overall downward trend (−0.032 ± 0.018 per 50 yr),
reproduced by both the ALL and ANT ensemble simulations
(−0.022 ± 0.0067 and −0.017 ± 0.011 per 50 yr, respectively) (the
time series is shown in Fig. 2a, and the entire distribution of trends
in Supplementary Fig. 3). The observed drying tendency, however,
was not captured in magnitude or sign by the NAT, AER, or the
non-GHG anthropogenic (ANTnoGHG, obtained by subtracting the
GHG from the ANT simulations) simulations (−0.0047 ± 0.0037,
0.0034 ± 0.0097, and −0.0059 ± 0.0090 per 50 yr, respectively;
Supplementary Fig. 3). Both the GHG and the non-AER anthro-
pogenic (ANTnoAER, obtained by subtracting the AER from the
ANT simulations) experiments simulated the global AI trends

comparable to the OBS and ALL, confirming the controlling role of
greenhouse gases on the AI changes within the anthropogenic
influences (Supplementary Figs. 3 and 4). For the two hemi-
spheres, both showed long-term drying trends, with a larger
magnitude of decrease for the Northern Hemisphere (NH)
(−0.038 ± 0.020mmmm−1 per 50 yr) than for the Southern
Hemisphere (SH) (−0.018 ± 0.011mmmm−1 per 50 yr) (Fig. 2b, c
and Supplementary Fig. 3). These hemisphere-scale observational
drying trends were largely reproduced by the simulations that
included GHG in the forcings (i.e., ALL, ANT, GHG, ANTnoAER) but
not by the simulations that excluded GHG in the forcings (i.e., NAT,
AER, ANTnoGHG) (Supplementary Figs. 3, 5, and 6). The
magnitudes of drying were slightly smaller in the ALL and ANT
simulations (−0.022 ± 0.0067 and −0.017 ± 0.011 per 50 yr,
respectively) than those in the OBS (−0.032 ± 0.018 per 50 yr)
for the global- and NH-averaged AIs (Supplementary Fig. 3). Such
underestimation of drying trends by the ALL and ANT simulations
for the global and NH resulted mainly from the wetting trends
over central Africa (Fig. 1).

D&A of aridity changes
Using the above-described global- and hemispheric-averaged
time series of AI, we performed D&A analyses of the aridity
changes by regressing29–31 the model simulations driven with
different external forcings onto the OBS time series averaged over
all combinations of precipitation and PET data for the period
1965–2014. The regressions included fitting using each forcing (1-
forcing analyses; e.g., ALL, ANT, GHG, AER, and NAT), two forcings
(2-forcing analyses; e.g., ANT and NAT), and three forcings (3-
foricng analyses; e.g., AER, ANTnoAER and NAT and GHG,
ANTnoGHG, and NAT). The regression procedure thus produces
regression coefficients, i.e., scaling factors, that indicate the
difference between model-simulated responses and the observa-
tions. We considered a forcing detectable if the 90% confidence
interval of the scaling factor lies above zero, and attributable if this
confidence interval also includes one. As sensitivity analysis, the
D&A regressions were performed using two regression methods
(optimal least squares [OLS]30,31 and total least squares [TLS]29)
and on a few different setups of CMIP6 ensemble members (All,
Limited, 3-member, and Uniform, see the Methods and caption of
Fig. 3 for details).
Based on the OLS–estimated scaling factors for the OBS, at the

