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a  b  s  t  r  a  c  t

Understanding  of carbon  exchange  between  terrestrial  ecosystems  and  the  atmosphere  can  be  improved
through  direct  observations  and  experiments,  as well  as  through  modeling  activities.  Terrestrial  biosphere
models  (TBMs)  have  become  an  integral  tool  for  extrapolating  local  observations  and  understanding
to  much  larger  terrestrial  regions.  Although  models  vary  in  their  specific  goals  and  approaches,  their
central  role  within  carbon  cycle  science  is to  provide  a better understanding  of the  mechanisms  currently
controlling  carbon  exchange.  Recently,  the  North  American  Carbon  Program  (NACP)  organized  several
interim-synthesis  activities  to  evaluate  and  inter-compare  models  and observations  at  local  to  continental
scales for the  years  2000–2005.  Here,  we  compare  the  results  from  the  TBMs  collected  as  part  of  the
regional  and  continental  interim-synthesis  (RCIS)  activities.  The  primary  objective  of  this  work  is  to
synthesize  and  compare  the  19 participating  TBMs  to assess  current  understanding  of  the  terrestrial
carbon  cycle  in  North  America.  Thus,  the  RCIS  focuses  on  model  simulations  available  from  analyses
that  have  been  completed  by  ongoing  NACP  projects  and  other  recently  published  studies.  The  TBM  flux

◦ ◦
estimates  are  compared  and  evaluated  over  different  spatial  (1 × 1 and  spatially  aggregated  to  different
regions)  and  temporal  (monthly  and  annually)  scales.  The  range  in  model  estimates  of  net ecosystem
productivity  (NEP)  for North  America  is  much  narrower  than  estimates  of  productivity  or  respiration,
with  estimates  of  NEP  varying  between  −0.7  and  2.2 PgC  yr−1, while  gross  primary  productivity  and
heterotrophic  respiration  vary  between  12.2 and  32.9  PgC  yr−1 and  5.6  and 13.2  PgC yr−1, respectively.
The  range  in  estimates  from  the  models  appears  to be  driven  by a combination  of  factors,  including
the  representation  of  photosynthesis,  the  source  and  of environmental  driver  data  and  the  temporal

∗ Corresponding author. Tel.: +1 928 523 1669; fax: +1 928 523 7423.
E-mail address: deborah.huntzinger@nau.edu (D.N. Huntzinger).

304-3800/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2012.02.004

dx.doi.org/10.1016/j.ecolmodel.2012.02.004
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:deborah.huntzinger@nau.edu
dx.doi.org/10.1016/j.ecolmodel.2012.02.004


D.N. Huntzinger et al. / Ecological Modelling 232 (2012) 144– 157 145

variability  of  those  data,  as  well  as  whether  nutrient  limitation  is  considered  in  soil  carbon  decomposition.
The  disagreement  in  current  estimates  of  carbon  flux  across  North  America,  including  whether  North
America  is  a  net  biospheric  carbon  source  or sink,  highlights  the  need  for further  analysis  through  the
use  of model  runs  following  a  common  simulation  protocol,  in  order to  isolate  the  influences  of  model
formulation,  structure,  and  assumptions  on  flux  estimates.
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scribing consistent driver data and a detailed simulation protocol)
in order to better understand what is driving the differences among
model estimates, this approach provides an unrealistic assessment
. Introduction

North America has been identified as both a significant source
e.g., fossil fuel emissions) and biospheric sink of atmospheric car-
on dioxide (CO2) (Gurney et al., 2002; CCSP, 2007; Prentice, 2001).
owever, as summarized in the State of the Carbon Cycle Report

SOCCR; CCSP, 2007), estimates of the North American biosphere
arbon sink vary widely, ranging from less than 0.1 PgC yr−1 to over
.0 PgC yr−1. While some of the mechanisms responsible for this
ink are understood (e.g., forest regrowth), the current and future
ole of other mechanisms, such as extreme weather events (Jentsch
t al., 2007), changes in land-use, CO2 and nitrogen fertilization,
atural disturbances (e.g., Kurz et al., 2007; Bond-Lamberty et al.,
007), and other carbon-climate feedbacks (Friedlingstein et al.,
006; Pan et al., 1998) in controlling the North American carbon
ycle are highly uncertain (CCSP, 2007). Thus, a basic goal of carbon
ycle studies has been to address key scientific questions ranging
rom carbon flux diagnosis (What are net carbon sources and sinks,
nd how do they change with time?), to attribution (What are the
rocesses controlling flux variability?), and prediction (How might
hanges in climate and other factors alter future fluxes?). Under-
tanding the sources and sinks of carbon and their distribution
cross North America is critical for the successful management of
he carbon cycle (CCSP, 2007) and for useful predictions of its future
volution, and requires a strong understanding of carbon dynamics.
roviding useful information about the carbon cycle and project-
ng future CO2 concentrations is also urgently needed for informing
olicies addressing fossil fuel emissions.

Understanding of carbon exchange between terrestrial ecosys-
ems and the atmosphere can be improved through direct
bservations and experiments, as well as through modeling
ctivities. Terrestrial biosphere models (TBMs), sometimes called
orward models, have become an integral tool for extrapolating
ocal observations and understanding to much larger terrestrial
egions (Waring and Running, 2007; Davis, 2008), as well as for test-
ng hypotheses about how ecosystems will respond to changes in
limate and nutrient availability. Although TBMs vary in their spe-
ific goals and approaches, their central role within carbon cycle
esearch is to provide a better understanding of the mechanisms
urrently controlling carbon exchange. This understanding is then
sed as the basis of prediction and, ultimately to inform the devel-
pment of any potential carbon management plans (Schimel et al.,
000).

The ultimate objective is to model all the processes that result
n the net carbon exchange between the terrestrial system and
he atmosphere, called the net ecosystem exchange (NEE). This
ncludes many processes, most importantly gross primary produc-
ion (GPP), autotrophic and heterotrophic respiration (Ra and Rh
espectively, which together add up to ecosystem respiration, Re),
nd losses due to fire and other disturbance processes (herbivory,
nsects, disease, physical disturbance from storms, etc.) Therefore,
nderstanding how TBM estimates of ecosystem photosynthesis,
espiration, and net carbon exchange vary spatially and temporally
s of great importance, not only for improving TBMs, but also for
nderstanding their contribution to uncertainty in global climate

imulations. By extension, it is also important to know why differ-
nt TBMs product different estimates, even when forced with the
ame driving conditions. The former can be examined by bringing
© 2012 Elsevier B.V. All rights reserved.

together existing model results and comparing them within a con-
sistent framework, while the later requires a substantial, formal
intercomparison effort.

Individual TBMs are often based on different simplifying
assumptions, use different environmental driving data and ini-
tial conditions, and formulate the processes controlling carbon
exchange in different ways. Thus, there is diversity in both the com-
plexity of the model structure and formulation, as well as model
estimates of regional net carbon exchange. Each TBM, therefore, is
a complex combination of scientific hypotheses and choices, and
their estimates depend on these inherent assumptions (Beer et al.,
2010). Available observations of carbon flux components, as well
as our current understanding of the processes controlling carbon
exchange over regional scales, however, are not sufficient to rank
models in terms of which is “best” at representing current fluxes
or predicting carbon exchange under future climate conditions
(Melillo et al., 1995). Therefore, in order to move towards more
robust estimates of carbon cycle dynamics, we must first compare
estimates from a variety of model types, as well as evaluate esti-
mates against those measurements that are available (Cramer et al.,
1999; Melillo et al., 1995; Beer et al., 2010).

Recently, the North American Carbon Program (NACP) (Denning
et al., 2005; Wofsy and Harriss, 2002) organized several interim-
synthesis activities to evaluate and inter-compare models and
observations at local to continental scales for the time period of
2000 through 2005. These interim synthesis activities include three
companion studies, each conducted on different spatial scales: (1)
site-level analyses that examine process-based model estimates
and observations at over 30 AmeriFlux1 and Fluxnet-Canada2 tower
sites across North America; (2) a regional, mid-continent inten-
sive study centered in the agricultural regions of the United States
and focused on comparing inventory-based estimates of net car-
bon exchange with those from atmospheric inversions; and (3)
a regional and continental synthesis evaluating model estimates
against each other and available inventory-based estimates across
North America. A number of other interim syntheses are underway,
including ones focusing on non-CO2 greenhouse gases, the impact
of disturbance on carbon exchange, and coastal carbon dynamics.

Here, we compare the model estimates from the regional and
continental interim-synthesis (RCIS) activities. The primary objec-
tive of this work is to synthesize and compare TBMs to assess
current understanding of the terrestrial carbon cycle in North
America. Thus, the RCIS focuses on “off-the-shelf” model simula-
tions, i.e., existing model results currently available from analyses
that have been completed by ongoing NACP projects and other
recently published studies. Although there is a challenge in inter-
preting existing results compared to prescribing new simulations
designed for the controlled comparison of different modeling sys-
tem, there is also great value in using independent estimates to
assess the overall spread or variability in model results. While it is
necessary to limit variability between models (by, for example, pre-
1 http://public.ornl.gov/ameriflux/.
2 http://www.fluxnet-canada.ca/.

http://public.ornl.gov/ameriflux/
http://www.fluxnet-canada.ca/
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f the true uncertainty in our ability to model land-atmosphere car-
on exchange. Models differ structurally in how they represent the
rocesses controlling carbon exchange between the land and atmo-
phere, in their input or driver data (land cover, climate), and in the
arameter values used within their varying process descriptions.
hese varying approaches to modeling terrestrial carbon exchange
esult in a large degree of variability in the land-atmosphere flux
stimates. Thus, this work provides a valuable assessment of the
urrent status of terrestrial carbon modeling in NA by bringing
ogether model estimates that incorporate a wide range of mod-
ling choices and input data. This work also serves as a starting
oint for analyses that compare these model results to different
bservational data products. Specifically, Raczka and Davis (per-
onal communication) evaluated flux estimates of RCIS models
gainst observations from 30 flux towers across a wide range of
A ecosystems. In addition, Hayes et al. (2012) has assembled and
nalyzed available agricultural and forest biomass inventory-based
ata for NA and compared them alongside estimates from TBM
nd inverse approaches available from the RCIS. In addition, ongo-
ng work is comparing TBM estimates of net ecosystem exchange
o flux estimates derived from atmospheric inversions. Flux esti-

ates from atmospheric inverse models are more comprehensive,
n the sense that all ecosystem sources and sinks, fossil fuel emis-
ions, and any other processes emitting or absorbing CO2 are, in
rinciple, captured in the atmospheric signal (GCP, 2010). Com-
ined, the comparison of TBM estimates to different observational
ata products and modeling approaches can provide further insight

nto our ability to model land-atmosphere carbon dynamics. This
anuscript provides the foundation for these types of compar-

sons.

. Overview of participating models

TBMs represent processes controlling carbon cycle dynamics;
owever, the level of detail with which processes are represented
aries across models. Whereas some models are empirically or
tatistically-based with relatively simple relationships between
river variables and flux, others are more complex, simulating the
oupled carbon, nutrient, and water cycles in terrestrial ecosys-
ems. Models also differ in their representation of soil properties,
egetation type, and environmental forcings, as well as how car-
on pools are initialized. Here we compare carbon flux estimates
ver North America (NA) for the 19 TBMs that participated in
he RCIS. Key features of the models participating in this study in
erms of how they represent photosynthesis, autotrophic respira-
ion, decomposition, and other processes affecting carbon fluxes
re summarized in Tables 1–3 (see Supplemental Material for addi-
ional model descriptions). The TBM flux estimates are evaluated
ver different land cover regions of NA, and with respect to pho-
osynthetic formulation, soil carbon dynamics, and whether they
xplicitly account for the impact of fire disturbances on carbon
ools and stocks.

TBMs can be divided into two general classes: diagnostic and
rognostic models. In order to specify the internal (time-varying)
tate of the system, diagnostic models rely on forcing data (e.g., leaf
rea) provided directly or indirectly from satellite or other external
ources. In contrast, the internal states of the system in prognostic
odels are computed as part of the system equations. Therefore, in

rinciple, prognostic models can be used to predict future condi-
ions using external climate forcing alone, in addition to being used
or diagnostic analyses (e.g., reproducing past or measured fluxes).
The distinction between diagnostic and prognostic models is
mportant. Diagnostic models frequently use observed leaf area
ndex (LAI) as a specified driving variable, along with empirical
lgorithms of varying complexity, to estimate fluxes over regional
delling 232 (2012) 144– 157

or global domains and changes in carbon pool over time (Table 2,
models: BEPS, CASA, NASA-CASA, CASA GFEDv2, EC-MOD, EC-LUE,
ISAM, MODIS, MOD17+). Conversely, prognostic models determine
the amount of leaf area as the result of carbon allocation and
water balance dynamics within the model. As a result, they can
project or estimate carbon cycle dynamics into the future under
changing environmental conditions (Can-IBIS, CLM-CASA′, CLM-
CN, DLEM, LPJ-wsl, MC1, ORCHIDEE, SiB3.1, TEM6, VEGAS2). In
addition, some prognostic models also contain dynamic algorithms
to estimate vegetation distribution over time (Can-IBIS, LPJ-wsl,
MC1, ORCHIDEE, and VEGAS2). Although prognostic models can
be used for future predictions, they are much less constrained by
observations than diagnostic models. As a result, one would expect
their results to be more variable (and perhaps less reliable) even
when used in a diagnostic mode.

The model results submitted to the interim synthesis activity
also vary in terms of the processes included, the choice of driv-
ing data, and the types of algorithms employed to represent these
processes (Tables 1–3,  Supplementary Information). For example,
eight of the nineteen models represent photosynthesis using an
enzyme kinetic formulation (Farquhar et al., 1980), normally at
a sub-daily time step, while nine of the models use a light-use
efficiency calculation at daily to monthly time steps. The models
also differ in how they model soil carbon decomposition. Five of
the models use a zero-order calculation, where decomposition is
a function of temperature and moisture only. Two of the models
omitted soil carbon decomposition altogether, and the remainder
of the models represent decomposition through first-order kinet-
ics, where decomposition depends on the magnitude of soil carbon
stocks in addition to environmental drivers, and interactive pro-
cesses such as N dynamics. In addition, models differ in the types of
disturbance considered (e.g., wind or storm, fire, disease) and how
these disturbances are included within the model (e.g., explicitly
described or implicitly accounted for through vegetation indices).
Most of the models in this study do not directly account for the
impacts of fire, disease, or storm events on carbon fluxes or pools.
In addition, those that do include the impact of fire disturbances
(e.g., Can-IBIS, TEM6, MC1, LPJ-wsl) do so in varying ways (refer to
Table 3 and Supplementary Information).

This diversity in model structure and process representation
makes evaluation and comparison of model performance challeng-
ing. However, information on model differences helps to inform the
analysis and was used here to define subsets or groups of models
based on specific defining characteristics, and aid in the interpre-
tation of observed differences.

3. Methods for comparison

Prior to analysis, all model output was processed, as necessary,
to a spatial resolution of one-degree by one-degree, temporally
aggregated to monthly fluxes, and placed on a grid with a spatial
extent of 10–84◦ North, and 50–120◦ West. Fluxes are compared
for the six years covering the period of 2000 through 2005.

3.1. Regional analysis of TBM output

Several of the model estimates lack full spatial coverage of North
America (Fig. 1); therefore, in order to better compare net flux
across models, 1◦ × 1◦ flux estimates were spatially aggregated to
regions defined by the TransCom intercomparison study (Gurney
et al., 2002) and the Global Land Cover classification for 2000

(GLC2000; Latifovic et al., 2004; NRCan and USGS, 2003). The aggre-
gation of fluxes to large contiguous regions, with similar land cover
or biome types and climatic conditions, allows for the examination
of regional differences between the models. This approach is similar
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Table  1
Terrestrial biospheric models participating in the NACP regional interim synthesis.

Model Spatial range Native spatial
resolution

Native temporal
resolution

Fluxes submitted Temporal range Selected references

Can-IBIS Canada and U.S. – 30 min  GPP, NEE, NEP, NPP, Ra, Rh 2000–2005 Wang et al. (2011),
Kucharik et al. (2000),
and Foley et al. (1996)

CLM-CASA′ Global 2.8◦ 20 min  GPP, NPP, Rh, NEE, NEP 2000–2004 Randerson et al. (2009)
CLM-CN Global 2.8◦ 20 min  GPP, NPP, Rh, NEE, NEP 2000–2004 Thornton et al. (2009)

and Randerson et al.
(2009)

DLEM N.  America 32 km Daily GPP, NEE, NPP, Ra, Rh 2000–2005 Tian et al. (2010)
ISAM  N. America 1◦ Weekly NEE, Rh, NPP 2000–2005 Jain and Yang (2005)

and Yang et al. (2009)
LPJ-wsl  N. America 0.5◦ Daily GPP, NPP, Rh, NEE, CFire, NEEF 2000–2005 Bondeau et al. (2007)

and Sitch et al. (2003)
MC1 Global, Continental U.S. 0.5◦ Monthly NPP, Rh, NEE, CFire, NEEF 2000–2005 Bachelet et al. (2000),

Daly et al. (2000), and
Lenihan et al. (2008)

ORCHIDEE Global 0.5◦ 30 min  GPP, NPP, Rh, NEE, CO2Flux 2000–2005 Krinner et al. (2005)
and Viovy et al. (2000)

SiB3  Global 1◦ Hourly NEE, GPP, Reco 2000–2005 Baker et al. (2008)
TEM6 N. A. > 45◦N 0.5◦ Monthly GPP, NPP, Rh, NEE, CFire, NECB 2000–2005 McGuire et al. (2010)

and Hayes et al. (2011)
VEGAS2 N. America 1◦ Daily GPP, NPP, Ra, Rh, NEE, CFire 2000–2005 Zeng (2003) and Zeng

et al. (2004, 2005)
BEPS  N. America 1◦ Hourly GPP, NEE, NEP, NPP, Rh 2000–2004 Chen et al. (1999) and

Ju et al. (2006)
CASA  Global 1◦ Monthly NEE 2002–2003 Randerson et al. (1997)
NASA  CASA Continental U.S. 8 km Monhly NPP, Rh, NEE, NEP 2001–2004 Potter et al. (2007)
CASA  GFEDv2 Global 1◦ Monthly GPP, NPP, Rh, CFire, NEE 2000–2005 van der Werf et al.

(2004, 2006)
EC-LUE N. America 1◦ Weekly GPP 2004–2005 Yuan et al. (2007)
EC-MOD N. America 1◦ 8-Day GPP, NEE 2000–2006 Xiao et al. (2008, 2010,

2011)
MODIS  N. America – 8-Day GPP, annual NPP 2000–2005 Heinsch et al. (2003)

and Running et al.
(2004)

MOD17+ Global 0.5◦ Daily GPP, NEE, Reco 2000–2004 Reichstein et al. (2005)
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ross primary productivity (GPP); net ecosystem exchange (NEE); net ecosystem
rotrophic respiration (Rh); carbon emissions from fires (CFire); net ecosystem ex
CO2Flux); ecosystem respiration (Reco); net ecosystem carbon balance (NECB).

o that used by Kicklighter et al. (1999),  where net primary produc-
ivity (NPP) estimates were averaged across global biomes defined
y the potential natural vegetation map  developed by Melillo et al.
1993). The choice of land cover classification for defining spatially
ontiguous regions is somewhat subjective. As with the Potsdam
odel intercomparison study (e.g., Cramer et al., 1999; Kicklighter

t al., 1999), landcover classification is used here solely as a mask
or flux aggregation to smaller regions in order to examine regional
ifferences among models.

The models used (or prognostically generated) different veg-
tation maps with varying classification schemes. Therefore, the
hoice of land cover scheme applied in this analysis does not reflect
ow well a model predicts flux for a particular biome type, but
ather how predicted fluxes compare over large, spatially contigu-
us regions with similar land cover or climatic conditions. To avoid
omparing models with limited spatial coverage in a region, only
hose models with at least 80% representation (i.e., those that esti-

ate fluxes for at least 80% of the cells) in a given land region were
ncluded in the comparison within that region.

.2. Subsetting models based on model formulation

In addition to comparing aggregated carbon fluxes, flux
stimates were also compared by grouping models by their pho-
osynthetic formulation and treatment of soil carbon dynamics

Table 2). Both the spread in model estimates and the across-model
verage for these different subsets were evaluated and compared.
s mentioned above, the models in this study can be divided into

wo predominant photosynthetic formulation classes: light-use
ctivity (NEP); net primary productivity (NPP), autotrophic respiration (Ra); het-
e including fire emissions (NEEF); net carbon flux including fire and disturbance

efficiency (LUE) and enzyme kinetic (EK). Light-use efficiency
models estimate productivity by quantifying the fraction of pho-
tosynthetically active radiation (fPAR) absorbed by the vegetation
and then adjust the conversion of solar energy to photosynthesis
or biomass production through climatological and physiological
restrictions (e.g., temperature, moisture). Thus, carbon fixation is
a strong function of solar radiation and leaf area index (LAI), or a
proxy such as normalized vegetative difference index (NDVI). In
contrast, models with enzyme kinetic formulations are more phys-
iologically based, simulating photosynthesis using equations that
represent biochemical/biophysical reactions driven by absorbed
PAR, atmospheric CO2 concentration, leaf temperature, and leaf
water status (Farquhar et al., 1980). Thus, EK models quantify pho-
tosynthesis by emphasizing the light and enzyme limiting rates that
affect photosynthesis. In addition to LUE and EK formulations, some
models employ more statistical or regression-based approaches,
modeling productivity as an empirical function of different envi-
ronmental drivers. Photosynthetic formulation controls, to some
extent, estimates of carbon uptake or productivity predicted by
the models. Photosynthesis can also be influenced by other factors
including driving meteorology, atmospheric CO2 concentration,
nutrient availability, and moisture and temperature limitations.

In addition to photosynthesis, models were grouped based on
their treatment of soil carbon dynamics and decomposition. The
CO2 released (i.e., heterotrophic respiration, Rh) from the decompo-

sition of above and below-ground dead organic matter is controlled
by three factors, including: substrate quality and quantity, moisture
availability, and temperature (Waring and Running, 2007). Thus,
the degree to which these limitations are accounted for in the model
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Table 2
Comparison of environmental drivers, vegetation and soil distribution, phenology, compartments, and photosynthetic and soil carbon decomposition formulations among
models.

Modela Vegetation
distribution

Soil distribution Weather/climate
data

Phenology # PFTs # Veg
pools

#  Soil
pools

Photo-synthetic
formulationb

Soil carbon
decomposition

Can-IBIS Dynamic CSL (Canada),
STATSGO (Alaska),
VEMAP (cont. U.S.)

Canadian Forest
Services (CFS)

Prognostic 12 3 7 EK 1st Order

CLM-CASA’ MODIS IGBP-DIS (GSDTG,
2000)

NCEP reanalysis Prognostic 15 3 5 EK 1st Order

CLM-CN MODIS IGBP-DIS (GSDTG,
2000)

NCEP reanalysis Prognostic 15 4 7 EK 1st Order, with N

DLEM  Multiple sources
(Tian et al., 2010)

Zobler (1986)/FAO
(1995/2003)

NARR and PRISM Prognostic 21 + 10 7 3 EK 1st Order, with N

ISAM  Loveland and
Belward (1997)
and Haxeltine and
Prentice (1996)

Zobler (1986)/FAO
(1995/2003)

Mitchell et al.
(2005)

– 13 5 8 LUE 1st Order, with N

LPJ-wsl Dynamic Zobler (1986)/FAO
(1995/2003)

CRU TS 3.0 Prognostic 9 3 2 EK 1st Order

MC1 Dynamic STATSGO PRISM Prognostic 6 7 6 Statistical 1st Order, with N
ORCHIDEE Dynamic Zobler (1986)/FAO

(1995/2003)
CRU05 and NCEP
reanalysis

Prognostic 12 8 8 EK 1st Order, with N

SiB3  IGBP IGBP-DIS (GSDTG,
2000)

NARR MODIS LAI 14 1 0 EK Zero Order

TEM6 Loveland et al.
(2000) and Hurtt
et al. (2006)

IGBP-DIS (GSDTG,
2000)

CRU05 and NCEP
reanalysis

Prognostic 23 1 3 EK 1st Order, with N

VEGAS2 Dynamic Related to
vegetation

CRU05 and NCEP
reanalysis

Prognostic 4 3 6 LUE 1st Order

BEPS  GLC2000 STATSGO (SSS,
2011)

NCEP reanalysis VGETATION LAI 6 4 9 EK 1st Order, with N

CASA DeFries and
Townshend (1994)

Zobler (1986)/FAO
(1995/2003)

Leemans and
Cramer (1991) and
Hansen et al.
(1999)

GIMMS  NDVI
derived LAI

11 3 5 LUE 1st Order

NASA CASA MODIS STATSGO (SSS,
2011)

NCEP reanalysis MODIS EVI 11 3 5 LUE 1st Order, with N

CASA  GFEDv2 MODIS Batjes (1996) IISAS, GISSTEMP,
and GPCPv2

GIMMS  NDVI
derived LAI

3 3 5 LUE 1st Order

EC-LUE – – GMAO/DAO MODIS NDVI – – – LUE –
EC-MOD MODIS – – MODIS EVI, LAI 7 0 0 statistical Zero Order
MODIS MODIS – DAO MODIS LAI – 0 – LUE –
MOD17+ SYNMAP, Jung et al.

(2006)
– ERA-Interim

reanalysis
MODIS LAI 10 0 0 LUE Zero Order
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haded boxes refer to model components that are not considered or needed within
a Model acronyms are defined and additional model information is provided in S
b Enzyme kinetic (EK) and light-use efficiency (LUE).

ill likely impact their estimations of Rh and overall net carbon
ynamics.

Some models lack soil carbon pools/layers altogether, and het-
rotrophic respiration is thus not explicitly calculated. Others
alculate soil respiration as an empirical function of moisture and
emperature conditions (e.g., zero-order). In most models, how-
ver, soil organic matter decomposition is based on first-order
inetics, where the rate of decomposition is a function of the size
f the soil carbon pool (e.g., amount of carbon), a simple decom-
osition constant, as well as temperature and moisture limitations
Reichstein and Beer, 2008). The influence of nitrogen (N) dynam-
cs and cycling on soil carbon decomposition may  or may  not be
onsidered by the model (Table 2). In this analysis, two  soil car-
on dynamics classifications are used: models with (1) dynamic
oil carbon pools, with first-order soil carbon decomposition rates
nd (2) dynamic soil carbon pools that include nitrogen cycling and
imitations, with first-order soil carbon decomposition rates. A few
f the models consider zero-order soil decomposition, and there-
ore lack soil carbon pools altogether and were not included in the
omparison of heterotrophic respiration.
Models were also classified by other factors that affect their
ynamics, including whether they consider fire disturbances and

and-use change; and whether transient CO2, or the combination
f transient CO2 and N deposition forcings are included within the
odel.
mentary Information.

model (Tables 1 and 3). Although many of these classifications are
not mutually exclusive (e.g., many prognostic models use an EK
photosynthetic formulation), their use of in model evaluation helps
to identify potential sources of variability that drive differences
in GPP and Rh, which translate into differences in net ecosystem
productivity (NEP).

4. Results and discussion

4.1. Magnitude and distribution of carbon sources and sinks

The carbon flux that all the models submitted to the RCIS
have in common is net ecosystem production (NEP), where NEP
is the difference between GPP and the sum of autotrophic and het-
erotrophic respiration (Chapin et al., 2006). NEP does not include
direct disturbance-induced carbon fluxes, which many models in
this study do not consider. If a model does consider disturbances
(Table 3), however, this can alter carbon pools, and as a result,
impact both NPP and Rh. In some models, such as Can-IBIS, the

effects of disturbances on NEP are only accounted for at year’s end.
As a result, if NEP is compared over the summer months (June, July,
August), the flux estimates from these months will not account for
losses due to disturbance. Instead, disturbances will cause additions
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Table  3
Components and processes (including disturbance events) influencing the estimation of net ecosystem productivity by each model.

Modela NEPb Land-use/land
cover change

Firec Insect, storm
damaged

Transient forcingse DIC, DOC,
PC lossesf

Can-IBIS GPP − (Ra + Rh) – Prognostic – CO2, Ndep DOC
CLM-CASA’ GPP − (Ra + Rh) Prescribed

land-use
– – CO2 –

CLM-CN GPP − (Ra + Rh) Prescribed
land-use

Prognostic – CO2, Ndep –

DLEM  GPP − (Ra + Rh) Prescribed
land-use

– – CO2, Ndep CH4 loss

ISAM NPP  − Rh Prescribed
land-use

– – CO2, Ndep –

LPJ-wsl GPP − (Ra + Rh) – Prognostic – CO2 –
MC1  NPP − Rh Prescribed

land-use,
prognostic forest
harvest

Prognostic – CO2, Ndep –

ORCHIDEE GPP − (Ra + Rh) − crop
harvest

No land-use/land-
cover change, 40%
of  cropland
biomass is
harvested

– – CO2 –

SiB3.1  GPP − (Ra + Rh) – – – CO2 –
TEM6  GPP − (Ra + Rh) Prescribed

land-use, and
forest harvest

Prescribed – CO2, Ndep DOC

VEGAS2 GPP − (Ra + Rh) – – Constant
background
mortality rate
from cold and
drought stress

CO2 –

BEPS GPP − (Ra + Rh) – – – CO2 –
CASA  NPP − Rh – – – – –
NASA  CASA NPP − Rh – – – CO2, Ndep –
CASA  GFEDv2 NPP − Rh – Prescribed – – –
EC-LUE GPP only – – – – –
EC-MOD -NEE – – – – –
MOD17+ GPP − Re – – – – –

Shaded boxes refer to processes that are not included or considered in the model.
a Model acronyms are defined and additional model information is provided in Supplementary Information.
b Net ecosystem productivity (NEP), gross primary productivity (GPP), heterotrophic respiration (Rh), autotrophic respiration (Ra).
c Models without prognostic or prescribed.
e Transient atmospheric carbon dioxide concentration (CO2), transient nitrogen deposition (Ndep).
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f Dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate c

o litter pools and removals of live vegetation at year end, which
ill affect the NEP in the following (and subsequent) years.

The spatial distribution of average summer (June, July, August)
EP predicted by the models is shown in Fig. 1. Table 3 provides

 list of processes or factors that influence each model’s estimate
f productivity. Although, as mentioned above, the direct and indi-
ect effects of fires influence some model estimates of carbon flux
nd pools, direct CO2 emissions from forest fires are not included
n model NEP estimates. Throughout the following discussion a
ositive (+) sign on NEP indicates net uptake of carbon from the
tmosphere by the land, while a negative (−) sign signifies a net
elease of carbon from the land back to the atmosphere. During the
rowing season, the magnitude and spatial distribution of fluxes
ary substantially among the models (Fig. 1). Some models show
trong carbon sources in the Midwest and Southeast portions of the
.S. (e.g., MC1, LPJ-wsl), Central Plains, West, and Southwest (LPJ-
sl, MOD17+, DLEM), while others estimate large sinks particularly

n the Southeast (e.g., BEPS, EC-MOD, NASA-CASA, Can-IBIS). In the
oreal regions of North America, however, there appears to be more
onsistency among the models. In these northern regions, most
odels show an overall sink of carbon during the summer months,
lthough the strength of that sink varies across models (Fig. 1).
The overall similarities and differences among modeled mean

EP estimates were quantified for each one-degree cell by cal-
ulating the across-model standard deviation in estimated flux.
 (PC).

During the summer months of June, July, and August, the largest
differences between NEP estimates are located in the Midwestern
and Southeast regions of the continental U.S. (Fig. 2). Much of the
across-model spread in summertime NEP in the southeast is driven
by differences in predicted GPP (Fig. 2). Overall, as expected, the
greatest difference in model estimates occurs in areas of larger flux
magnitude.

When fluxes are spatially aggregated to all of North America, the
TBMs predict annual NEP ranging from −0.7 to +1.7 PgC yr−1 for
prognostic models and −0.3 to +2.2 PgC yr−1 for diagnostic mod-
els, with an overall model average of +0.65 PgC yr−1 for the North
American continent (Table 4). This model average is consistent
with previous estimates of the strength of the North American
sink of 0.35–0.75 PgC yr−1(Goodale et al., 2002; Houghton et al.,
1999; CCSP, 2007; Pacala et al., 2001; Xiao et al., 2011). Much of
the spread in NEP estimates comes from the range in model esti-
mates of photosynthesis or GPP, because the majority of models
scale autotrophic respiration (Ra) based on their estimates of pho-
tosynthesis. TBM estimates of GPP and heterotrophic respiration for
North America vary considerably between 12.2 and 32.9 PgC yr−1

and 5.6 and 13.2 PgC yr−1, respectively (Table 4). Overall, prognostic

models exhibit greater across-model spread or variability in their
net GPP estimates relative to diagnostic models. Prognostic mod-
els also estimate a larger net GPP or uptake across North America
compared to diagnostic models.
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ig. 1. Long-term mean summer (June, July, August) net ecosystem productivity 

tmosphere, while a negative sign signifies net carbon release to the atmosphere. Pr
ith  a purple background.

One potential reason for the narrower spread in GPP among
he diagnostic models is that several of the diagnostic models (EC-
UE, EC-MOD, MOD17+) presented in this study are calibrated to
ux tower data and use similar satellite observations for provid-

ng LAI and fPAR. As a result, their flux estimates tend to be more
imilar among themselves relative to the differences among prog-

ostic models. However, only three of the eight diagnostic models
xplicitly calibrate their models using flux tower data, so this is
n-likely to be the only cause of similarly among the diagnostic
odels.

ig. 2. Across-model standard deviation in long-term mean (2000–2005) summer (Jun
rimary productivity.
del (2000–2005). A positive sign indicates net terrestrial carbon uptake from the
tic models are shown above with a green background; diagnostic models are below

It is surprising that diagnostic models have a greater range and
standard deviation in NEP than prognostic models, given that diag-
nostic models have smaller ranges in the component fluxes GPP
and Rh (Table 4). This indicates that the production and respiration
components are less correlated within diagnostic models.

Fluxes were also spatially aggregated to Boreal and Temperate

North America; regions defined by the TransCom inverse model
intercomparison (Gurney et al., 2003). The TransCom regions were
chosen for comparison because they cover a majority of North
America (minus Greenland, the Northern Queen Elizabeth Islands,

e, July, August) model estimates of (A) net ecosystem productivity and (B) gross



D.N. Huntzinger et al. / Ecological Modelling 232 (2012) 144– 157 151

Fig. 3. Model estimates of the long-term mean (2000–2005) seasonal cycle of (A) net ecosystem productivity and (B) gross primary productivity for boreal and temperate
North  America.

Fig. 4. Model estimates of annual gross primary productivity (GPP) for 2000 through 2005 for Boreal and Temperate North America. Prognostic models are shown in shades
of  green; diagnostic models are shown in purple.
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Table 4
Long-term mean (2000–2005) net ecosystem productivity, gross primary productivity, and heterotrophic respiration estimated by the models in PgC yr−1 for North America.
Not  all models submitted all three fluxes (NEP, GPP, and Rh). To avoid comparing models with limited spatial coverage in a region, only those models with at least 80%
representation (i.e., those that estimate fluxes for at least 80% of the cells) in a given land region were included in the comparison within that region.

Prognostic models Diagnostic models

Number of models (min, max) Mean Std dev Number of models (min, max) Mean Std dev

Net ecosystem productivity (n = 17)
North America 9 (−0.7, 1.7) 0.4 0.4 6 (−0.3, 2.2) 0.9 0.7
Boreal  NA 10 (−0.2, 0.7) 0.1 0.2 4 (−0.4, 0.6) 0.1 0.3
Temperate NA 10 (−0.5, 1.1) 0.2 0.3 6 (−0.1, 1.6) 0.7 0.6

Gross  primary productivity (n = 15)
North America 8 (12.2, 32.9) 20.0 6.6 6 (12.2, 18.7) 14.8 1.9
Boreal NA 9 (2.2, 11.6) 5.7 2.7 5 (2.6, 4.4) 3.6 0.6
Temperate NA 8 (7.7, 21.3) 12.3 4.0 6 (8.2, 12.6) 10.0 1.0

Heterotrophic respiration (n = 13)
North America 8 (5.6, 13.2) 8.2 2.3 2 (7.4, 8.6) 8.2 –
Boreal NA 9 (1.3, 4.6) 2.6 1.1 2 (2.1, 2.9) 2.4 –
Temperate NA 9 (3.4, 7.5) 4.8 1.3 3 (2.4, 5.6) 4.5 –
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entral America, and parts of southern Mexico). Estimates of NEP
nd GPP by prognostic versus diagnostic models differ considerably
n both the depth and timing of the seasonal cycle, with prog-
ostic models estimating greater overall productivity during the
ummer months compared to diagnostic models (Fig. 3). These sea-
onal cycle differences translate into large variability in net annual
stimates of NEP for 2000–2005, ranging from −0.4 to 0.7 PgC yr−1

Boreal NA) and −0.5 to 1.6 PgC yr−1 (Temperate NA) (Table 4).

The differences among TBMs are even more apparent when

omparing GPP over similar land regions. Overall, prognostic mod-
ls exhibit a significantly greater across model variability in net
nnual uptake than diagnostic models (Table 4 and Fig. 4). In order

ig. 5. Model estimates of the long-term mean (2000–2005) net ecosystem productivity (N
iome or vegetative cover classification based on the Global Land Cover 2000 classificatio
to examine regional differences among the models that may be
contributing to variation in their estimates of North American net
annual flux, model estimates of NEP, GPP, and Rh were compared
across biomes (Fig. 5). To better compare model estimates, aggre-
gated fluxes were normalized by the total land area covered by a
given model for a given land cover region, and therefore the results
are presented as gC m−2 yr−1. Recall, that to be included in the com-
parison for a given biome, a model must have at least 80% spatial

coverage within that region.

Model estimates vary considerably in their net annual estimates
of flux with the greatest discrepancies occurring in more pro-
ductive regions (e.g., mixed and deciduous forest, cultivated and

EP), gross primary productivity (GPP) and heterotrophic respiration (Rh) by biome.
n scheme.
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anaged lands; Fig. 5). Model estimates of the long-term mean
nnual NEP in mixed and deciduous forested regions varies from
bout −25 gC m−2 yr−1 to +250 gC m−2 yr−1. One explanation for
his difference is that models, and their estimates of GPP and Rh,
ave varying sensitivities to limitations, such as water availability
nd temperature. In low productivity systems (e.g., shrublands),
imitations are likely strong regardless of a given model’s sensitiv-
ty to these limitations. In more productive systems (e.g., forests and
ultivated lands), however, a model’s sensitivity to limiting factors
e.g. water availability) will have a much larger effect, and slight dif-
erences in the sensitivity of GPP and Rh to these limitations could
esult in more divergent NEP estimates. In addition, from exami-
ation of model estimates of long-term mean seasonal cycle at the
iome level, it appears that across-model differences in growing
eason net uptake may  be driving some of the average annual NEP
nd GPP variability among models. Conversely, a similar range in
stimated NEP is seen in areas of cultivated and managed lands.
or most models, NEP is calculated as the difference between GPP
nd ecosystem respiration (Rh + Ra). Model estimates of GPP and
h vary considerably across biomes. However, in more productive
reas (e.g., deciduous shrublands, evergreen and needleleaf), the
arger productivity results in more decomposable substrate. As a
esult, Rh tends to be highly correlated with GPP, which yields rel-
tively similar estimates of NEP across models compared to other
egions (variability Rh and GPP somewhat cancel each other out).

The potential factors driving the differences seen across models
re examined further below by subsetting models based on shared
odel attributes.

.2. Attribution of intermodel differences to model formulation
nd driver data

Attribution of intermodel differences in net flux and the long-
erm mean seasonal cycle of NEP can best be examined through
he component fluxes of GPP (photosynthetic uptake) and respi-
atory release of carbon (Rh). Thus, in order to identify potential
rivers of differences between models, we compare estimates of
omponent fluxes (e.g., GPP and Rh) by subsetting models based
n differences in their photosynthetic and soil carbon decompo-
ition formulations, as well as their treatment of fire disturbance,
and cover change and external forcings, such as time-varying CO2
nd N deposition.

.2.1. Differences in gross primary productivity
It is generally assumed that the physiology of photosynthe-

is and the kinetics of Rubisco are relatively well understood at
he leaf-level (Collatz et al., 1992; Dai et al., 2004; Farquhar and
on Caemmerer, 1982). However, there is a great deal of uncer-
ainty as to how to scale leaf-level processes up to the canopy or
cosystem level (Chen et al., 1999; Baldocchi and Amthor, 2001). In
ddition, there are uncertainties concerning the exact influence of
actors such as nitrogen content, nitrogen allocation, and radiative
ransfer on productivity. These processes must be parameterized
n models, and can lead to a potentially large spread in GPP esti-

ates across a collection of models. The complications in modeling
roductivity leads to significant disagreement among the model
stimates of GPP, with peak growing season differences of greater
han 2 PgC month−1 in both Temperate and Boreal NA TransCom
egions (Fig. 3), and over 1000 gC m−2 yr−1 in regions of mixed
nd deciduous broadleaf forests and cultivated and managed lands
Fig. 5).

Overall, models with photosynthetic formulations based on

nzyme kinetics predict a greater mean annual GPP with a
arger range in estimates than light-use efficiency-based mod-
ls (Fig. 6). Whether photosynthetic formulation is the driving
ause of variability in modeled GPP is not clear. For example,
delling 232 (2012) 144– 157 153

Medvigy et al. (2010) found that high-frequency meteorological
data profoundly impacts simulated terrestrial carbon dynamics.
Using the Ecosystem Demography model version 2 (ED2) forced
with observed meteorology, as well as reanalysis weather, this
study found that over an 8-year period, differences in climatic
driver data alone resulted in a 10% difference in net GPP and 25%
difference in NEP. This work suggests that precipitation and radia-
tion data with higher temporal variability yield lower overall GPP
and cumulative above ground biomass, due to non-linearities in the
photosynthetic functions. Conversely, climate drivers with lower
variability, e.g., from reanalysis weather products, may lead to
higher GPP (Medvigy et al., 2010). Model estimates of GPP and NEP
are also highly sensitive to biases in solar radiation (e.g., Ricciuto
et al., in prep, Poulter et al., 2011; Zhao et al., 2011). Finally, many
of the EK models examined in this study also model phenology
prognostically, which could also explain much of the spread in GPP
(Figs. 4 and 6) among the prognostic models. Therefore, much of
the spread in GPP estimates in this study is likely to be driven by a
combination of differences, including the source of driver data, the
temporal variability of meteorological data, prognostic representa-
tion of phenology, and/or how changes in sunlight and precipitation
affect productivity through the models’ choice of photosynthetic
formulation.

Disturbances can have a significant and immediate influence on
ecosystems by redistributing stocks among live and dead organic
matter pools and, in the case of fire, the atmosphere. Disturbances
can also greatly alter the natural community (e.g., succession),
which can influence biogeochemical cycling long after the direct
impacts of a disturbance event have passed. To examine the poten-
tial impacts of a model’s treatment of disturbance on GPP, models
were grouped based on how they account for fire disturbances.
Some models explicitly account for the effect of fire either prog-
nostically or diagnostically (refer to Supplemental Information).
However, a majority of the models in this study do not directly
account for fire disturbances or do so implicitly through the use
of satellite-based vegetative indices such as LAI or fPAR, which are
themselves impacted by fire disturbance.

Overall, models that explicitly account for fire disturbances, and
their associated impact on carbon pools, predict a greater mean
annual GPP with a larger range in flux estimates than models with-
out disturbance included (Fig. 6). The impacts of fire on a given
ecosystem depend on a number of factors including the ecosystem
type (e.g., ponderosa pine forest versus grasslands), fire intensity
and type (i.e., stand replacing), and overall scale. For example, a
large, stand-replacing fire would likely result in suppressed pro-
ductivity (and GPP) for several years following the fire. Conversely,
given the right conditions, a fire event could make more nitrogen
available for growth (and thereby increase production of leaf tis-
sue) and/or for photosynthesis (through higher leaf tissue N in the
form of Rubisco). This, however, is balanced by any losses in leaf
area during the fire. Many of the models that directly account for
fire also employ an enzyme kinetic approach in their formulation of
photosynthesis. Although, how a model accounts for disturbances
(including fire) impacts their estimates of carbon pools and stocks,
it is not likely the dominant driver for the differences in GPP seen
among the participating models in this study.

There are limited datasets with which to compare modeled GPP.
Although MODIS-derived estimates of GPP (Heinsch et al., 2006;
Running et al., 2004; Zhao et al., 2005) have been favorably com-
pared to flux tower measurements, tower-by-tower comparisons
still show significant residuals. MODIS GPP is fundamentally a mod-
eled product, not a direct observation. The MODIS product and

other LUE-based models are similar in their estimates of net uptake,
and generally predict lower productivity than models in which pho-
tosynthesis is more physiologically based (Figs. 4 and 6 and Table 3).
For example, when totalled over the growing season and annually,
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ig. 6. Model estimates of (A) gross primary productivity (GPP) and (B) heterotrop
hotosynthetic formulation (enzyme kinetic versus light-use efficiency), and wheth
y  the models. See Tables 2 and 3 for more information.

any of the prognostic models in this study estimate 1.2–2 times
he GPP predicted by the diagnostic or light-use efficiency based

odels. Razcka and Davis (personal communications) compared
he TBM estimates in this study to flux tower measurements. They
ound that the mean GPP and ecosystem respiration (Ra + Rh) from
he models is about 30–40% greater in most biomes (not includ-
ng deciduous broadleaf forests) compared to those derived from
ddy-covariance (EC) measurements at flux tower sites. As a result,
lthough similarities exist between the lower end of the model-
ased GPP estimates and those derived from EC measurements,

t is difficult to say whether these lower GPP estimates are more
orrect.

In addition to the influence of environmental drivers discussed
bove, whether a model accounts for time-varying CO2 and/or
itrogen deposition could contribute to the differences in net car-
on uptake simulated by the models (Fig. 6). Friedlingstein et al.
2006), for example, showed greater carbon uptake by ecosystems
n uncoupled TBMs as a result of increased atmospheric CO2 con-
entration.

.2.2. Variability in heterotrophic respiration
Heterotrophic respiration is also difficult to model at a funda-

ental scale due to its dependence on poorly understood, complex
rocesses, as well as the need to track diverse carbon pools of
arying decomposability (Jastrow, 1996; Oades, 1988; Parton et al.,

987). While the overall magnitude in Rh is smaller than that of GPP,
he variation among models is still large, with estimates differing
y 50–600 gC m−2 yr−1 (Fig. 5). Models that estimate soil carbon
ecomposition based on zero-order kinetics (i.e., decomposition
spiration (Rh) for Temperate North America, grouped by decomposition kinetics,
 disturbance, land-cover/land-use changes, and transient forcings were considered

rate independent of concentration) do not explicitly calculate Rh,
and they are therefore not included in Fig. 6. Estimates of Rh
from models with both first-order soil carbon decomposition rates,
which also include nitrogen cycling, tend to exhibit a shallower
seasonal cycle and less overall soil C release than models without
N cycling. Nitrogen limitations on microbial decomposition could
result in slower decomposition rates (Thornton et al., 2007; Yang
et al., 2009). However, this in turn would reduce the rate of N
availability for plant growth. The models that consider nitrogen
deposition (in addition to CO2) do not have lower GPP and may  have
a slightly larger GPP than the models that do not include N depo-
sition (Fig. 6A). This added N from atmospheric deposition may, at
least for North America, be enough to compensate for the reduction
in N from decomposition, thus supplying the N required for GPP.

Overall, the differences in modeled GPP and Rh do not translate
into large differences in the long-term mean seasonal cycle of NEP
(Fig. 3), in part, because within many models respiration is highly
correlated to GPP. This is also observed in other studies (e.g., Poulter
et al., 2011) where modeled Rh tends to respond proportionally to
changes in GPP or productivity, resulting in a smaller net range in
absolute NEP among the models (Table 4).

5. Conclusions

This study brings together estimates of land-atmosphere carbon

exchange from nineteen prognostic and diagnostic TBMs, in order
to assess the current understanding of the terrestrial carbon cycle
in North America. The models differ substantially in their estimates
of net ecosystem productivity, as well as gross primary productivity
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nd respiration. Prognostic models exhibit greater overall range in
heir estimates and predict larger net uptake of carbon over North
merica relative to diagnostic models.

Photosynthetic formulation, the source and variability of cli-
atic driver data, and how phenology is described all appear to

nfluence the across-model difference in estimated fluxes, and
he magnitude of overall carbon uptake predicted by the models.

uch of the variability in modeled Rh is likely driven by vari-
bility in GPP, because the majority of models scale respiration
ased on their estimates of photosynthesis. While this type of
caling may  be appropriate for forested regions where GPP and
h are closely linked, this assumption is probably not appropri-
te for more managed lands (e.g., agricultural lands and forest
lantations in the U.S. Southeast), where harvest, lateral trans-
ort, and other management activities can impact where carbon

s respired.
For many biome types (e.g., evergreen and needleleaf, decidu-

us and herbaceous shrublands), there is a large range in both GPP
nd Rh, but a relatively small range in model-estimated NEP. This
rend in simulation results is consistent with the work of Raczka
nd Davis (2011, personal communication), which compares model
erived estimates of GPP and respiration to those inferred from flux
ower observations. Thus, models that overestimate (or underesti-

ate) GPP and Rh can still predict plausible values for NEP, but for
he wrong reasons. For example, models that are calibrated to flux
ower observations may  be “tuned” to NEP, particularly when GPP
nd Rh observations are scarce. The flux tower records can help to
nterpret the cause of model difference, and suggest that the lower
ange of GPP in this collection of TBM models may  be closer to
ower-based observations. What we cannot tell from comparisons
ith observations, however, whether the model estimates repro-
uce observations for the right reasons (i.e., whether processes
ccurately are represented in the model).

Overall, flux estimates are a function not only of model algorith-
ic  formulation, but also how models were calibrated (or tuned),

nitial conditions (e.g., soil properties, vegetation, and land-use),
river data (e.g., weather, CO2 concentration), and their treat-
ent of disturbances (e.g., fire, wind, disease). The entire modeling

ramework contributes to the results, and therefore all of the com-
onents require evaluation. The study reveals the large variation

n TBM estimates of long-term mean net ecosystem productiv-
ty, as well as discrepancies in the magnitude and timing of the
easonal cycle. The results also provide a sobering picture of
he current lack of consensus among model estimates of land-
tmosphere carbon exchange across North America. Attributing the
ross-model variability to differences in modeling approaches and
riving data is difficult, however, given the focus on existing results
rom models run using a wide range of assumptions and inputs.
eveloping, improving, and evaluating TBMs such that they can
rovide useable forecasts (and past diagnoses) at near-term, inter-
nnual, decadal, and century timescales requires developments in
uantitative model evaluation and rigorous benchmark develop-
ent. While we were able to attribute some of this variation to
odel structure and aspects of model driver data, a more formal
odel-data comparison is required to more definitively quantify

he impact of model formulation and supporting and driver data
n the accuracy of the simulation outputs. Such efforts require
ubstantial technical support for model participation, the devel-
pment of consistent and optimal environmental driver datasets,

 unified intercomparison protocol, as well as coordination of
he intercomparison effort across research groups. These types of
fforts are underway, including several projects working to under-

tand how model formulation and model choices impact overall
odel performance through the use of detailed simulation proto-

ol and controlled input environmental driver data (e.g., