
1. Introduction
Ocean biogeochemical models are powerful tools to study marine ecosystems, biogeochemistry, and the ocean 
carbon cycle. Many earth system models (ESMs) have integrated ocean biogeochemical models as essential 
components of the carbon cycle. At present, the sixth phase of the Coupled Model Intercomparison Project 
(CMIP6) provides the science community with new ESM projections that draw upon extensive improvements 

Abstract The International Ocean Model Benchmarking (IOMB) software package is a new community 
resource that we use here to evaluate surface and upper ocean biogeochemical variables and integrated 
anthropogenic carbon uptake from earth system models (ESMs) contributing to the 5th and 6th phases of 
the Coupled Model Intercomparison Project (CMIP5 and CMIP6). IOMB generates graphics and tables for 
systematically comparing model predictions against multiple datasets. Our analysis reveals some improvement 
in the multi-model mean from CMIP5 to CMIP6 for most of the variables we examined. Compared to 
data-constrained estimates of ocean anthropogenic carbon uptake for the 1994–2007 period, negative biases 
exist for many models between 30 and 50°S. Global model estimates of anthropogenic carbon uptake for the 
same period do not change significantly from CMIP5 to CMIP6, with the combined ensemble mean estimate 
of 27.8 ± 0.5 Pg C lower than a data-constrained estimate of 33.0 ± 4.0 Pg C. At the same time, the change in 
the natural carbon inventory from CMIP is estimated to be a source of 0.7 ± 0.3 Pg C, which is considerably 
smaller in magnitude than a data-constrained estimate of 5.0 ± 3.0 Pg C. With chlorofluorocarbon (CFC) 
predictions available for several models, we demonstrate that negative anthropogenic dissolved inorganic carbon 
biases coincide with negative biases in CFC concentration, highlighting the importance of weak exchange 
between the surface and interior ocean in regulating rates of anthropogenic carbon uptake. To examine the 
robustness of this attribution across the CMIP models, we calculate the global vertical temperature gradient 
between 200 and 1,000 m as a metric for global stratification and exchange between the surface and deeper 
waters. We find a linear relationship between the bias of the vertical temperature gradients and the bias in 
global anthropogenic carbon uptake, consistent with the hypothesis that model biases in anthropogenic carbon 
uptake are related to biases in surface-to-interior exchange by physical processes.

Plain Language Summary With increasing complexity of earth system models and a rapidly 
expanding set of ocean observations, we develop an International Ocean Model Benchmarking system, which 
quantitatively assesses model performance and provides different ways to visualize model-data differences. Our 
analysis reveals general improvement in the newer generation of ocean biogeochemistry models used to support 
the 6th Intergovernmental Panel on Climate Change (IPCC) Assessment, compared to an earlier generation 
of models used to support the 5th IPCC Assessment. A common feature of both generations of ocean models 
is on average, they absorb less human-emitted carbon dioxide from the atmosphere during a period when 
observations are available between 1994 and 2007. Comparison of chlorofluorocarbon simulations reported by 
a few of the models with observations indicates that ocean transport and mixing may be responsible for some 
of the error in anthropogenic carbon. Comparison with the global temperature profile suggests that in some 
models, carbon dioxide absorbed at the surface is not pumped into the deeper ocean at a fast-enough rate by 
circulation and mixing.
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and incorporation of new features in ocean model components developed by different modeling centers (Eyring 
et al., 2016; Gidden et al., 2019; Griffies et al., 2016; O'Neill et al., 2016; Orr et al., 2017). Compared with the 
fifth phase of the CMIP (CMIP5), marine biogeochemical models in CMIP6 have evolved toward more compre-
hensive representations of plankton communities, sediment biogeochemistry, trace gases relevant to atmospheric 
chemistry, and variable plankton elemental stoichiometry (Seferian et  al.,  2020). CMIP6 has provided new 
projections of ocean acidification, deoxygenation, nutrient distributions, and primary production for scenarios 
of historical and future change similar to those investigated for CMIP5 (Kwiatkowski et al., 2020). Therefore, a 
detailed evaluation of model performance and quantification of model biases in comparison with observational 
datasets for CMIP5 and CMIP6 models is of critical importance for understanding how the models are evolving 
through time, and whether the increases in model complexity for CMIP6 have yielded commensurate increases 
in model skill. The knowledge of model performance derived from this assessment can inform studies investigat-
ing ocean biogeochemistry, climate variability, future projections, and related downscaling and impact analysis 
(Flato et al., 2013). In addition, for CMIP6, comprehensive model validation can also support the IPCC Sixth 
Assessment Report (AR6) (Canadell et al., 2021) and other subsequent climate assessments reports at national 
and regional scales.

Ocean biogeochemical models within ESMs have increasingly been used for research on the carbon cycle and the 
transient climate response to cumulative CO2 emissions in recent decades. A bias in carbon uptake by the oceans 
may lead to a bias in atmospheric CO2 concentration in emissions-forced simulations, and consequently biases in 
the radiative forcing changes due to anthropogenic emissions (Hoffman et al., 2014). For CMIP5, a comparison 
between the observed and modeled cumulative anthropogenic CO2 uptake during the historical period was inves-
tigated by Bronselaer et al. (2017). The analysis suggested that 6 models had negative biases and 6 models had 
positive biases, while two models agreed well with observations for the period of 1791–1995, and demonstrated 
the need to account for changes in the ocean inventory caused by anthropogenic forcing of atmospheric CO2 prior 
to the start of CMIP5 simulations in 1850. Additional aspects of ocean carbon uptake were explored in a variety 
of studies linking carbon cycling with ocean ventilation and circulation (DeVries et al., 2017; Fletcher, 2017; 
Frolicher et al., 2015), carbon pumps (Yamamoto et al., 2018), and air-sea CO2 exchange (Dong et al., 2016; 
Lauderdale et  al.,  2016). New estimates of anthropogenic carbon uptake derived from repeat ocean transects 
during 1994–2007 (Gruber et al., 2019) provide a new opportunity to evaluate anthropogenic CO2 uptake and 
ocean carbon cycling in the ESMs. The new observations allow for an assessment of the models for a shorter 
contemporary period when atmospheric carbon dioxide levels were rapidly changing. This new data constraint 
allows for evaluation of a different set of mechanisms regulating carbon uptake in the ESMs compared to the 
full anthropogenic inventory change from the pre-industrial period to the present (Sabine et al., 2004; Sabine & 
Tanhua, 2010).

Here we conduct a model evaluation for several important biogeochemical and physical climate-related variables 
for both CMIP5 and CMIP6 models using IOMB (the International Ocean Model Benchmarking [IOMB] soft-
ware package) (Collier et al., 2018; Ogunro et al., 2018). The IOMB package can make quantitative comparisons 
between time-dependent sequences of observed and simulated multidimensional fields of ocean biogeochemistry 
data, including sparsely distributed ocean interior observations. We seek to assess whether the representation of 
ocean biogeochemistry has improved from CMIP5 to the CMIP6. Our second goal is to quantify model biases 
of anthropogenic ocean carbon uptake in recent decades, and to investigate the relationship between these biases 
and physical processes in the models.

2. Methods
2.1. CMIP5 and CMIP6 Models

We compare biogeochemical variables from 11 CMIP5 and 9 CMIP6 ESMs (Table 1) with observation-based 
estimates over the same time period (Table 2), using the IOMB software system. Table 1 provides a summary of 
the ocean and marine biogeochemical components of these models. These ESMs differ in their horizontal and 
vertical ocean model resolution, representation of ocean ecosystems and biogeochemistry, as well as the physical 
processes regulating ocean mixing and overturning. Most of the models revised their representation of marine 
biogeochemistry from CMIP5 to CMIP6 (Table 1), and entirely new models were incorporated at some climate 
centers (i.e., the GFDL CM4 model). To evaluate model performance, we use 19th and 20th century simulations 
of climate change (the CMIP6 “historical” simulation) and a corresponding pre-industrial control simulation 
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(referred to as the CMIP6 “piControl”). Note that the CMIP6 historical run spans the period from 1850 to 2014 
while the CMIP5 historical simulation ends in 2005, with some models starting in 1860 (e.g., HadGEM2-ES) or 
in 1861 (e.g., GFDL-ESM2M). For the CMIP5 models, we used the RCP8.5 scenario output to extend the time 
series through 2007.