global level, the ALL and ANT forcings were detectable and
attributable in 1- forcing (one forcing) and 2-forcing (joint
forcings) analyses; the GHG forcing was detectable in 1- and
3-forcing (joint forcings) analyses, but not consistently attributable
in 3-forcing analysis; the ANTnoAER forcing, which includes the
GHG and the ANTnoGHGAER forcing (obtained by subtracting the
GHG and AER simulations from the ANT simulations; examples
include land use and land cover change, ozone), was detectable
and attributable in 3-forcing analysis; the AER forcing was not
consistently detectable in 1-forcing analysis but was detectable in
3-forcing analysis; the ANTnoGHG forcing, which includes the AER
forcing and the ANTnoGHGAER forcing, was not detectable; the
NAT forcing was not detectable except in one case (the 3-forcing
analysis AER-ANTnoAER-NAT, Limited CMIP6 models) (Fig. 3a). In
the NH, the D&A conclusions for ALL, ANT, GHG, ANTnoAER, and
ANTnoGHG were identical to the global results; the AER forcing
was not consistently detectable in 1-forcing analysis but was
detectable or detectable and attributable in 3-forcing analysis; the
NAT forcing was only detectable in some combinations of CMIP6
models and a number of analyzed forcings (Fig. 3c). In the SH, the
D&A results for ALL, ANT, GHG, ANTnoAER, and ANTnoGHG were
the same as the global conclusions; the AER forcing was not
detectable in 1-forcing analysis but was detectable and attribu-
table in the 3-forcing analysis; the NAT forcing was not detectable
(Fig. 3e). These results demonstrate a significant presence of
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anthropogenic signals, which are likely a combination of GHG and
AER in the global, NH-, and SH-averaged AI. The consistently
detectable or detectable and attributable forcings (i.e., ALL, ANT,
GHG, and ANTnoAER) contributed to negative (i.e., drying) trends
in the global, NH-, and SH-averaged AIs (Fig. 3b, d, and f). The AER
forcing in 3-forcing analysis contributed to positive (i.e., wetting)
trends in the global, NH-, and SH-averaged AIs (Fig. 3b, d, and f).
The broadscale AI D&A results based on OLS mostly did not

change with the choice of CMIP6 models (e.g., all available CMIP6
models [All] or only the CMIP6 models with at least three
ensemble members [3-member]), with the exceptions being the

AER forcing in the 1-forcing analysis, and the NAT forcing in some
of the 1- or 3-forcing analysis for the global and NH-averaged AI
(Fig. 3a and c). Applying an alternative regression-based D&A
method, TLS, generally yielded higher uncertainty intervals for the
scaling factors than the OLS method, but the ALL and ANT
forcings remained detectable and attributable for the global, NH-,
and SH-averaged AIs in the 1-forcing analyses, and the GHG
forcing remained detectable or detectable and attributable for the
global- and NH-averaged AIs in 1- and 3-forcing analyses
(Supplementary Fig. 7).

Fig. 1 Spatial distribution of AI trends for 1965 to 2014. Spatial distribution of the linear trends of 5-yr mean annual AI (per 50 yr) in the
mean of observations (OBS) (a), and CMIP6 simulations with ALL (b), NAT (c), and ANT (d), GHG (e), ANTnoGHG (f), AER (g), ANTnoAER (h), and
ANTnoGHGAER forcings (i). The dot indicates at least 70% of the simulation members agreeing on the direction of the trend at that point.
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Additional sensitivity analysis on the D&A analysis included
applying the OLS and TLS methods on the observed AI time series
derived from different precipitation data sets (Climatic Research
Unit [CRU], Climate Prediction Center [CPC], Global Precipitation
Climatology Centre [GPCC], University of Delaware [UDEL]) and
different reanalysis-based PET data sets (Global Land Data
Assimilation System [GLDAS], NOAA-CIRES Twentieth Century
Reanalysis [20CR], ERA5) (Supplementary Figs. 8−15). Supplemen-
tary Table 1 provides a further summary of the D&A results shown
in Fig. 3 and Supplementary Figs. 7−15, i.e., across the various
combinations of methods, observations, and CMIP6 models. Three
of the precipitation data sets (CRU, GPCC, CPC) generally resulted
in D&A of the ALL, GHG, AER, and ANTNoAER forcings in the global
and NH-averaged AI, whereas the UDEL-precipitation data set
generally resulted in only the detection of these forcings. The use
of the CPC-precipitation-based observed AI in the D&A resulted in
no detection of the ANT forcing in the NH-averaged AI
(Supplementary Table 1), which was caused by relatively large
uncertainty intervals in the scaling factors, and the point estimates
of the ANT scaling factors generally had similar values to the other
precipitation data sets (Supplementary Figs. 7−15). The use of the
GLDAS-reanalysis-based observed AI in the D&A generally resulted
in D&A of the ALL, ANT, GHG, AER, and ANTNoAER forcings in the

global and NH-averaged AI. The use of the 20CR reanalysis-based
observed AI in the D&A did not result in the detection of the ALL
or ANT forcings. The use of the ERA-5-reanalysis-based observed
AI in the D&A did not result in the detection of the ALL forcing in
the global averaged AI. For the SH-averaged AI, the various
precipitation and reanalysis data sets resulted in similar D&A
conclusions to the OBS.

Future evolutions of aridity
Under the SSP3− 7.0 and SSP5− 8.5, the projected global and
hemispheric AIs were simulated to continue to decrease in the
twenty-first century (Fig. 4). The faster AI declining rates were
associated with SSP5− 8.5 (−0.030 ± 0.026, −0.030 ± 0.031, and
−0.033 ± 0.018 per 50 yr for the globe, NH, and SH, respectively),
whereas the slower changes were projected by SSP3− 7.0
(−0.027 ± 0.015, −0.025 ± 0.018, and −0.033 ± 0.012 per 50 yr for
the globe, NH, and SH, respectively). Spatially, the original
CMIP6 simulations showed consistently drying trends over central
North America, central South America, southern Europe and
southern Africa under both SSP3− 7.0 and SSP5− 8.5 scenarios
(Supplementary Fig. 16). The regions with changes toward wetting
conditions mainly scattered over high latitudes of NH, central and
South Asia, central Africa, and southern South America (Supple-
mentary Fig. 16). Wide-ranging temporal variations between
different SSPs or within the same SSP suggested large uncertain-
ties occurred in the original projected trends of future drying.
Compared with the original projected trends, the corrected trends
in the global, NH-, and SH-averaged AI, obtained by multiplying
the best estimates of, respectively, global, NH-, or SH-scaling
factors from the historical D&A analysis on the ALL forcing,
showed even faster drying rates and larger drying trends for all
focus regions (Fig. 4 and Supplementary Table 2). In the SH, such
higher AI magnitudes and related wider ranges of AI trends for the
corrected projections than the original ones were mainly caused
by the large regression-based D&A scaling factors and associated
uncertainty intervals (Figs. 3e and 4c).

DISCUSSION
Previous studies have identified intensified global aridification
based on aridity analyses or other drought variables7–9,32,
including the Palmer Drought Severity Index, soil moisture index,
and streamflow. We also found significant decreases in AI (i.e.,
drying trends) broadly consistent in sign and magnitude across
the globe and two hemispheres (Fig. 2 and Supplementary Fig. 2).
Traditionally, areas where the AI is less than 0.65 are classified as
dryland and are further divided into subtypes of hyper-arid (AI <
0.05), arid (0.05 ≤ AI < 0.2), semiarid (0.2 ≤ AI < 0.5) and dry
subhumid (0.5 ≤ AI < 0.65) regions. The spatially widespread
decreases in AI (>60% of the global area, on the order of ~0.1 per
50 years; Fig. 1) would not have much impact over extremely dry
and wet regions (e.g., Sahara Desert and Southeast Asia) but may
trigger the transition from wetter to drier types and then increase
the risks of land degradation and desertification.
We further examined the key role that human activity,

especially greenhouse gas emissions, played in strengthening
aridity over the study period (Fig. 3). For the globe, NH, and SH,
the GHG forcing was consistently detected or detected and
attributed (Fig. 3, Supplementary Table 1), and the GHG
simulations well captured the decreasing AI trends in the OBS
(Fig. 2 and Supplementary Figs. 3–6). Such AI decreases driven by
elevated greenhouse gas emissions were mainly caused by the
increase in air temperature, as detailed in Supplementary Note 3
and Supplementary Fig. 17, implying that the land precipitation
increase could not keep pace with the growing evaporative
demand associated with greenhouse gas–dominated warming13.
For the globe, NH, and SH, the AER forcing was also frequently

