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Abstract Trend, detection, and attribution analyses were performed using naturalized streamflow
observations and routed land surface model runoff for 10 subbasins in the Columbia River Basin during
water years 1951–2008. The Energy Exascale Earth System land‐surface model (ELM) version 1.0 and the
Routing Application for Parallel computatIon of Discharge (RAPID) routing model were used to conduct
semi‐factorial simulations driven by multiple sets of bias‐corrected forcing data sets. Four main potential
drivers, including climate change (CLMT), CO2 concentration (CO2), nitrogen deposition (NDEP), and land
use and land cover change (LULCC), were analyzed during the assessment. All subbasins showed
significant (α = 0.10) declines in the observed amount of annual total streamflow, except for the Middle
and Upper Snake and Upper Columbia Subbasins. These declines were led by significant decreases in
June–October streamflow, which also directly led to significant decreases in peak and summer streamflow.
Except for the Snake River Subbasins, LULCC had the same pattern of declines in monthly streamflow, but
the period was shifted to May–September. NDEP also had significant trends in June–October; however,
rather than decreases, the trends showed significant increases in streamflow. While there were significant
trends in CO2, NDEP, and LULCC, their signals of change were weak in comparison to the signal in
CLMT and the natural internal variability found in streamflow. Overall, the detection and attribution
analysis showed that the historical changes found in annual total, center of timing of, and summer mean
streamflow could be attributed to changing climate and variability.

1. Introduction

Discovering and tracking trends in the hydrological cycle for the western United States has been an impor-
tant area of research. In a series of studies, Barnett et al. (2008), Bonfils et al. (2008), Pierce et al. (2008),
and Hidalgo et al. (2009) conducted detection and attribution (D&A) analyses for multiple hydro‐
meteorological variables in the western United States (i.e., streamflow availability, center of timing, snow-
pack, minimum andmaximum daily temperature, winter air temperature, frost days, and degree‐days above
0 ° C). They found that the trends in the respective variables over the period 1950–1999 were at least partially
human‐induced. Human‐induced changes have also been discovered in summer streamflow in the British
Columbia (Najafi et al., 2017a). For the Upper Colorado River Basin, Xiao et al. (2018) found that naturalized
streamflow over the period 1916–2014 decreased 16.5% despite a 1.4% increase in annual precipitation. They
determined that 53% of the decrease was due to warming, while the remaining ~47% was from decreases in
winter precipitation (Xiao et al., 2018). More recently, studies have focused on the change in snowpack and
precipitation type. Najafi et al. (2017b), in addition to streamflow changes, also attributed declines in the
British Columbia spring snowpack to anthropogenic forcings. For the western United States, Mote et al.
(2018) found that 33% of snow monitoring sites with observations from 1955 to 2016 had significant
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declines in snowpack. Berghuijs et al. (2014) showed that the fraction of annual precipitation falling as snow
rather than rain for the period 1948–2001 had significant influence on annual streamflow in the contiguous
United States. More specifically, they determined that watersheds with a historically higher percentage of
precipitation falling as snow, as opposed to rain, had a higher long‐term and interannual mean streamflow.
This proportion of precipitation type (i.e., snow versus rain) is more closely linked to temperature variations
than to variations in precipitation amount in the western United States (Safeeq et al., 2016). Hence, it is
believed that the loss in snowpack is due to warmer winter temperatures leading tomore winter precipitation
falling as rain rather than as snow (Regonda et al., 2005). Fyfe et al. (2017) projected that future western U.S.
snowpack will decline up to another 60% in the next 30 years. The projected climate changes leading to
decreases in snowpack also lead to decreases in mountain system groundwater recharge (Meixner et al.,
2016). In addition, Barnett et al. (2005) predicted that by 2050, the Columbia River system would not be able
to sustain historical levels of both spring and autumn water releases for hydropower generation and releases
for spring and summer salmon runs.