In the context of this comparison, it is important to note that the CMIP5 and CMIP6 model historical simulations 
begin from an assumed steady state in the year 1850 and thus miss ocean carbon accumulation associated with the 
legacy of pre-1850 anthropogenic CO2 increases. Anthropogenic net carbon emissions continue to have an impact 
on the air-sea CO2 flux for decades to centuries after they are emitted. Therefore, we adjust the models to account 
for the pre-1850 atmospheric CO2 forcing by adding 0.7 Pg C to their Cant inventories. The 0.7 Pg C adjustment 
corresponds to the impact of pre-1850 carbon emissions that are still being felt by the ocean during the analysis 
period of 1994–2007. This value is derived from the impulse response functions used in Bronselaer et al. (2017).

The protocol for the historical simulation includes forcing by a common set of anthropogenic and natural driver 
variables derived from observations (Eyring et al., 2016). Both natural (e.g., solar variability and volcanic aero-
sols) and anthropogenic (e.g., greenhouse gas mole fractions, aerosols, and land use) forcing influence climate 
variability and long-term trends in this simulation. The historical simulation protocol provides an effective means 
to compare model estimates with observations and to benchmark changes in model performance as individual 
models evolve over time. Differences in spin-up protocols are known to account for a substantial component 
of model disparities for biogeochemical fields (e.g., alkalinity, dissolved inorganic carbon), contributing to a 
relationship between spin-up duration and assessment metrics in the CMIP5 models (Séférian et al., 2016). To 
account for the impacts of uneven spin up and model drift, we compute the difference between the historical and 
piControl simulations to estimate cumulative carbon uptake by the oceans. This is a simple way to detrend  and 

CMIP5 CMIP6

ESM Ocean Ocen BGC ESM Ocean Ocean BGC

MPI-ESM-LR (Giorgetta 
et al., 2013)

MPI-OM (1°′1.4°) HAMOCC v5.2 (Ilyina 
et al., 2013)

MPI-ESM1-2-LR 
(Muller et al., 2018)

MPI-OM (1.5°′1.5°) HAMOCC6 (Paulsen 
et al., 2017)

MPI-ESM-MR 
(Giorgetta 
et al., 2013)

MPI-OM (1.41°′0.89°) HAMOCC v5.2 (Ilyina 
et al., 2013)

MPI-ESM1-2-HR 
(Muller et al., 2018)

MPI-OM (0.4°′0.4°) HAMOCC6 (Paulsen 
et al., 2017)

IPSL-CM5A-LR 
(Dufresne 
et al., 2013)

NEMO-ORCA2 (2°′2°) PISCES (Aumont & 
Bopp, 2006)

IPSL-CM6A-LR 
(Boucher et al., 2020)

NEMO-eORCA1 
(1°′1-1/3°)

PISCES v2 (Aumont 
et al., 2015)

HadGEM2-ES (Collins 
et al., 2011; Jones 
et al., 2011)

HadGOM2 (0.3–1°′1°) Diat-HadOCC 
(Totterdell, 2019)

UKESM1 (Sellar 
et al., 2019)

NEMO-ORCA2 (2°′2°) MEDUSA2 (Yool 
et al., 2013)

CESM1(BGC) (Gent 
et al., 2011; Hurrell 
et al., 2013)

POP2 (1°′1°) BEC (Moore 
et al., 2004, 2013)

CESM2 (Danabasoglu 
et al., 2020)

POP2 (1°′1°) BEC (Moore 
et al., 2004, 2013)

NorESM1-ME (Bentsen 
et al., 2013)

MICOM (1.125°) HAMOCCv5.1 (Tjiputra 
et al., 2013)

NorESM2 (Seland 
et al., 2020)

MICOM-Tripolar 
(0.5°′0.9°)

iHAMOCC (Tjiputra 
et al., 2020)

CNRM-CM5 (Voldoire 
et al., 2013)

NEMO-ORCA1 (1°′1°) PISCES (Aumont 
et al., 2003)

CNRM-ESM2-1 
(Seferian et al., 2019)

NEMO-eORCA1 (1°′1°) PISCES v2 (Aumont 
et al., 2015)

CanESM2 (Arora 
et al., 2013)

CanOM4 (0.9°′1.4°) CMOC (Christian 
et al., 2010; Zahariev 

et al., 2008)

CanESM5 (Swart 
et al., 2019)

NEMO-ORCA1 
(1°′1-1/3°)

CMOC (Christian 
et al., 2010; Zahariev 

et al., 2008)

GFDL-ESM2G (Dunne 
et al., 2012, 2013)

isopycnal based using 
GOLD Tripolar 

(1°′1°)

TOPAZ2 (Dunne 
et al., 2013)

GFDL-ESM4 
(Dunne, Horowitz, 

et al., 2020)

MOM6 (0.5°) COBALTv2 (Stock 
et al., 2014)

GFDL-ESM2M (Dunne 
et al., 2012, 2013)

MOM4-Tripolar (1°′1°) TOPAZ2 (Dunne 
et al., 2013)

GFDL-CM4 (Held 
et al., 2019)

MOM6 (0.25°) BLINGv2 (Dunne, 
Bociu, et al., 2020)

Table 1 
The Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) and Sixth Phase of the Coupled Model Intercomparison Project (CMIP6) Ocean Models 
Evaluated Here Using International Ocean Model Benchmarking
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reduce the impacts of varying degrees of ocean spin up across the models. Anthropogenic carbon uptake is 
defined as the difference between total ocean dissolved inorganic carbon (DIC) and natural DIC (Orr et al., 2017). 
To keep track of the changes in the natural carbon pool, we use the dissicnat tracer that is computed using a fixed 
pre-industrial atmospheric CO2 mole fraction but otherwise responds to the same initial conditions and forcing 
as the regular DIC tracer (dissic). Thus, to compute the anthropogenic carbon uptake we compute the difference 
between the total and the natural DIC (i.e., dissic—dissicnat).

For models that do not report a dissicnat tracer, we estimate anthropogenic carbon as the differences between the 
ocean DIC of historical and pre-industrial control simulations, and correct for the non-steady state natural carbon 
flux driven by variations in climate and ocean circulation with a Bayesian hierarchical model.

2.2. Bayesian Hierarchical Model

The Bayesian hierarchical model separates the change in the total DIC into contributions from the anthropogenic 
uptake, the loss of natural carbon, and fluctuations due to internal climate variability, using all available ensem-
bles from each modeling center in the analysis. The statistical model includes model-specific random effects as 
well as random effects for individual ensemble members that capture the different phases of the internal modes 
of climate variability in each ensemble member. Thus, the anthropogenic and natural carbon changes can be 
expressed as follows,

Δ𝐶𝐶ant

𝑖𝑖𝑖𝑖𝑖 = Δ𝐶𝐶ant
+ 𝛿𝛿ant𝑖𝑖 + 𝜖𝜖ant𝑖𝑖𝑖𝑖𝑖 𝑖 (1)

Δ𝐶𝐶nat

𝑖𝑖𝑖𝑖𝑖 = Δ𝐶𝐶nat
+ 𝛿𝛿nat𝑖𝑖 + 𝜖𝜖nat𝑖𝑖𝑖𝑖𝑖 𝑖 (2)

where 𝐴𝐴 Δ𝐶𝐶ant and 𝐴𝐴 Δ𝐶𝐶nat are multi-model mean changes in the anthropogenic natural carbon inventories, 𝐴𝐴 𝐴𝐴ant
𝑗𝑗

 and 
𝐴𝐴 𝐴𝐴nat

𝑗𝑗
 are random effects that are specific to the jth model, 𝐴𝐴 𝐴𝐴ant

𝑖𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴nat

𝑖𝑖𝑖𝑖𝑖
 are random effects for the ith ensemble 

Observation Model variable Data source and references Temporal coverage

Chlorophyll chl GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

SeaWIFS (Hu et al., 2012; NASA Goddard Space Flight Center et al., 2018) 1997–2010

MODIS-Aqua (NASA Goddard Space Flight Center et al., 2018) 1997–2010

Oxygen o2 GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

WOA2018 (Garcia, Weathers, et al., 2019) 1955–2010

Nitrate no3 GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

WOA2018 (Garcia, Locarnini, et al., 2019) 1955–2010

Phosphate po4 GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

WOA2018 (Garcia, Locarnini, et al., 2019) 1955–2010

Silicate si GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

WOA2018 (Garcia, Locarnini, et al., 2019) 1955–2010

Dissolved Inorganic Carbon dissic GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

OCIM (DeVries, 2014) 1994–2007

Gruber (Gruber et al., 2019) 1994–2007

Alkalinity alk GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

Mixed layer depth mlotst de Boyer Montégut (2004) 1941–2002

Temperature thetao GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

WOA2018 (Locarnini et al., 2019) 1955–2010

LDEO (Reynolds et al., 2002) 1955–2010

Salinity so GLODAPv2 (Key et al., 2015; Olsen et al., 2016) 1970–2010

WOA2018 (Zweng et al., 2019) 1955–2010

Table 2 
Data Products for Different Biogeochemical and Physical Variables Integrated Within International Ocean Model Benchmarking
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member of the jth model. The total change in the DIC inventory for the ith ensemble member of the jth model is 
then given by 𝐴𝐴 Δ𝐶𝐶ant

𝑖𝑖𝑖𝑖𝑖
+ Δ𝐶𝐶nat

𝑖𝑖𝑖𝑖𝑖
 . We assume that the 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are normally distributed with zero mean, that is,

�ant� ∼ �
(

0, �2
ant
)

, (3)

�nat� ∼ �
(

0, �2
nat
)

, (4)

�ant�,� ∼ �
(

0, �2ant
)

, (5)

�nat�,� ∼ �
(

0, �2nat
)

, (6)

where 𝐴𝐴 𝐴𝐴ant , 𝐴𝐴 𝐴𝐴nat , 𝐴𝐴 𝐴𝐴ant , and 𝐴𝐴 𝐴𝐴nat are the standard deviations of the 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 random effects. Thus, we model the spread 
across ensemble members as random draws from a normal distribution that is common to all the models. This 
assumption is manifest in the absence of a 𝐴𝐴 𝐴𝐴 subscript on the variances 𝐴𝐴 𝐴𝐴2

ant
 and 𝐴𝐴 𝐴𝐴2

nat
 . While this assumption need 

not be strictly true, we do not have enough ensemble members from all the models to be able to identify differ-
ences in the 𝐴𝐴 𝐴𝐴2

ant
 and 𝐴𝐴 𝐴𝐴2

nat
 across the CMIP models. Note, however, that we do take into account model-specific 

differences in the mean through the fixed effects 𝐴𝐴 𝐴𝐴ant
𝑗𝑗

 and 𝐴𝐴 𝐴𝐴nat
𝑗𝑗

 .

With these assumptions, the Bayesian hierarchical model has six adjustable parameters, 
𝐴𝐴

[

Δ𝐶𝐶ant , Δ𝐶𝐶nat , 𝜎𝜎ant , 𝜎𝜎nat , 𝜏𝜏ant , 𝜏𝜏ant
]

 . We estimate these parameters from quantities that can be computed directly 
from the CMIP5 and CMIP6 model output, that is, from the non-shaded quantities in Table 5. Specifically, we 
draw a Monte-Carlo sample from the posterior probability distribution for the six adjustable parameters using the 
probabilistic programming language, Stan (Carpenter et al., 2017), from which we compute the marginal poste-
rior mean and standard deviation of each parameter. Throughout the manuscript, quoted uncertainties relating 
to carbon inventories should be interpreted as ±1 standard deviation of the posterior probability distribution for 
the estimated quantity. The Julia and Stan code used to fit the model is provided on GitHub (https://github.com/
fprimeau/Bayesian-Hierarchical-Model-for-the-CMIP5-6-anthropogenic-C-uptake).

2.3. Observational Datasets

We compare model simulations with a variety of observations from the 2018 release of the World Ocean Atlas 
(WOA18; Boyer et  al.,  2019 and the Global Ocean Data Analysis Project Version 2 [GLODAPv2]; Olsen 
et al., 2016; Olsen et al., 2019). We also compare the models with SeaWiFS (Hu et al., 2012; NASA Goddard 
Space Flight Center et al., 2018) and MODIS-Aqua (NASA Goddard Space Flight Center et al., 2018) chlorophyll 
products. For the satellite chlorophyll products, data in coastal regions have higher uncertainty than in the open 
ocean as a consequence of turbidity and the presence of suspended particles. We exclude regions where the depth 
is less than 350 m for the chlorophyll analysis to minimize the impacts higher uncertainty levels in coastal and 
shelf waters. Mixed layer depths are evaluated against de Boyer Montégut (2004). Table 2 summarizes key obser-
vation classes, model variable names, data products, and time intervals integrated within IOMB. ESM output 
is often compared with a climatological field from the WOA, but IOMB can also calculate the time-dependent 
statistics, comparing the underlying measurements against the co-located, co-temporal output from the ocean 
models (Table 2).

A number of key variables from the models, including chlorophyll, nitrate, phosphate, oxygen, DIC, and alka-
linity, are compared with observations at the surface in this configuration of IOMB (archived simulations from 
CMIP5 only recorded monthly output for these variables at the surface). Temperature and salinity are evaluated 
for the surface, 200 and 700 m depth levels for both the CMIP5 and CMIP6 models. For ocean anthropogenic 
carbon inventory, we compare model output with two observation-based estimates during the years 1994–2007, 
one by Gruber et al. (2019) drawing upon the GLODAPv2 observations (hereafter GR2019) and a second esti-
mate from DeVries  (2014) based on inverse modeling using the GLODAPv1 data (hereafter DV2014). The 
GR2019 uses an extended multiple linear regression approach to separate anthropogenic carbon from natural 
carbon components and variability in DIC induced by ocean biology. In DV2014, ocean circulation is constrained 
by assimilating various observations in the inverse model. The DV2014 product spans the 1780 to 2016 period; 
we use the estimates from 1994 to 2007 to provide an independent assessment of recent changes in the ocean 
carbon inventory. A key difference between the two products is that GR2019 is affected by the ocean circulation 
variability over 1994–2007, while the DV2014 approach assumes a steady-state circulation.
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2.4. Interpolation

To facilitate the comparison, we bin the GLODAPv2 data into a standard three-dimensional grid, which had a 
1° × 1° resolution in the horizontal and 33 levels vertically. The vertical layers in IOMB are identical to WOA 
standard levels, where layer thickness increases with depth. We perform this binning with a monthly resolution 
and obtain re-gridded GLODAPv2 data with linear interpolation. For the period of 1970–2010, for example, there 
are 963704 data points (14.7% of all grid cells have data) for temperature, and 159172 data points (2.3% of all 
grid cells) for CFC11 in the 0–3,000 m depth range, respectively. To obtain a multi-model mean state, we also 
interpolate output fields from each model to this same standard grid using linear interpolation in the horizontal 
and vertical directions.

2.5. IOMB

IOMB is a Python-based open-source, multi-model validation tool that can be used to evaluate the performance 
of CMIP5 and CMIP6 ocean biogeochemistry models. The IOMB package shares some code with its land model 
benchmarking counterpart, the International Land Model Benchmarking (ILAMB) package (Collier et al., 2018). 
The long-term objectives of the IOMB project are: (a) to develop internationally accepted benchmarks for ocean 
model performance, drawing upon international expertise and collaboration, (b) promote the use of these bench-
marks by the international community, and (c) strengthen linkages between model and experimental communities 
in the design of new model tests and ocean observing programs. As a community diagnostic tool, the IOMB has 
some features that are found in other tools, such as ESMValTools (Eyring et al., 2020), but it also has several 
distinctive features that make it effective for the evaluation of ocean models, and for comparing across models and 
across model versions. The ESMValTool focuses on the evaluation of performance metrics for essential climate 
parameters in chapters of the Intergovernmental Panel on Climate Change (IPCC) report. IOMB can provide 
general and useful information about model performance, considering for each variable the spatial pattern of bias 
and root mean square error (RMSE), annual cycle phasing, as well as amplitude of interannual variability and 
spatial correlation. In addition, IOMB can simultaneously perform variable-to-variable comparison on multiple 
models for the same time period, facilitating cross-model analyses. IOMB also allows for the assessment of 
functional relationships between prognostic variables and one or more forcing variables. Further, IOMB can be 
customized easily for different applications and can incorporate diagnostic updates and new observational data-
sets from end-users. IOMB was used previously to benchmark aerosol precursors (Ogunro et al., 2018).