Fig. 2 Observed and simulated 1965 to 2014 time series of AI
anomalies (relative to 1973 to 2002). The 5-yr mean annual AI
anomalies overland of the globe (a), NH (b), and SH (c) for the mean
of observations (OBS) and CMIP6 simulations accounting for ALL,
NAT, and ANT forcings. The ensemble means for each set of forcings
are given in red, green, and brown solid lines for ALL, NAT, and ANT,
respectively. The observation means are indicated with solid black
lines. Red, green, and brown shading represent the 5–95% ranges
for ALL, NAT, and ANT ensembles, respectively. The gray dashed lines
represent the 5%–95% ranges for the range of variability for the
piControl.
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detected or detected and attributed (Fig. 3, Supplementary Table
1). Through the absorption and scattering of incoming solar
radiation, aerosols reduce incoming solar radiation at the land
surface and thus offset part of the aridity resulting from
greenhouse gas emissions–induced warming, which is consistent
with the identified positive contributions of AER to the global, NH-,
and SH-averaged AI trends (Fig. 3). However, because of the
indirect aerosol effects, such as the aerosol-cloud interactions
through microphysical processes17,33, the increase in anthropo-
genic aerosol emissions may lead to reduced large-scale
precipitation and, hence, enhanced aridity15,34. Notably, aerosol
emissions have exhibited strong spatiotemporal heterogeneity
with a shift from developed to developing countries since the

1970s18. Such a transition further exerted complicated effects on
regional and remote aridity via altered circulation patterns and
associated changes in precipitation and PET35–37. For example, the
AER simulations produced evident wetting trends over Africa,
especially central Africa, with the reduction of PET and increase of
precipitation both contributing to such positive AI trends (Fig. 1g
and Supplementary Fig 18).
The similarity in the D&A results between GHG and ANTnoAER,

including when the two forcings were estimated from the same
set of CMIP6 models (e.g., the Uniform setting), suggests that the
effects of the ANTnoGHGAER forcing were small compared with
the GHG forcing. The general lack of detection of the ANTnoGHG
forcing may be because the effects of the AER forcing were

Fig. 3 D&A analysis for the 1965 to 2014 time series of AI anomalies. The scaling factors and observed and attributable trends for global-
(a, b), NH- (c, d), and SH-averaged (e, f) AIs were estimated using the OLS D&A method and the average of observations. The scaling factors
were estimated one by one (1-forcing) and jointly (2- and 3-forcing). Error bars show 90% confidence intervals for the scaling factors. “ALL”
used all the available CMIP6 models, “Limited” used the models that have both piControl and target forcing (e.g., ALL and ANT) simulations,
“3-member” used models with large ensembles (≥3 members), and “Uniform” used models that have piControl and all the forcings (ALL, GHG,
AER, NAT) simulations. The 3-member case was only displayed for the ALL forcing because it was identical to the All case for the other
forcings.
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smaller than the GHG forcing, albeit detectable, and were
counteracted by the ANTnoGHGAER forcing over the majority of
the global land surface (Fig. 1i and Supplementary Figs. 4−6).
As shown in Supplementary Table 1, the results of D&A

somewhat depended on the method of analysis, the number of
forcings analyzed, and observational and model products.
Compared with the OLS method, the TLS D&A method rarely
detected the GHG forcing in the SH-averaged AI and had much
higher uncertainty in the scaling factors (Supplementary Table 1
and Supplementary Figs. 7, 9, 13, and 15). These differences may
be because the TLS statistical model has more degrees of freedom
than OLS29,30, and because the TLS model may correctly estimate
the uncertainty intervals of the scaling factors when the signal-to-
noise ratio is low in the D&A29. Considering the generally low
signal-to-noise ratios in hydrological variables, this study mainly
adopted OLS to derive robust results but used TLS as auxiliary. The
detection of the AER forcing in 3-forcing analysis but not 1-forcing
analysis (Fig. 3 and Supplementary Fig. 7) may be because the AER
forcing explained a relatively small fraction of variability in the
historical AI. Therefore, in 1-forcing analysis, the residuals of the
OLS formula may be too large to pass the residual consistency test
of the D&A analysis30,31, resulting in un-detection. For different
combinations of CMIP6 ensemble simulations, the inconsistencies
in D&A results existed mainly in the weak forcings (AER and NAT),
and the results on ALL, ANT, GHG, and ANTnoAER were consistent
(Fig. 3 and Supplementary Fig. 7). The uncertainty across different
combinations of precipitation and reanalysis data sources was
high in the global and NH-averaged AI, and low in the SH-

averaged AI. The use of UDEL-precipitation-based AI differed from
other precipitation-based AI data sets in detecting but not
attributing most of the analyzed forcings, likely because the UDEL
data set has a stronger decreasing trend during the study period
than other precipitation products9. The differences across the
reanalysis data sets occurred on the ALL and ANT forcings,
whereas the GHG and AER forcings were generally detected or
detected and attributed for all three reanalysis data sets. The lack
of detection of the ALL and ANT forcings in the 20CR reanalysis in
the global and NH-averaged AI may be because the 20CR
reanalysis only assimilated surface pressure38 and was less realistic
than the other reanalysis data sets. The lack of detection of the
ALL forcing in the ERA5 reanalysis in the global and NH-averaged
AI may be because the ERA5-based AI, similar to the UDEL-based
AI, showed large decreases during the study period (Supplemen-
tary Fig. 19). Despite these uncertainties, each precipitation or
reanalysis data set resulted in the detection of at least two of the
ALL, ANT, GHG, and AER forcings with the OLS method, and at
least one with the TLS method, supporting the significant
existence of anthropogenic signals.
In addition to the above-mentioned uncertainty sources, the

D&A analysis may be influenced by the choice of window sizes for
the spatial and temporal averaging of the gridded AI values. The
temporal window size (5-year averaging) selected in this study
was to remove some interannual variability (e.g., ENSO) while
retaining a sufficiently large number of data points (10) for the
D&A analysis. However, the current averaging window did not
preclude the influence from oscillations that have a characteristic
time scale longer than 5 year (e.g., the Pacific Decadal Oscillation).
The spatial window size (global and hemispheric) selected in this
study also omitted a more detailed investigation of AI driving
mechanisms across smaller regions or particular ecosystems,
deserving further in-depth D&A analysis.
The model-projected trends of land aridity in the twenty-first

century may contain significant uncertainty as shown in this study
(Fig. 4) and previous work1,4,26,38,39. To constrain the changes of
future aridity, various bias-correction algorithms were
tested5,27,40,41 and the resulting corrections were proved to be
sensitive to the choice of methods and input observational data
sets5,41,42. For example, a projected high frequency of aridification
could become less prevalent after the correction without
considering the PET effects40,43; contrasting sign and magnitude
in aridity changes may be obtained5,41 after the constraints
accounting for the effects of evaporative demand. For this study,
the future-corrected AIs were calculated by multiplying
the original SSP AIs with the best scaling factors estimated from
the historical D&A analyses. The underlying assumption was that
the fractional biases in the model responses to external forcings
would largely stay constant over time44. This approach, however,
can be mainly applied onto global and regional changes under
scenarios where radiative forcings increase over time, such as the
SSP3− 7.0 and SSP5− 8.5, but not all the SSP cases45,46. Such
process-based corrections resulted in more negative AI trends
than the original CMIP6 results, calling again for the need to be
prepared for a likely increased risk of more arid conditions in the
future, especially for the high-emission scenarios5. However, AI
mainly characterizes the meteorological drought in an integrative
way rather than all drought features that could be captured by
other aridity or drought metrics (e.g., vapor pressure deficit, soil
moisture, river flow, vegetation productivity). Consistent with
previous estimates, the updated PET algorithm for AI calculation in
this study produced decreased AI magnitudes (less aridification)
by considering the CO2 physiological effects under elevated CO2

conditions (see Supplementary Note 1)12,47. Nevertheless, to
achieve a more comprehensive understanding of aridification
changes and their uncertainties, other processes (e.g., land use/
land cover change effects, land-atmosphere feedback, land-ocean

Fig. 4 Time series (left) and trends (right) of AI anomalies (relative
to 1973 to 2002) for 1965 to 2099. Time series and linear trends
(per 50 yr) of 5-yr mean annual AI anomalies over the globe (a), NH
(b), and SH (c) for CMIP6 simulations. The ensemble means of
historical ALL simulations are indicated with solid grey lines. The
ensemble means for original future projection are given in dark blue
and red solid lines for SSP3− 7.0 and SSP5− 8.5 ensembles,
respectively, with blue and red shading represent the 5–95%
ranges. The dashed lines indicate the corrected AI anomalies using
the ALL scaling factors from 1-forcing analyses. The vertical solid
and dashed bars show the trend uncertainty spread of original and
corrected AI anomalies for SSP3− 7.0 and SSP5− 8.5 ensembles as
labelled, respectively, with the dots indicating the mean values.
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warming contrast) in the climate and terrestrial ecosystems should
be quantified further13,47–49.
In summary, we have high confidence that the intensified

aridifications across broad spatial scales were caused primarily by
human activity between 1965 and 2014. Within the verified
anthropogenic effects, the GHG forcing dominated the long-term
observed drying tendencies around the globe, as well as two
hemispheres; and the AER forcing mitigated these drying trends as
a secondary affecting factor of AI. Stronger future aridity changes
projected by the constrained CMIP6 simulations suggest more
pressing environmental challenges that will likely face society.

METHODS
Development of observational AI products
AI, the ratio of annual precipitation to PET, represents a balance between
the moisture supply and demand4,5, and was used in this study to quantify
the degree of aridity. The decrease of the AI over a certain region indicates
that the climate is getting drier. To reduce the historical AI uncertainties
associated with different choices of precipitation and PET data sets, we
derived an ensemble of AI products based on the best available
observational precipitation and reanalysis PET data sets. The precipitation
data were from the CRU, the CPC National Centers of the Environmental
Prediction, the UDEL, and the GPCC. Climate variables (e.g., temperature,
radiation, specific humidity, wind speed, air pressure) involved in PET
calculations were obtained from selected reanalysis products, including
the 20CR, the ECMWF ERA-5, and the GLDAS. All the data sets used cover
the world’s land area excluding Antarctica and were interpolated into 0.5°
by 0.5° spatial resolution for the 1965 to 2014 period. In total, 12 members
of observation-based AI were produced by considering all possible
combinations of precipitation and PET products (Supplementary Table 3).

D&A
Formal D&A analysis was implemented using the OLS regression method29,36

(see Supplementary Note 4), which estimates the scaling factors between the
observation and simulated responses under one or more different forcings. A
scaling factor that is significantly greater than 0 based on a 90% confidence
interval is interpreted as that the forcing is detectable (called “detectable” in
the Results and Discussion sections), and a scaling factor statistically
indistinguishable from 1 is interpreted as the forcing being detectable and
the observed signal being attributable to the forcing (called “detectable and
attributable” in the Results and Discussion sections). The method also involves
residual consistency tests to ensure the variances of the regression residuals
are consistent with model internal variability. The D&A method was applied
onto the AI observations and CMIP6 AI under one forcing (1-forcing analysis),
and two or three forcings jointly (2- and 3-forcing analyses). To account for
observational uncertainty, the 12-member AI observations were grouped and
averaged according to the source of precipitation data (CRU, GPCC, UDEL,
CPC), the source of reanalysis-based PET (GLDAS, 20CR, ERA5), and over all the
combinations of precipitation and PET data (OBS). To test the robustness of the
D&A results to the choice of methods, the TLS regression method28 was
performed on all the AI observations and simulations (see Supplementary Note
5) in addition to the OLS method. To account for the uncertainty in simulated
AI uncertainties, the D&A analysis was conducted on the using all the available
CMIP6 models (All), the CMIP6 models that have both piControl and target
forcing (ALL, ANT, GHG, AER, NAT, ANTnoAER, or ANTnoGHG) simulations
(Limited), the CMIP6 models with large ensembles (≥3 members) only (3-
member), and the CMIP6 models that have piControl and all the forcings (ALL,
ANT, GHG, AER, NAT, ANTnoAER) and ANTnoGHG) simulations (Uniform).
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