Leveraging a newly available naturalized daily streamflow data set from the Bonneville Power
Administration (Bonneville Power Administration (BPA), 2017), in this study, we performed a comprehen-
sive D&A analysis of multiple hydrological variables in the Columbia River Basin (CRB) and its subbasins.
The CRB is of particular interest due to its significant multipurpose river system benefits in ecology, envir-
onment, irrigation, navigation, recreation, flood control, and hydropower generation (Bonneville Power
Administration (BPA), 2017). We employed the Energy Exascale Earth System land‐surface model
(ELM) version 1.0 to simulate the surface hydrology with various forcing data sets. We also took advantage
of a recently developed river routing model, Routing Application for Parallel computatIon of Discharge
(RAPID; David, Habets, et al., 2011, David, Maidment, et al., 2011; Snow et al., 2016; Tavakoly et al.,
2017), to efficiently route streamflow through over 192,000 NHDPlus (McKay et al., 2012) river segments
in the CRB. To investigate both the annual and seasonal streamflow, we focused on the center of timing,
summer mean, and peak flow. Quantification of changes in the CRB streamflow metrics were also ana-
lyzed due to changing climate and climate variability versus changes in carbon dioxide concentration,
nitrogen deposition (NDEP), and land use and land cover change (LULCC). In the simplest terms, exclud-
ing storage changes, runoff can be considered as the difference between long‐term precipitation and eva-
potranspiration (Gedney et al., 2014). Changes in carbon dioxide concentration, NDEP, and land use and
land cover affect evapotranspiration. Carbon dioxide concentration and NDEP affect vegetation dynamics
and associated hydrologic variations of the soil‐vegetation system. For example, increasing atmospheric
carbon dioxide can lead to stomatal closure, which reduces plant transpiration, whereas NDEP, up to a
saturation limit, can lead to increased water uptake due to nitrogen‐induced fertilization effect on plants.
However, once the nitrogen saturation limit is reached, it can restrict growth, therefore decreasing water
uptake of vegetation (Aber et al., 1989). LULCC have the ability to alter evapotranspiration by impacting
available energy and/or water, photosynthesis rates, nutrient levels, and land‐surface roughness (Sterling
et al., 2013). More detailed information, in terms of how these human factors are parameterized to affect
the terrestrial hydrology especially the streamflow in land surface models, can be found at Mao et al.
(2015) and Shi et al. (2011, 2013). By considering the subbasins within the CRB, spatial variability within
these changes were also systematically quantified.

2. Methods
2.1. Data

Three meteorological forcing data sets, including the commonly used CRUNCEP (6‐hourly time step),
Princeton (3‐hourly time step), and the newly released GSWP3 (3‐hourly time step) were utilized to drive
the offline ELM simulations (van denHurk et al., 2016). To reduce the biases in these drivers, the widely used
Livneh et al. (2013) daily griddedmeteorological observationswere aggregated to the same 0.5° by 0.5° spatial
resolution for bias correction. For each forcing data set during 1951–2008, the subdaily precipitation at each
grid was linearly rescaled to match the corresponding Livneh et al. (2013) daily total precipitation. Similarly,
the subdaily temperature at each grid was shifted so that they have the same average daily temperature as the
Livneh et al. (2013) values. These bias‐corrected forcing data sets are denoted as CRUNCEP5‐Livneh,
GSWP3‐Livneh, and Princeton‐Livneh for further evaluation and comparison. Even though the Livneh data
set has been shown to have cold biases in mountainous regions (Frans et al., 2018; Jiang et al., 2018; Mauger
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et al., 2016; River Management Joint Operating Committee, 2018), it provides an improvement over the low
precipitation bias found in the CRUNCEP, GSWP3, and Princeton drivers for the CRB region andwas chosen
to be used for bias correction in the RMJOC‐II Part I (River Management Joint Operating Committee, 2018).
Other data sets such as Parameter‐elevation Regressions on Independent Slopes Model [PRISM] and North
American Regional Reanalysis (NARR) could not be used due to their respective lack of spatial and temporal
coverage (i.e., PRISM only offers coverage for the contiguous United States and daily values from PRISM and
NARR are only available since 1981 and 1979, respectively).

For the streamflow evaluation and model verification, we used the No Regulation No Irrigation (NRNI) data
set (Bonneville Power Administration (BPA), 2017). For much hydrologic and geophysical research, unregu-
lated streamflow observations that are free from human influence are typically used. Given the heavy water
regulation in CRB, however, many of the gauge observations were influenced by human activities and can-
not be used directly to study the changes of historical natural flow. By adding back the first‐order influences,
such as historical irrigation withdrawal and reservoir regulation, the NRNI data represent one of the closest
reconstructions of the CRB natural streamflow. Although secondary effects, such as lake attenuation, return
flow lag, and ground water exchange, are not completely addressed, NRNI overall provides a good proxy for
the naturalized streamflow conditions. In this study, we began with 179 NRNI stations containing data from
July 1928 to September 2008 across both the United States and Canadian portions of the CRB. For analyses,
we further selected the farthest downstream gauge stations having satisfactory model performance to repre-
sent each of the 10 subbasins within the CRB. A description of the 10 subbasins and the corresponding sta-
tions is presented in section 2.3. The results reported here cover the period from October 1950 to September
2008 (i.e., water year 1951–2008). More methodology information about how this data set was produced can
be found in River Management Joint Operating Committee (2018).