Against a seasonal climatology of monthly observations, we use IOMB to calculate a number of diagnostic 
metrics including bias, RMSE, annual cycle phasing, magnitude of interannual variability, and spatial correlation, 
which are described in detail in Collier et al. (2018). IOMB provides model performance scores for each metric 
and generated a single scalar score for each variable by aggregating scores across metrics and datasets (Figure 1). 
IOMB has the capability to generate model comparisons at multiple depths. IOMB can generate a top-level, inter-
active summary page for each variable across models. The online version of Figure 1 is available at https://www.
ilamb.org/CMIP5v6/IOMB/dashboard.html. Clicking any square on the summary page for a particular variable 
allows the user to bring up new global maps comparing that model's mean output with the user-selected observa-
tional data set (often a choice between GLODAPv2 and WOA2018) (Figure S1 in Supporting Information S1). 
Additional plots present global maps of the bias (the difference between model and observations) and RMSE.

The overarching goal of the IOMB (and ILAMB) methodology is to generate a synthesis of model performance 
relative to a collection of reference data products. IOMB utilizes a scoring system that works on the unit interval, 
where s = 0 reflects a poor model and s = 1 a good model. Scores are developed for different aspects of perfor-
mance (bias, RMSE, annual cycle phasing, interannual variability, and spatial correlation) and merged to form an 
overall score, which is defined as:

𝑆𝑆overall =
𝑆𝑆bias + 2𝑆𝑆rmse + 𝑆𝑆phase + 𝑆𝑆iav + 𝑆𝑆dist

1 + 2 + 1 + 1 + 1
 (7)

The definition of individual component scores is described in the following.

The bias score as a function of space is 𝐴𝐴 𝐴𝐴bias(𝐱𝐱) = 𝑒𝑒−𝜀𝜀bias(𝐱𝐱) and we can obtain scalar score by averaging the bias 
score over space (X). The relative error is obtained by nondimensionalization with the centralized RMS of the 
reference data
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𝜀𝜀bias(𝐱𝐱) = |bias(𝐱𝐱)|∕crms(𝐱𝐱) (8)

where the bias is defined as 𝐴𝐴 bias(𝐱𝐱) = 𝑣𝑣mod(𝐱𝐱) − 𝑣𝑣ref (𝐱𝐱) and the centralized RMS of the reference data is:

crms(𝐱𝐱) =

√

1

𝑡𝑡𝑓𝑓 − 𝑡𝑡0 ∫
𝑡𝑡𝑓𝑓

𝑡𝑡0

(

𝑣𝑣ref (𝑡𝑡𝑡 𝐱𝐱) − 𝑣𝑣ref (𝐱𝐱)
)2

d𝑡𝑡 (9)

where 𝐴𝐴 𝐴𝐴𝑜𝑜 is initial time, 𝐴𝐴 𝐴𝐴f is final time and 𝐴𝐴 𝐴𝐴ref (𝑡𝑡𝑡 𝐱𝐱) is reference data in time and space.

Figure 1. Summary page of the overall score from International Ocean Model Benchmarking (IOMB) for fifth phase of the Coupled Model Intercomparison Project 
(CMIP5) (yellow background color) and sixth phase of the Coupled Model Intercomparison Project (CMIP6) (green background color) ocean models. In the online 
version, clicking on any box above brings up additional detailed plots and diagnostics, including the individual skill scores that go into the summary score. The 
multi-model mean columns for CMIP5 and CMIP6 are constructed by averaging together the maps of each variable from each individual model, and then applying the 
IOMB package to the resulting mean field.
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Similarly, the RMSE score is defined as 𝐴𝐴 𝐴𝐴rmse(𝐱𝐱) = 𝑒𝑒−𝜀𝜀rmse(𝐱𝐱) . The relative error of 𝐴𝐴 𝐴𝐴rmse(𝐱𝐱) = |rmse(𝐱𝐱)|∕crmse(𝐱𝐱) . 
We compute the RMSE over the time period of the reference data set with seasonal and interannual variability.

rmse(𝐱𝐱) =

√

1

𝑡𝑡f − 𝑡𝑡0 ∫
𝑡𝑡f

𝑡𝑡0

(𝑣𝑣mod(𝑡𝑡𝑡 𝐱𝐱) − 𝑣𝑣ref (𝑡𝑡𝑡 𝐱𝐱))
2
d𝑡𝑡 (10)

To score the RMSE, we also normalize the centralized RMSE by the centralized RMS of the reference data set.

crmse(𝐱𝐱) =

√

1

𝑡𝑡f − 𝑡𝑡0 ∫
𝑡𝑡f

𝑡𝑡0

((

𝑣𝑣mod(𝑡𝑡𝑡 𝐱𝐱) − 𝑣𝑣mod(𝐱𝐱)
)

−
(

𝑣𝑣ref (𝑡𝑡𝑡 𝐱𝐱) − 𝑣𝑣ref (𝐱𝐱)
))2

d𝑡𝑡 (11)

The score of phase shift is defined as 𝐴𝐴 𝐴𝐴phase(𝑥𝑥) =
1

2

(

1 + cos

(

2𝜋𝜋𝜋𝜋(𝑥𝑥)

365

))

 . The phase shift of the annual cycle is 
defined by comparing the timing of the maximum of the annual cycle of the variable, c(v), at each spatial cell 
across the time period of the reference data set (expressed in days).

�(�) = argmax(�mod(�, �)) − argmax(�ref (�, �)) (12)

The score of internal variability is defined as 𝐴𝐴 𝐴𝐴iav(𝐱𝐱) = 𝑒𝑒−𝜀𝜀iav(𝐱𝐱) . The relative error of 
𝐴𝐴 𝐴𝐴iav(𝐱𝐱) = (iavmod(𝐱𝐱) − iavref (𝐱𝐱)∕iavref (𝐱𝐱) . For the interannual variability, we remove the annual cycle from both 

the reference and the model.

iavmod(𝐱𝐱) =

√

1

𝑡𝑡𝑓𝑓 − 𝑡𝑡0 ∫
𝑡𝑡𝑓𝑓

𝑡𝑡0

(𝑣𝑣mod(𝑡𝑡𝑡 𝐱𝐱) − 𝑐𝑐mod(𝑡𝑡𝑡 𝐱𝐱))
2
d𝑡𝑡 (13)

The interannual variability in reference data is defined in the same way.

iavref (𝐱𝐱) =

√

1

𝑡𝑡𝑓𝑓 − 𝑡𝑡0 ∫
𝑡𝑡𝑓𝑓

𝑡𝑡0

(𝑣𝑣ref (𝑡𝑡𝑡 𝐱𝐱) − 𝑐𝑐ref (𝑡𝑡𝑡 𝐱𝐱))
2
d𝑡𝑡 (14)

The score of spatial distribution is defined as 𝐴𝐴 𝐴𝐴dist =
2(1+𝑅𝑅)
(

𝜎𝜎 +
1

𝜎𝜎

)

2
 , where 𝐴𝐴 𝐴𝐴 =

stdev

(

𝑉𝑉mod(𝐱𝐱)

)

stdev

(

𝑉𝑉ref (𝐱𝐱)

)  and R is spatial correlation of 

the period mean value 𝐴𝐴 𝑉𝑉mod(𝐱𝐱) and 𝐴𝐴 𝑉𝑉mod(𝐱𝐱) .

More information providing a rational for the individual scores and overall scoring system is described in Collier 
et al. (2018). In addition, IOMB displays a table summarizing all the statistical metrics that go into the summary 
page for the selected variable, along with a Taylor diagram (Taylor et al., 2012) showing the overall fit for this 
variable for all the models (Figures S2 and S3 in Supporting Information S1). Additional plots are generated for 
some variables relating variability and predictive skill over the annual cycle.

3. Results
3.1. CMIP5 and CMIP6 Model Evaluation With IOMB

Overall, the representation of ocean biogeochemistry improves for most variables from CMIP5 to CMIP6 
(Figure 1, Table 3). The scalar scores of model performance are mapped in color, allowing users to visualize the 
improvement and quickly identify the relative performance of an individual model. The overall scores reported in 
Figure 1 integrate information on bias and RMSE as well as metrics that quantify differences between the models 
and the observations for the timing and phase of the annual cycle, interannual variability, and the spatial pattern 
of the annual mean field (Collier et al., 2018).

To quantitatively assess whether the CMIP6 models show improvement, we report mean estimates from each 
CMIP using IOMB in two different ways. First, we compute the mean of the scores from individual models 
(Table 3; first two columns). Second, we create a mean map of each variable, by averaging together maps from 
individual models within each CMIP. We construct this multi-model mean by interpolating each individual model 
grid to a 1° × 1° horizontal resolution and to the WOA depth layers in the vertical dimension. We then run 
IOMB on each of these mean fields (separate mean fields for CMIP5 and CMIP6) and report these scores in the 
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final two columns of Table 3 and in the final two columns of Figure 1. Both 
approaches reveal that the CMIP6 models have a higher overall score for 10 
out of the 13 variables examined. The exceptions where the models do not 
show improvement include surface chlorophyll, surface ALK, and tempera-
ture at 700 m (Figure 1).

To further quantify model improvement, we report the bias and RMSE of the 
multi-model mean of the CMIP5 and CMIP6 models (Table 4). The bias of 
multi-model mean is reduced by 20%–70% for surface nitrate, phosphate, and 
silicate (Table 4) comparing CMIP6 to the CMP5 models. Among them, surface 
silicate shows the most pronounced improvement. The bias temperature at the 
surface and at 700 m increases slightly from CMIP5 to CMIP6. For all of the 
variables we compare in IOMB, RMSE decreases in the CMIP6 models to 
varying degrees (Table 4). The RMSE of the multi-model mean is generally 
lower than the mean of individual model RMSE because across-model variabil-
ity is reduced. In particular, surface DIC and total alkalinity show considerable 
improvement. The DIC bias is decreased by 42% from 80 to 46 μmol/L and the 
RMSE is reduced by 46%. Similarly, the total alkalinity bias decreases by 45%, 
from 79 to 43 μmol/L. The mixed layer depth bias also decreases to −7 m from 
16 m in CMIP5, suggesting stronger stratification and perhaps weaker vertical 
transport in the newer set of models. The full suite of linked graphics and statis-
tical metrics cannot be shown here but is available online (see methods).

While the multi-model means provide evidence for general model improve-
ment, there is no consistent pattern of improvement across models and varia-
bles. For example, surface silicate improves in almost all the models, but the 
improvements are most noteworthy in the HadGEM2 and GFDL-ESM2M 
newer generation models. Compared with the WOA18 data, the bias is reduced 
from 45.5 to 2.5 mmol/m 3 from CMIP5 to CMIP6 for HadGEM2, while the 
bias is reduced from 8.4 to 1.0 mmol/m 3 in GFDL-ESM2G. In CMIP6, the 
surface silicate of CNRM-ESM2 has the smallest bias of −0.4  mmol/m 3 
followed by GFDL-ESM4. The surface silicate of MPI-ESM1-2-HR shows 
the highest bias of 9.1 mmol/m 3. The improvement in surface silicate suggests 
CMIP6 models have improved the representation of diatom production and 
export, which was not included explicitly in some CMIP5 models.

For surface chlorophyll in CMIP5, CESM1-BGC has the highest score followed by the IPSL models, while 
CanESM2 has the lowest score. However, a relatively high score for CMIP5 does not guarantee a similar ranking 
for the successor model. In CMIP6, the prediction skill of CESM is degraded for surface chlorophyll while the 
GFDL-CM4 model is significantly improved (and has the highest score of all the models). The score chart in 
Figure 1 also calls attention to inconsistent improvements for different variables such as nitrate, phosphate, and 
silicate within a single model. The model with a high score for one macronutrient may have a poor rating for 
another, and vice versa. A detailed investigation of these differences is outside the scope of this paper, but further 
IOMB analysis can help clarify covariances and interactions among some of the drivers.

3.2. Comparison of Anthropogenic DIC Inventory Change With Data-Constrained Estimates

For the CMIP6 models that include the dissicnat variable, we calculate the anthropogenic carbon uptake by 
computing the difference between the historical DIC and the historical dissicnat inventory change from 1994 
to 2007. For these models we can also compute the change in the natural carbon inventory by subtracting the 
piControl DIC inventory from the historical dissicnat inventory during the same interval. The change in the 
natural carbon inventory, defined in this way, is a source that ranges in magnitude between 0.5 and 1.1 Pg C for 
the four models that carry the dissicnat tracer (Table 5). For the other models, we separate anthropogenic and 
natural carbon inventory change using the Bayesian hierarchical model. We then compare 𝐴𝐴 Δ𝐶𝐶ant and 𝐴𝐴 Δ𝐶𝐶nat from 
the models with data-constrained estimates from DV2014 and GR2019 (Figure 2, Table 5). This comparison is 
for the integrated carbon storage in the top 3,000 m of the water column.

Variables

Mean of 
scores from 
individual 

CMIP5 
models

Mean of 
scores from 
individual 

CMIP6 
models

Score 
derived 
from the 
CMIP5 

mean field

Score 
derived 
from the 
CMIP6 
mean 
field

Chlorophyll at surface 0.364 0.341 0.365 0.342

Oxygen surface 0.528 0.552 0.560 0.578

Nitrate surface 0.462 0.465 0.455 0.472

Phosphate surface 0.511 0.523 0.538 0.554

Silicate surface 0.421 0.462 0.429 0.500

TALK surface 0.364 0.362 0.394 0.378

DIC surface 0.368 0.392 0.389 0.392

Mixed Layer Depth 0.501 0.562 0.512 0.634

Temperature surface 0.602 0.613 0.641 0.647

Temperature 200 m 0.468 0.481 0.509 0.517

Temperature 700 m 0.463 0.461 0.492 0.487

Salinity surface 0.471 0.483 0.502 0.516

Salinity 200 m 0.468 0.473 0.498 0.510

Salinity 700 m 0.461 0.462 0.498 0.499

Note. The overall score is calculated based on bias, root mean square error, 
phase shift, interannual variability and spatial distribution. The scoring 
algorithm is constructed such that higher scores (closer to 1) are better than 
lower score. The mean of scores from individual models listed in Table 1 are 
shown in the first two columns, while the application of International Ocean 
Model Benchmarking to a single mean field constructed from all of the fifth 
phase of the Coupled Model Intercomparison Project (CMIP5) or sixth phase 
of the Coupled Model Intercomparison Project (CMIP6) models is shown in 
the final two columns.

Table 3 
Overall Score of Model Performance for Different Variables in CMIP5 and 
CMIP6 Models
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The multi-model mean anthropogenic carbon inventory change (𝐴𝐴 Δ𝐶𝐶ant ) during the 1994–2007 period is 
𝐴𝐴 27.8 ± 2.0   Pg C for CMIP6 and 𝐴𝐴 27.9 ± 1.1 PgC for CMIP5 (Table 5). For both CMIP5 and CMIP6 models, 

the multi-model mean anthropogenic and natural carbon changes are estimated to be 𝐴𝐴 Δ𝐶𝐶ant = 27.8 ± 0.5   Pg 
C and 𝐴𝐴 Δ𝐶𝐶nat = 0.7 ± 0.3   Pg C. The estimated standard deviations of the model-specific random effects are 

𝐴𝐴 𝐴𝐴ant  = 1.8 ± 0.4 Pg C, 𝐴𝐴 𝐴𝐴nat =  0.3 ± 0.4 Pg C, 𝐴𝐴 𝐴𝐴ant  = 0.2 ± 0.02 Pg C, and 𝐴𝐴 𝐴𝐴nat = 0.4 ± 0.03 Pg C. The multi-model 
mean is thus smaller than the data-constrained estimates of 30.2 Pg C from DV2014 and 33.0 ± 4.0 Pg C from 
GR2019. Because DV2014 does not provide an uncertainty estimate, it is difficult to know if the difference 
is statistically significant. For the case of the GR2019 estimate, which comes with an error estimate, we can 
compute the cumulative probability distribution for the difference, 𝐴𝐴 Δ𝐶𝐶ant

CMIP
− Δ𝐶𝐶ant

GR2019
 , using a Monte-Carlo 

sampling approach. We accomplish this using the Stan probabilistic programming language. The cumulative 
probability function, plotted in Figure 3, shows that there is a 90% probability that the CMIP multi-model mean 
has a negative bias compared to the GR2019 estimate. Section 3.4 discusses some possible reasons for this bias.

The multi-model mean natural carbon loss, is estimated to be 𝐴𝐴 Δ𝐶𝐶nat = −0.8 ± 0.4 PgC for CMIP6 and 
𝐴𝐴 Δ𝐶𝐶nat = −0.7 ± 0.3 Pg C for CMIP5, which is much smaller than the 5.0 ± 3.0 Pg C of natural carbon loss assumed 

by Gruber et  al.  (2019). The effect of internal climate variability, as opposed to secular changes in circulation 
or temperature increases due to global warming, contributes very little to the CMIP6 multi-model mean. This is 
because the phase of El Niño-Southern Oscillation (ENSO) or Southern Annular Mode (SAM), for example, can be 
assumed to be a random variable that averages out in the ensemble mean. Even for individual model runs, the effect 
of internal variability on the change in the inventory of anthropogenic or natural carbon is small. The mean stand-
ard deviation for the effect of internal climate variability on the change in anthropogenic carbon is 0.2 Pg C across 
ensemble members (τant; Equation 5), with very little variation in this standard deviation occurring for different 
CMIP6 models. Similarly, for natural carbon, the impact of internal climate variability yielded a standard deviation 
of 0.4 Pg C (τnat; Equation 6) and little variation among individual models. For the change in the anthropogenic 
carbon inventory, the impact of internal climate variability is more than two orders of magnitude smaller than 𝐴𝐴 Δ𝐶𝐶ant 
and is also smaller than the typical across-model differences in the anthropogenic uptake,  that is, 𝐴𝐴 𝐴𝐴ant = 1.8 ± 0.4 Pg 
C, where 0.4 Pg C is the standard deviation of probability distribution for the estimated 𝐴𝐴 𝐴𝐴ant . The relatively small 
magnitude (and variability) of the global-scale natural climate flux is consistent with previous studies (DeVries 
et al., 2019; Landschutzer et al., 2016; Schwinger et al., 2014 and references therein).

Mean of CMIP5 Mean of CMIP6 CMIP5 mean CMIP6 mean

Variables Bias RMSE Bias RMSE Bias RMSE Bias RMSE

Chlorophyll at surface (mg/m³) 0.10 0.44 0.03 0.29 0.09 0.41 0.03 0.24

Oxygen surface (μM) 6.38 12.55 3.27 10.49 6.38 11.21 3.27 8.79

Nitrate surface (μM) 0.84 2.59 0.67 2.29 0.84 1.99 0.67 1.66

Phosphate surface (μM) −0.08 0.21 −0.02 0.20 −0.12 0.18 −0.06 0.16

Silicate surface (μM) 8.10 10.51 2.21 5.52 8.10 9.21 2.21 4.44

TAlk surface (μmol/L) 78.9 99.7 43.2 64.0 78.9 99.5 43.2 47.8

DIC surface (μmol/L) 80.1 89.9 45.8 57.8 80.12 90.8 45.8 48.3

Mixed Layer Depth (m) 16.1 46.9 −7.4 34.5 16.1 40.5 −7.4 26.4

Temperature surface (°C) −0.45 1.53 −0.48 1.36 −0.45 1.07 −0.48 1.00

Temperature 200 m (°C) 0.05 1.69 0. 04 1.52 0.05 1.18 0. 04 1.09

Temperature 700 m (°C) 0.49 1.32 0.50 1.29 0.49 1.03 0.51 0.97

Salinity surface (PSU) −0.23 0.71 −0.08 0.64 −0.23 0.57 −0.08 0.47

Salinity 200 m (PSU) −0.18 0.37 −0.09 0.34 −0.18 0.27 −0.09 0.22

Salinity 700 m (PSU) 0.03 0.23 0.03 0.22 0.03 0.14 0.03 0.14

Note. The bias and RMSE of multi-model mean variables is also given in the last two columns. The multi-model mean was 
calculated by interpolating original model grid to 1 × 1° grid in the horizontal. CMIP6, Sixth phase of the Coupled Model 
Intercomparison Project; CMIP5, fifth phase of the Coupled Model Intercomparison Project; RMSE, root mean square error.

Table 4 
Mean Bias and RMSE of Individual CMIP5 and CMIP6 Models
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In terms of overall score, CanESM5 and NorESM2-LM models in the CMIP6 have the highest scores for anthro-
pogenic carbon (Figure 1). We note that the comparison of spatial patterns of DIC may increase the uncertainty 
of the overall score, given the internal variability and non-steady carbon flux driven by climate variability in the 
CMIP models. However, with the ensembles used, much of this internal variability is expected to average out in 
the global means.

Most of the models capture some enhanced storage in the Southern Ocean but struggle to reproduce the Southern 
Hemisphere maximum in storage associated with the formation of Subantarctic Mode and Antarctic Intermediate 
Waters (Figure 4). The formation of these water masses is key to moving anthropogenic CO2 from the surface to the 
ocean interior. The two GFDL models capture the strong storage in mid-latitudes of the Southern Hemisphere, but 
most models do not, suggesting weak formation of these intermediate and mode waters, at least in some ocean basins.

CMIP models and data-constrained 
estimates

Ensemble 
size

Total DIC Inventory 
change (Pg C)

Natural DIC Inventory 
change (Pg C)

Anthropogenic 
DIC Inventory 
change (Pg C)

DV2014 n.a. n.a. n.a. 30.2

GR2019 n.a. 28.0 ± 5.0 −5.0 ± 3.0 33.0 ± 4.0

CMIP mean 157 28.5 ± 0.4 −0.7 ± 0.3 27.8 ± 0.5

CMIP6 mean 128 28.5 ± 2.1 −0.8 ± 0.4 27.8 ± 2.0

CMIP5 mean 29 28.6 ± 1.2 −0.7 ± 0.3 27.9 ± 1.1

CMIP6 models CESM2 9 26.0 ± 0.3 −0.6 ± 0.4 26.6 ± 0.2

CESM2-WACCM 3 25.8 ± 0.3 −0.5 ± 0.4 26.3 ± 0.2

CanESM5 25 26.9 ± 0.4 −1.1 ± 0.5 28.0 ± 0.3

CNRM-ESM2 11 27.4 ± 0.4 −0.8 ± 0.5 28.1 ± 0.5

GFDL-CM4 1 32.1 −1.1 ± 0.8 33.2 ± 1.1

GFDL-ESM4 1 29.1 −0.9 ± 0.5 29. 6 ± 0.7

IPSL-CM6A-LR 35 24.3 ± 0.5 −0.5 ± 0.7 25.2 ± 0.5

MPI-ESM1-2-HR 10 25.6 ± 0.5 −0.6 ± 0.6 26. 5 ± 0.5

MPI-ESM1-2-LR 30 26.4 ± 0.6 −0.7 ± 0.5 27.2 ± 0.4

NorESM2-LM 3 27.2 ± 0.2 −0.7 ± 0.3 27.9 ± 0.1

CESM1-BGC 1 26.5 −0.8 ± 0.4 27.3 ± 0.6

CNRM-CM5 1 25.4 −0.8 ± 0.5 26.3 ± 0.6

CanESM2 5 24.4 ± 0.3 −0.6 ± 0.7 25.4 ± 0.6

GFDL-ESM2G 1 26.7 −0.8 ± 0.4 27.5 ± 0.6

CMIP5 models GFDL-ESM2M 1 28.0 −0.7 ± 0.5 28.6 ± 0.7

HadGEM2-ES 4 26.3 ± 0.4 −0.7 ± 0.5 27.1 ± 0.5

IPSL-CM5A-LR 3 26.9 ± 0.2 −0.7 ± 0.5 27.6 ± 0.5

IPSL-CM5A-MR 6 28.8 ± 0.4 −0.9 ± 0.5 29.4 ± 0.6

MPI-ESM-LR 3 29.0 ± 0.2 −0.9 ± 0.5 29.6 ± 0.7

MPI-ESM-MR 3 27.0 ± 0.3 −0.7 ± 0.5 27.7 ± 0.5

NorESM1-ME 1 29.9 −0.6 ± 0.7 30.2 ± 0.8

Note. Also shown are the data-constrained estimates from DV2014 and GR2019. The Arctic and other marginal seas are not 
included in any of these estimates. The unshaded natural and anthropogenic DIC inventory changes were computed directly 
from the CMIP6 model output using the “dissicnat” variable. The total DIC inventory change was computed directly from 
the model output in all cases. The others were estimated from the Bayesian Hierarchical Model. The uncertainties for the 
shaded numbers denote the standard deviation of the posterior probability distribution. For the non-shaded numbers, the 
uncertainties denote the standard error. CMIP6, Sixth phase of the Coupled Model Intercomparison Project; CMIP5, fifth 
phase of the Coupled Model Intercomparison Project; DIC, dissolved inorganic carbon; n.a., not available.

Table 5 
Change of Total, Anthropogenic and Natural DIC Inventory (Pg C) for the 1994 to 2007 Period in the Top 3,000 m of the 
Water Column for Different CMIP5 and 6 Models
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The Southern Ocean south of 40°S accounts for 35% of the global anthropo-
genic CO2 uptake from the atmosphere from 1994 to 2007, while storage in the 
tropics is smaller (Figure 4). The low storage in these regions results from the 
large transport of anthropogenic carbon out of these regions and higher levels 
of stratification compared to other areas (Frolicher et al., 2015). The zonal 
integral of Cant clearly shows the underlying, integrated climate-emissions 
signals and provides a robust comparison of Cant uptake and distributions 
(Figure 4).

3.3. Biases of Anthropogenic CO2, CFCs and Vertical Temperature 
Gradients

The negative bias in the Cant change for the 1994–2007 period may be attrib-
utable to both physical and biogeochemical processes. To assess biases in 
ocean circulation and mixing, comparison of simulated CFC distributions 
from CMIP6 models with observations offers the possibility of directly 
assessing the magnitude of the exchange between surface and sub-surface 
waters. Because of the known time history of atmospheric concentrations, 
and the fact that CFCs are biologically and chemically inert in the ocean, 
they serve as unambiguous tracers of ocean circulation (Dutay et al., 2002; 
England et al., 1994). By comparison with GLODAPv2 CFC observations, 
we find that, of the four CMIP6 models that reported CFC values, all had a 
negative bias in the global ocean inventory over the period of 1994–2007. 
This suggests that vertical exchange from surface to the interior in the models 
is too weak. Further analysis reveals that the spatial structure of CFC errors 
relative to GLODAPv2 and anthropogenic DIC errors relative to GR2019 are 
positively correlated. The positive correlation is evident in the joint distribu-
tion for the DIC and CFC-11 errors (Figure 5). A similar positive correlation 
is also shown in the joint distribution when the DIC errors are computed 
relative to DV2014 (Figure S4 in Supporting Information S1). When the DIC 
error is computed relative to GR2019, the mean of the joint distribution is 
in the third quadrant indicating that both the DIC and the CFC-11 are nega-
tively biased. The positive correlation suggests that the vertical water-mass 

exchange is responsible for the biases. For GFDL-CM4 model, the mean CFC error is less negative than for the 
CESM2 and CESM2-WACCM, consistent with the higher Cant uptake by GFDL-CM4 (Figure 4).

More CFC output from CMIP6 and CMIP5 models is needed to examine the robustness of the relationship 
between CFC bias and Cant bias. Unfortunately, most modeling centers have not uploaded CFC output to the Earth 
System Grid (https://esgf-node.llnl.gov/search/cmip6/), even though CFCs are a requested standard output varia-
ble for CMIP6. As another tracer of vertical exchange and ocean mixing, we compare the simulated and observed 
vertical temperature gradient between 200 and 1,000 m. This metric of stratification has several advantages. 
First, all of the CMIP models report the three-dimensional structure of ocean temperature. Second, thermocline 
strength is crucial for the ocean carbon sink, and integrates a number of key physical processes. Gnanadesikan 
(1999) describe the maintenance of the thermocline with a predictive model. Biogeochemical constraints were 
applied to this model, showing the interacting impacts of vertical and lateral diffusion on thermocline depth 
(Gnanadesikan et al., 2004). Therefore, the transport of heat and other tracers from the surface to the interior is 
expected to be related to the strength of the vertical temperature gradients. For the global ocean, the mean vertical 
temperature gradient may serve as an effective proxy for stratification and vertical exchange.

We compute the temperature gradient (dT/dZ) on each horizontal model grid location using the least squares 
method. The line of best fit is obtained with vertical temperature profile from 200 to 1000 m as illustrated in 
Figure S5 in Supporting Information S1. The dT/dZ is similarly computed for the WOA18 and GLODAP v2 data, 
which is averaged to a 1° × 1° grid. The profiles in Figure S5 in Supporting Information S1 show global mean 
profiles for the models and the observations. The bias of dT/dZ for different models is shown in Figure S6 in 
Supporting Information S1 during the period of 1994–2007. The bias of dT/dZ by comparison with the WOA18 
data shows similar spatial patterns to the GLODAPv2 data in different basins.

Figure 2. (a) Ocean anthropogenic carbon flux in Pg C/y, and (b) cumulative 
anthropogenic carbon storage from 1994 to 2007 in the sixth phase of 
the Coupled Model Intercomparison Project models are compared to the 
data-constrained estimate from Gruber et al. (2019) and the observation-based 
inverse estimate from DeVries (2014).
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There is a strong correlation between the dT/dZ bias and the bias of DIC inventory across the CMIP5 and the 
CMIP6 models (Figure 6). We fit a linear function between the bias of Cant inventory and vertical temperature 
gradient, which has a form of 𝐴𝐴 𝐴𝐴 = −2.4

PgC

◦C∕Km
𝑋𝑋 − 2.3 on the global scale. Here, Y is the bias of Cant inventory (Pg 

C) and X is the bias of the vertical temperature gradient (°C/Km). This negative relationship explains about 60% 
of model-to-model differences in Cant biases. The weak downward transport, especially in the mid-latitudes of the 
southern hemisphere, inhibits the transport of anthropogenic CO2 via the formation of intermediate and Subant-
arctic mode waters. This is consistent with the large negative bias of Cant storage from 30 to 60°S (Figure 4). 
Specifically, the IPSL model with the largest positive bias also showed the largest negative Cant bias at these 
latitudes while GFDL models showed positive Cant biases.

The globally integrated depth-averaged dT/dZ metric shows a strong correlation with the anthropogenic carbon 
inventory change for the 1997–2004 period. It is important to emphasize that the depth-averaged dT/dZ is not an 
effective regional metric because it ignores along-isopycnal transport. For instance, the metric did not work as well 

if restricted in the Southern Ocean (>40°S) even though the Southern Ocean 
is a major region of carbon uptake. The integrated Southern Ocean DIC inven-
tory is weakly correlated with vertical temperature or vertical density gradients 
in the Southern Ocean below 40°S (Figure S7 in Supporting Information S1).

4. Discussion and Conclusions
Using the IOMB package, we assess the performance of ocean ecosystem and 
biogeochemistry models from CMIP5 and CMIP6. We find the performance 
of CMIP6 models generally better than CMIP5 models, with bias and RMSE 
reductions for most model variables examined, but the extent of improvement 
varied depending on variable and individual model. Overall scores improve in 
the model-mean for CMIP6 for 11 of 14 variables, with exceptions for surface 
chlorophyll temperature at 700 m and surface alkalinity. These latter variables 
show small levels of degradation in the multi-model mean. Overall, the summary 
chart of IOMB is able to provide useful information for future studies of ESMs, 
and complements the ILAMB package, which evaluates terrestrial physical and 
biogeochemical variables against observational datasets (Collier et al., 2018).

Figure 3. Cumulative probability for the bias in the anthropogenic carbon inventory change in the top 3,000 m of the 
water column for the 1994–2007 period as estimated from fifth phase of the Coupled Model Intercomparison Project 
and sixth phase of the Coupled Model Intercomparison Project models listed in Table 5. The bias is computed relative 
to the data-constrained estimate from GR2019. The graph shows that there is a 90% probability that the Coupled Model 
Intercomparison Project multi-model mean has a negative bias.

Figure 4. The change of zonally integrated anthropogenic carbon inventory 
for the period of 1994–2007 as a function of latitude.
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Figure 6. Scatter plot of the global mean bias of anthropogenic ocean dissolved inorganic carbon (DIC) inventory change and the global mean bias of vertical temperature 
gradient (dT/dZ) for different fifth phase of the Coupled Model Intercomparison Project (CMIP5) and sixth phase of the Coupled Model Intercomparison Project (CMIP6) 
models. The bias of anthropogenic DIC inventory for CMIP5 and CMIP6 models is computed relative to the GR2019 for the period of 1994–2007. The uncertainty 
(ensemble spread) of an individual model indicated by the error bars. The global mean dT/dZ bias is calculated with the WOA18 data for the period of 1995–2004.

Figure 5. Joint density of anthropogenic ocean dissolved inorganic carbon bias relative to GR2019 and CFC11 bias (relative 
to GLODAPv2 data) for the period of 1994–2007 for the four models that reported both variables. The bias is calculated by 
sampling the model where CFC11 observations are available in the 0–3,000 m depth range. There are 83109 points for the 
period of 1994–2007. The colorbar shows the cumulative density where the Nth percentile is defined, such that N% of the 
joint distribution lies outside the N% shaded colors.
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We also estimate the anthropogenic ocean carbon uptake rate and cumulative carbon storage for the historical 
simulations over the period of 1994–2007. The CMIP6 models predict a multi-model mean of 27.8 ± 2.0 Pg C, 
which is nearly the same as the 27.9 ± 1.1 Pg C mean from the CMIP5 models. Considering all the models and 
ensemble members together from CMIP5 and CMIP6, the multi-model mean of 27.8 ± 0.5 Pg C is lower than the 
estimate of 33.0 ± 4.0 Pg C reported by Gruber et al. (2019). Only the GFDL-CM4 model (one out of 21 CMIP 
models) has a global mean higher than the data-constrained estimate of ocean anthropogenic carbon storage.

Variability in the ocean's inventory of natural CO2 emerges from processes such as ocean warming and changes in 
ocean circulation and biological fluxes in response to climate change (Keeling, 2005; McNeil & Matear, 2013). 
In Gruber et al. (2019), this non-steady contribution was estimated to be roughly 5.0 ± 3.0 Pg C. However, the 
CMIP models exhibit a much weaker change in the natural carbon inventory. For the 1994–2007 period the loss 
of natural carbon in the models that have the dissicnat variable ranges from only 0.5 to 1.1 Pg C. Overall, for the 
models listed in Table 5 we estimate the multi-model mean loss of natural carbon to be 0.7 ± 0.3 Pg C. Evidence 
for a relatively small role of a natural carbon cycle response over the time span of a 14-year measurement inter-
val (1994–2007) is also provided in earlier work by Schwinger et al. (2014). Specifically, the mean of 7 CMIP5 
models show a cumulative natural carbon response of about 6.7 Pg C per degree of warming over 140 years in 
an idealized climate experiment (Table 2 of Schwinger et al., 2014). As a back-of-the-envelope calculation, if 
we assume about 1 K of global surface air temperature warming through 2007, we can divide the Schwinger 
et al. (2014) estimate by 14 years/140 years, obtaining 0.7 Pg C. This is similar to the estimate we get directly 
from the CMIP6 models using the natural carbon tracer.

In the CMIP models, ocean internal variability for the period of 1994–2007 may also affect anthropogenic carbon 
uptake and the change in the natural carbon inventory. We examined the internal variability using all the available 
ensemble members for each modeling center that provided them. While the carbon inventory can have significant 
fluctuations at a regional scale, the variability for the globally integrated ocean carbon inventory is small relative 
to the anthropogenic carbon uptake. The standard deviation for this effect on the anthropogenic carbon inventory 
change is 𝐴𝐴 𝐴𝐴ant = 0.2 ± 0.02  Pg across initial condition ensembles; for the natural carbon inventory change the 
standard deviation of this effect is 𝐴𝐴 𝐴𝐴nat = 0.4 ± 0.03 . We also expect interannual and decadal climate variability 
modes to affect changes in anthropogenic and total ocean carbon inventories inferred from the observations 
(DeVries et al., 2019; McKinley et al., 2020) highlighting the importance of extending the analytical framework 
developed by Gruber et al. (2019) further in time, so the observed record of anthropogenic carbon change spans 
multiple decades. This is important for reducing the sensitivity of the observational constraint to climate varia-
bility and for gaining insight about the ability of the models to capture carbon cycle processes during a period of 
time when atmospheric carbon dioxide levels are rapidly changing.

We find a significant relationship between CFC biases and anthropogenic DIC biases in the CMIP models, 
suggesting vertical exchange is important in structuring some of the low bias in anthropogenic DIC accumula-
tion. The significant negative relationship between the magnitude of the global vertical temperature gradient and 
anthropogenic carbon uptake provides further evidence that variations in ocean transport and mixing are impor-
tant for structuring model-to-model differences in their representation of the ocean carbon cycle. More effective 
evaluation of transport and circulation impacts on anthropogenic carbon uptake in CMIP7 will require more 
widespread integration and use of CFC and radiocarbon tracers within ocean models; for CMIP6 only three  of 
seven modeling centers reported CFCs.

Comparison of multiple models with a top-level overall scoring chart is an advantage of the IOMB software 
system over more traditional, single-model, diagnostic tools. It is important to recognize that the single score 
summarizing model performance is derived using our choice of metrics, which is subjective as in other evalua-
tion tools. In addition to the metrics used in the current version, IOMB will be expanded by incorporating other 
benchmarking datasets and metrics from the ocean community. The score chart in Figure 1 can be considered 
an initial, useful evaluation of the CMIP5 and CMIP6 models and can be explored in detail in the online version 
(see methods).

We evaluated the CMIP6 models at three different depth levels with IOMB. Ongoing IOMB development efforts 
include adding more model output and observational datasets, adding more types of plots for each variable 
(comparing with different observational transects, plotting and sampling along isopycnal layers and sub-setting 
by different ocean basins and/or biomes). The current analysis with the IOMB focuses on a seasonal climatology, 
but we are adding new features to IOMB for a better assessment of the long-term response of the ocean's carbon 
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cycle to climate warming. In the long run, we expect IOMB to provide a comprehensive tool for the evaluation 
of ocean model performance, to help model developers identify deficiencies and subsequently accelerate model 
development, and to facilitate non-specialist routine analysis for climate and oceanographic studies.

We quantify Cant biases and link them with biases in ocean vertical transport. However, anthropogenic ocean carbon 
uptake is influenced by many processes, including partial pressure differences, solubility, circulation, and the 
strength of the biological pump. These processes are related to each other, which compounds the challenge of attri-
bution of the Cant storage bias. The vertical temperature gradient we examined here seems a good metric for vertical 
exchange in the global ocean. Solubility effects also lead to a positive feedback, which however may be of secondary 
importance compared with ocean dynamics (Crueger et al., 2008). As shown in Marinov and Gnanadesikan (2011), 
the storage of ocean carbon is sensitive to ocean circulation, which redistributes the uptake of Cant in the global 
ocean. In different regions, the relationship between the bias of anthropogenic ocean DIC and vertical temperature 
gradient requires further exploration with other diagnostics of circulation and mixing. However, the attribution in 
the global ocean seems robust and the bias in ocean transport appears to be of first order importance in regulat-
ing model-to-model differences in the storage of anthropogenic carbon in the oceans. Better representation of the 
physical processes leading to formation of intermediate and deep water masses should be a high priority for ESM 
development to improve our ability to project changes in ocean biogeochemistry as climate continues to warm.

Data Availability Statement
The CMIP5 and CMIP6 data can be accessed using the link https://esgf-node.llnl.gov/search/cmip5/ and https://
esgf-node.llnl.gov/search/cmip6/. The source code and documentation for IOMB can be found via https://www.
ilamb.org/doc/running_iomb.html. The observations for model comparisons and analyses from the IOMB 
software system are archived in a public repository and can be accessed via the doi: https://doi.org/10.5281/
zenodo.6972502.
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