2.2. Factorial ELM Experiments

Here we use the ELM version 1.0, which is heavily based on the Community Land Model (CLM) version 4.5
(Oleson et al., 2013) and CLM version 4.0 (Lawrence et al., 2011) with notable improvements to include
representations of carbon and nutrient storage (Metcalfe et al., 2017), phosphorus cycling (Yang et al.,
2014), and hydrologic cycling in western U.S. forests (Duarte et al., 2017). Because of themodels' mechanistic
representation of vegetation and soil processes, ELM and CLM can predict the physiological effects of
increasing CO2, the effects of NDEP on nutrient cycling and vegetation growth, and the impacts of land
use change on land surface processes. Therefore, CLM has been used for factorial studies in the past (Mao
et al., 2015; Shi et al., 2011, 2013), leading to new insights about the effects of specific anthropogenic forcings
on hydrologically relevant model outputs.

We followed the protocol of Multi‐scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)
(Huntzinger et al., 2013) to design and perform a series of ELM simulations for the D&A analysis. A total of
24 semifactorial ELM simulations were produced by using six sets of meteorological forcings at 0.5° by 0.5°
spatial resolution. For each of these six meteorological forcing data sets, the carbon and nutrient cycles were
equilibrated using the acceleration decomposition method for soil organic matter pools described by
Thornton and Rosenbloom (2005). During this spinup phase, we repeatedly cycled the input meteorology
over the 1950‐1969 period (the first 20 years available in the Livneh data set) and held other forcings at con-
stant 1850 values (i.e., preindustrial values). These spinup simulations provided the initial state for the semi-
factorial simulations, which all began in the year 1850 and ran through 2008. For the all‐factor simulation,
all environmental drivers were allowed to vary throughout the fully transient simulation (named ALL). The
sources and implementation of selected anthropogenic drivers (e.g., CO2 concentration [CO2] and NDEP)
are consistent with those in Bonan and Levis (2010). In the climate‐only simulation, the climatic factors
(e.g., temperature, precipitation, and shortwave radiation) cycled between 1950 and 1969 from model years
1850‐1969, then used transient climate from 1970‐present day; globally averaged CO2, NDEP, and land use
and land cover were held constant at their 1850 values (named CLMT). The third simulation used transient
climate and land use and land cover, while the fourth simulation allowed transient climate, land use and
land cover, and CO2. We used the difference between the third simulation and CLMT to isolate the effect
of LULCC, which in our simulation only includes the effects of harvest and changes in plant functional type
(PFT) distribution as prescribed by Hurtt et al. (2011). The difference between the fourth and the third simu-
lations is the effect of atmospheric CO2. To isolate the net effect of NDEP, we used the difference of ALL and
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the fourth simulation (named NDEP). Since the radiative and physiological effects of CO2 on climate change
cannot be separated by using offline ELM simulations and are included in the transient climate drivers, CO2,
NDEP, and LULCC thus represent the direct effects of CO2 physiology, NDEP, and LULCC, respectively
(Forbes et al., 2018; Gedney et al., 2014; Mao et al., 2016; Zhu et al., 2016).

Additionally, for the D&A analysis, we utilized all available daily Coupled Model Intercomparison Project
Phase 5 (CMIP5) preindustrial control runoff simulations (piControl) with no year‐to‐year variations in
external influences to characterize the impacts of natural internal variability of the climate system on
the streamflow changes (Zhu et al., 2016). Each simulation was spatially interpolated into a 0.5° by 0.5°
spatial resolution comparable to the ELM factorial simulations. The simulations were then separated into
independent contiguous segments (the last 58 years of the transient period that overlap with the observa-
tions) resulting in 18, 3, 14, and 8 segments from Canadian Earth System Model version 2 (CanESM2),
Commonwealth Scientific and Industrial Research Organisation Mark version 3. 6. 0 (CSIRO‐Mk3.6.0),
Model for Interdisciplinary Research on Climate version 5 (MIROC5), and Norwegian Earth System
Model 1‐ Medium Resolution (NorESM1‐M), respectively (Table S1 in the supporting information).

2.3. Streamflow Routing

We used the RAPID river routing model to accumulate the ELM simulated runoff through a much higher
resolution nongridded river network. The widely used NHDPlus river network was used on the United
States side of the CRB, and the river network developed by the U.S. Army Engineer Research and
Development Center (Wahl et al., 2016) was used on the Canadian side. Together, they form ~192,000 high
resolution CRB river segments. For each of the selected NRNI stations, a river segment was identified to
represent RAPID's river network location. Both the ELM and CMIP5 piControl total surface runoff were first
remapped to the nearest river segment and then routed through RAPID.

We divided the CRB into 10 subbasins for evaluation (Figure 1). The specific subbasins and representative
stations analyzed along with their location (latitude/longitude), estimated drainage area from USGS and
NHDPlus and corresponding USGS gauge station number (where applicable), and are listed in Table S2.
Note that not all the subbasins are independent of one another. For example, Mid‐Columbia includes all
the flow from the respective upstreamwatersheds. The independent subbasins are labeled with an asterisk in
Table S2. Although the Bonneville station (BON) has the largest drainage area, we chose The Dalles to repre-
sent the Lower Columbia subbasin, and thus, the cumulative flow for the entire CRB. The spatial locations of
the downstream stations are shown in Figure 1 along with their relation to the major flow lines and topogra-
phy within the CRB.

The multimodel ensemble (MME) mean ALL forcing data from the routed ELM simulations driven by
CRUNCEP5‐Livneh, GSWP3‐Livneh, and Princeton‐Livneh (ALL MME‐Livneh) for each downstream sta-
tion were compared to the monthly NRNI data and evaluated by the Nash‐Sutcliffe Efficiency (NSE) coef-
ficient. The NSE of the log‐transformed flow was also calculated. In comparison, the logarithmic version is
less sensitive to differences in peak or extreme values (Krause et al., 2005). The ensemble mean of the rou-
ted flow performed well overall. Using the classification from Moriasi et al. (2007) for NSE values using
monthly data, NSE values >0.75 were considered very good, 0.65<NSE≤0.75 were good, 0.5<NSE≤0.65
were satisfactory, and ≤0.5 were unsatisfactory. For the nonlogarithmic version, Lower and Mid‐
Columbia were good, Kootenay and Upper Columbia were satisfactory, and Lower, Middle, and Upper
Snake, Yakima, Spokane, and Pend Oreille were unsatisfactory. However, all the subbasins except the
Upper Snake reproduced well with very good, good, or satisfactory logarithmic NSE values. The improve-
ment in NSE values by using the log‐transformed monthly data suggests that the model did not reproduce
the peak flow values well. This was confirmed by looking at the NSE values for the individual metrics (i.e.,
annual totals, annual maximums, center of timing, and summer means) studied. Excluding Upper Snake,
Yakima, and Upper Columbia, all of the NSE values for the annual totals were very good. However, for the
annual maximums, all the NSE values were unsatisfactory. The numerical NSE values for the downstream
stations are listed in Table S3. Although the runoff was originally generated from a coarse grid, given the
river network represented by NHDPlus, RAPID was able to generate reasonable monthly streamflow time
series for the purpose of this study.
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2.4. Metrics and Methods of Analysis

The following metrics were used to assess the annual and seasonal components of streamflow at each NRNI
station location, including annual total flow, annual maximum flow, center of timing, and summer means.
For center of timing, we used the center of mass for monthly data as defined in Stewart et al. (2005). Due to
themodel's ability to more accurately reproduce the monthly streamflow in comparison to the daily flow, we
used this definition rather than the day in which half of the annual total flow is exceeded, as has been used in
previous studies (Burn, 2008; Hidalgo et al., 2009; Maurer et al., 2007; Rauscher et al., 2008; Regonda et al.,
2005; Wenger et al., 2010). Summer was defined as July–September to ensure summer started after the peak
of the snowmelt flood each year.

Analyses were performed on the model mean of the three simulations driven by bias‐corrected forcings (i.e.,
CRUNCEP5‐Livneh, GSWP3‐Livneh, and Princeton‐Livneh). Analyses performed using the model mean of
the simulations produced using CRUNCEP5, GSWP3, and Princeton are shown in Figure S12 in the support-
ing information. To assess the trends in the monthly climatologies and the four metrics defined above, the
Theil‐Sen estimator was used to estimate the slope and the Mann‐Kendall test was used to determine the
trend under significance level α = 0.10 (Kendall, 1975; Mann, 1945; Sen, 1968; Theil, 1950; Burkey, 2006).
As in Gudmundsson et al. (2017), we chose to use a correlation analysis as a first stage detection analysis.
Pearson correlation coefficients between the observations and each model forcing (i.e., ALL, CLMT, CO2,
NDEP, and LULCC) were calculated, and in order to be detected, the correlation between the

Figure 1. Locations of the major river segments, subbasins, and farthest downstream stations overlapped with the underlying topography.
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observations and a forcing had to be greater than the 97.5th percentile of the correlations between the obser-
vations and piControl segments. To form the distribution of correlations between the observations and
piControl segments, 10,000 samples (with replacement) of size 3 were taken from the piControl segments,
each sample was averaged, and then the correlation between the observations and each averaged sample
was calculated. Samples of size 3 were taken to match the ensemble size of the ELM forcings. The more
in‐depth, nonoptimized version of D&A used in Forbes et al. (2018), which assumes the responses to the for-
cings are independent and linearly additive, was then implemented using the linear model

y¼βALLxALL þ ε; (1:1)

¼ βCLMTxCLMT þ βCO2xCO2 þ βNDEPxNDEP þ βLULCCxLULCC þ ε; (1:2)

where y denotes the observations, βi is the scaling factor for forcing i, xi is the model response to forcing i,
and ε are the residuals. Before the regression analysis was completed, the observations and model responses
to each forcing were centered by removing their respective means. The resulting scaling factors are inter-
preted as follows: if the estimated scaling factor and its confidence interval do not include zero, a change
has been detected, and once a change has been detected, it can be attributed if the estimated scaling factor
and its confidence interval include one. Unlike Forbes et al. (2018), uncertainties in the scaling factor esti-
mates were calculated using the 43 piControl segments. Optimization of the signal‐to‐noise ratio was not
used due to the limited number of available piControl segments. Using half of the segments for optimizing
the observations and CLMT resulted in similar scaling factor estimates but led to wider uncertainty ranges
due to using so few segments in the uncertainty calculation (not shown).

3. Results
3.1. Monthly Climatologies and Trends

The distribution of themonthly climatologies at The Dalles is shown in Figure 2a. For analyzing themonthly
climatologies, the peak month was defined as the month with the greatest median and the period of peak
flow began (ended) in the month that had a median greater than the previous (respectively, next) month's
upper quartile. For the observed river flow, the period of peak flow for The Dalles occurred April–August
with the peak flow occurring in June. Similarly, the period of peak flow for all the subbasins started in
March or April and ended in July or August with the peak flows occurring in either May or June. The sub-
basins with peaks ending in August were Lower Columbia (The Dalles), Mid‐Columbia, Spokane, Pend
Oreille, Kootenay, and Upper Columbia. Spokane, Pend Oreille, Kootenay, and Upper Columbia are the
most northern independent subbasins, so the long period of the peak flow from the northern subbasins con-
tinued into the downstream subbasins (i.e., Lower and Mid‐Columbia). Even though June had the greatest
median flow at The Dalles, it had the greatest significant decreasing trend for the period and was the start of
significant decreases for the entire June–October season (Figure 2b). This decrease consistently occurred
across all the subbasins (Figures S1–S9). These significant decreases also led to significant decreases in the
summer means. The only significant increase at The Dalles was in March, and while the other subbasins
had an estimated increasing trend for March, only the trends for Kootenay and Upper Columbia were sig-
nificant (Figures S8–S9). Following the estimated increases in March, April shows a mix of significant and
insignificant positive and negative trends across the subbasins. However, all the subbasins but Upper
Snake had both a significant or insignificant decrease in May. A shift in the center of timing can be seen
by the estimated positive trend in March followed by the estimated negative trend in May/June.

Multiyearmonthly trends for CO2, NDEP, and LULCC at The Dalles are shown in Figure 2c. Unsurprisingly,
CO2 increased in almost every month, and this is true for all subbasins. Just as the observations showed sig-
nificant decreasing trends for June–October (Figure 2b), LULCC shows the same pattern but also includes
May. NDEP has a pattern of significant trends for June–October as well, but rather than decreasing, NDEP
had increases. In general, if a subbasin had a significant trend for a particular month in both LULCC and
NDEP, they had opposing signs. For most of the subbasins, the strongest positive trend for LULCC was in
April and was followed by the strongest negative trend in May or June. However, for NDEP, the strongest
negative trend was in March or April and was followed by the strongest positive trend in June. There are a
couple other results that are interesting. The first being that specifically for Yakima, LULCC had significant
positive trends for November–March. The other is significant negative (positive) trends for LULCC (NDEP)
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in December and January for Kootenay and Upper Columbia. Figures like Figure 2 for the other subbasins
are provided in Figures S1–S9. Figure S10 shows the trend values at each subbasin for the annual totals,
annual maximums, center of timing, and summer means.

3.2. D&A Results

The results for the correlation‐based detection analysis are shown in Figure 3. As expected, the correlation
between the observations and ALL is greater than the 2.5th–97.5th percentile of the correlations between the
observations and piControl simulations for all four metrics and all 10 subbasins. Correspondingly, CLMT is
detected for all metrics at all subbasins with correlation values approximately equal to those between the
observations and ALL. The more informational results come from CO2, NDEP, and LULCC. For the annual
totals, LULCC was detected for Lower Columbia (The Dalles) and upstream throughout the Snake River
subbasins. This holds for the annual maximums too but also includes the Mid‐Columbia (above Yakima)
and Pend Oreille subbasins. The Snake River and Pend Oreille subbasins are the most western subbasins
and share borders, so it is possible they are being influenced by the same driver of streamflow changes
due to LULCCs. NDEP is also detected for the annual maximums at the Lower Snake, Kootenay, and
Upper Columbia subbasins. Other than CLMT, the only detected forcings for center of timing are CO2 at
Mid‐Columbia and CO2 and LULCC at Upper Columbia. For the summer means, CO2 was detected for
all three Snake River subbasins, NDEP was detected for all three Columbia River subbasins, and LULCC
was detected for Spokane.

Figure 2. (a) Monthly climatologies for the observations (OBS), ALL, and climate change (CLMT), (b) multiyear trends for the OBS, ALL, and CLMT; and (c)
multiyear trends for CO2 concentration (CO2), nitrogen deposition (NDEP), and land use and land cover change (LULCC) at The Dalles. Box plots and trends
for the observations (black), ALL (blue), and CLMT (red) are shown in figures (a) and (b), respectively. (c) Shows CO2 (green), NDEP (orange), and LULCC
(magenta). For the box plots, the horizontal lines of the box represent the lower quartile, median, and upper quartile. The lines extending from the box represent 1.5
times the interquartile range. Data points outside 1.5 times the interquartile range are outliers and are shown by a “plus” symbol. Trend values and corresponding
90% confidence intervals were estimated using Theil‐Sen with significance determined by Mann‐Kendall (Burkey, 2006). Significant trends are denoted by the
asterisks.
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D&A results using the linear regression methodology are shown in Figure 4. For annual totals, annual max-
imums, center of timing, and summer means, 5, 0, 9, and 4 of the 10 subbasins show consistency between
ALL and the observations, respectively (Figure 4, right y‐axis). Results for the multifactor D&A show the
changes in streamflow being detected in CLMT, but for the other forcings, CO2, NDEP, and LULCC, the
scaling factors are too wide to be physically plausible with some of the estimates being completely outside
the range ‐2 to 2. However, rather than only detecting the changes of streamflow in CLMT, the changes
can be attributed to CLMT for many cases. More specifically, the changes in annual total streamflow can
be attributed to CLMT for all subbasins except for the Upper Snake and Pend Oreille. Only detection of
changes in CLMT was achieved for annual maximums due to overestimation in the model simulations, as
shown by scaling factors of ALL in Figure 4b. This overestimation is also visible in the monthly figures
(Figures 2 and S1–S9). Upper Columbia is the only subbasin for which the change in center of timing cannot
be attributed to CLMT. For the summer means, only the changes can be attributed to CLMT for the Lower
Columbia (The Dalles), Lower andMiddle Snake, and Pend Oreille subbasins. One or more months from the
July‐August‐September summer means were underestimated (overestimated) for the Upper Snake, Mid and
Upper Columbia, and Kootenay (Yakima and Spokane) subbasins.

4. Discussion

Direct comparisons to previous D&A studies (e.g., Barnett et al., 2008; Hidalgo et al., 2009; Najafi et al.,
2017a) are not possible due to the differences in model forcings studied (i.e., anthropogenic and natural pre-
viously vs CLMT, CO2, NDEP, and LULCC in this paper); however, previous studies have also analyzed the
trends in streamflow for the Pacific Northwest including the CRB. The decreases in annual total streamflow
shown here were also found in annual mean flow over the period 1948–2006 in Luce and Holden (2009). For
individual months, Stewart et al. (2005) looked at the changes in the fraction of annual total flow for 1948–
2002. For the stations covering the CRB, they found increases of approximately 3–20% for March and
decreases of approximately 10–20% for June, which comprise approximate <10% and 10–30% of the annual
total flow, respectively. We found a similar composition and shift in annual flow (Figure 2). Using the

Figure 3. Correlation‐Based Detection Analysis for (a) annual totals, (b) annual maximums, (c) center of timing, and (d) summer means for ALL, climate change
(CLMT), CO2 concentration (CO2), nitrogen deposition (NDEP), and land use and land cover change (LULCC). Pearson correlation coefficients between the
observations and ALL (blue), CLMT (red), CO2 (green), NDEP (orange), and LULCC (magenta) for each subbasin. The light gray lines denote the 2.5th to 97.5th
percentiles of the correlations between the observations and the piControl simulations.
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observational data at The Dalles, March contained 3–11% of the annual total flow during the period 1951–
2008, whereas June contained 16–31% (Figure 2). The decline in the fraction of annual total flow in June
was consistent with that found in Stewart et al. (2005) at approximately 17%; however, the change in
fractional flow for March using the period 1951–2008 was much greater than Stewart et al. (2005), which
showed an increase of approximately 45%.

Physiological effects of increased CO2 may enhance water use efficiency (increasing streamflow through
reduced transpiration) but also intensify transpiration by increased leaf area index, causing either positive
or negative net effects (Betts et al., 2007). However, the simulated net positive impacts of CO2 on summer-
time river flow (Figure 2) were not big enough to counteract the large climate‐driven trends. Global‐scale
analysis like Gedney et al. (2006) indicated that direct CO2 effects on continental river runoff could be
detected and attributed. But for the subbasins in this study, CO2‐induced streamflow changes were not that
significant and the observed streamflow decreases could not be attributed to the CO2 physiological effects.

Beyond the multiyear trends of the monthly climatologies showing a shift to an earlier center of timing and
decreased June–October flow in the observations, NDEP and LULCC showed changes in their distributions
of flow (Figures 2 and S1–S9). Excluding the Snake River subbasins, the decreasing trends within the obser-
vations for June–September were also found in LULCC. Unlike the observations, a shift in flow fromMay to
April is more prominent in LULCC with 7 of the 10 subbasins having significant increasing in April and sig-
nificant decreasing in May. Also, the effects of LULCC on streamflow caused a positive (negative) trend in
the amount of flow for Yakima during November–March (May–September). While all of the subbasins with
significant changes in streamflow due to LULCC also had significant shifts from/to tree, grass, and crop
PFTs (e.g., from tree to grass or from grass to tree), the shifts in PFTs were not consistent across the subbasins
(Figure S11). There was an overall increase in trees but increases/decreases in grasses and crops varied

Figure 4. Scaling factor estimates and corresponding 95% confidence intervals for (a) annual totals, (b) annual maximums, (c) center of timing, and (d)
summer means using ALL and the linear combination of climate change (CLMT), CO2 concentration (CO2), nitrogen deposition (NDEP), and land use and
land cover change (LULCC). Scaling factors for CLMT, CO2, NDEP, and LULCC for each subbasin are shown on the left y‐axis in red, green, orange, and
magenta, respectively. Scaling factors for the univariate analysis using ALL (blue) are shown on the right y‐axis in the same subbasin ordering. The light gray
lines denote the values 0 and/or 1.
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within the subbasins. For example, the significant changes in grasses for the Pend Oreille subbasin are split
with approximately half increasing and half decreasing. The increase in trees would have led to lower albedo
in winter, which would have caused more melting of snowpack, and thus, a greater volume of streamflow.
For NDEP, the pattern of significance in the observations and LULCC in June–September is present, but
rather than having significant decreases, NDEP increased. Contrasting seasonal trends in streamflow by
ELM due to NDEP could imply that the observed NDEP effects in these subbasins shifted the vegetation phe-
nology and associated soil water condition, causing positive trends in streamflow in spring and negative
changes in the summer and fall. If this happened in reality, the NDEP ‐induced streamflow increases could
suggest the nitrogen saturation limit for the region andmonth had beenmet, and rather than increased vege-
tation growth due to nitrogen fertilization, the nitrogen level is restricting growth (Aber et al., 1989). With
respect to the volume of the monthly streamflows, it should be noted that of all the significant trends found
in CO2, NDEP, and LULCC, the strongest trend was equivalent to approximately a 2% change in the respec-
tive monthly median volume of ALL.

The differences between the observations and the model simulated streamflow shown in the monthly cli-
matologies and trends are also present in the D&A results. The largest disagreement was found between
the annual maximum flow. The simulation consistently overestimated the peak value (Figures 2 and S1–
S9). Thus, the scaling factors between the observations and ALL were less than one. For some of the subba-
sins, the July, August, and/or September flow was overestimated or underestimated and the trend was in the
opposing direction (Figures 2 and S1–S9). CLMT was detected using both the correlation‐based detection
analysis and the regression‐based detection methodology; however, the detection of change in CO2,
NDEP, and LULCC for some subbasins using the correlation‐based methodology was not reproduced using
the regression‐basedmethodology. While bothmethodologies compare the shape and strength of the pattern
of change, the correlation‐based methodology does not take scale into account. Thus, even though the pat-
tern of change in CO2, NDEP, or LULCC may correlate more closely with the observations than the obser-
vations correlated with the piControl runs, the magnitudes are much smaller than those found in the
observations, ALL, and CLMT.

The main limitation in the previous paper (Forbes et al., 2018) was the bias in the CRUNCEP precipitation
driver used in the MsTMIP land surface model simulations. That limitation was overcome in this study by
correcting the driver using the temperature and precipitation from Livneh et al. (2013) and by using two
more meteorological drivers. To ensure that the reported cold bias from the Livneh data set (Frans et al.,
2018) would not affect the overall findings, additional analyses were performed. First, the monthly total pre-
cipitation and average temperature for the entire U.S. Pacific Northwest Region (R17) from CRUNCEP5,
Livneh, and Daymet V3 (Thornton et al., 2018) were compared. Figure S12 shows that the low precipitation
bias within CRUNCEP5 is more prominent than the cold bias within Livneh. The second analysis was com-
pleted using data from the 10 subbasins. MME means were calculated from three sets of the satellite‐
phenology version of the ELM simulations: uncorrected (CRUNCEP5, GSWP3, and Princeton), corrected
using temperature and precipitation from Livneh, and corrected using temperature, precipitation, specific
humidity, and shortwave radiation from Daymet V3. The annual total, annual maximum, center of timing,
and summer mean MME mean time series were plotted along with the observations for each subbasin in
Figures S12–S22. In addition to plotting the time series, the centered MMEmean time series were compared
to the centered observations using the NSE coefficient. The plots showed that the simulations produced
using the uncorrected drivers resulted in lower volumes of flow. Additionally, the NSE coefficients generally
showed that the simulations produced using Livneh attained a higher level of accuracy than the uncorrected
simulations when compared to the observations. Based on these analyses, it was concluded that the cold
biases within the Livneh temperature driver did not have a significant impact on the simulations produced
for this study. This should be mainly due to the coarse model resolution and large‐scale perspective of this
study. The regression‐based D&A analysis was repeated using the MME mean of the simulations produced
without the Livneh correction and is shown in Figure S23. In comparison to the Livneh results (Figure 4),
the only metric for which ALL was more consistent with the observations is the annual maximums. It is dif-
ficult for models to reproduce minimum and maximum flow data, especially when using a 0.5° by 0.5° spa-
tial resolution. However, given that the simulations produced without the Livneh correction were able to
more accurately reproduce the annual maximums, this could be an indication of the cold biases introduced
by the Livneh temperature data (Frans et al., 2018) slowing down snowmelt in the model simulation.
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For this paper, the main limitation was the limited availability of daily CMIP5 piControl simulations of
runoff, which were at least 58 years in length. In total, only 43 independent segments were available. So
rather than using half of the segments for prewhitening the observations, ALL, and CLMT and the other
half for estimating the uncertainty in the scaling factors, all 43 segments were used in estimating the scal-
ing factor uncertainty. Analysis performed using the prewhitening led to approximately the same scaling
factor estimates for ALL and CLMT, but the limited number of segments available for calculating the
uncertainty of these estimates led to wider confidence intervals (not shown). Using CMIP5 piControl simu-
lations to drive ELM, rather than routed CMIP5 piControl simulations of runoff, was another possibility
for simulating an estimate of the internal variability. Similarly, Barnett et al. (2008) used piControl simula-
tions to drive the variable infiltration capacity model. This type of methodology, however, also introduces
inaccuracies due to the lack of feedbacks between the climate system and the land hydrologic components.
The other limitation is due to the semi‐factorial experimental framework used by the land surface model-
ing community. Due to this design, CLMT contains both the effects of climate and the indirect effects of
CO2 (e.g., the CO2 radiative effects), NDEP, and LULCC. Using the factorial fully coupled Earth system
model simulations (e.g., those from the CMIP6), which clearly consider the contributions from individual
external forcings, their interactive effects, and the internal variations, would be the future direction for
regional streamflow D&A studies. This, however, presents a new set of challenges, in terms of much more
computational hours involved than the offline runs, no consistent river routing models, and no direct feed-
back from streamflow to the climate system.

5. Conclusions

On average, the annual total streamflow for the CRB decreased by approximately 15% between 1951 and
2008 (i.e., the percentage of change in volume over time). Of that 15%, roughly 77% was during the
June–October months with 40% solely in June (peak flow) and 31% in July–September (summer mean).
More specifically, flow in June has declined by 28% on average. The fact that these declines are in five
consecutive months during the year is particularly worrisome for all of the inhabitants and the natural
ecosystem of this region. On average, these five months provided 49% of the annual total flow with June
providing 22% itself. While the CRB does have large reservoirs such as Mica and Grand Coulee, these
reservoirs need to balance a variety of competing objectives. During summer months, one main function
is reserving space for flood risk management so these CRB reservoirs cannot be simply used to hold and
distribute more water during the second half of the year. Other than supplying municipal water sources,
which accounts for only a small fraction of the water storage, the lack of water during the second half
of the year could also affect the amount of water for irrigation, summer salmon runs, and power gen-
eration. The most northern subbasin is Upper Columbia. This subbasin also has the highest elevation.
Thus, it is the most heavily impacted by warming winters, which lead to decreased snowpack and cen-
ter of timing changes. On average, the Upper Columbia saw an increase of 41% and 31% in March and
April, respectively, though these months accounted for only about 9% of the total annual flow.
Alternatively, June accounted for 25% of the total annual flow and declined by 17%. The D&A analysis
shows that these changes in annual total, center of timing, and summer mean streamflow can be attrib-
uted to changing climate and variability. Some of the patterns in streamflow changes due to CO2,
NDEP, and LULCC were detected using the correlation‐based analysis, but the signals were not strong
enough to be detected using the regression‐based analysis. So, while the patterns of change within the
streamflow changes due to CO2, nitrogen deposition, and LULCCs are, in some cases, similar to the
pattern found in the observations, the magnitude of their contribution to the total flow is very small
in comparison to the flow from climate change effects.
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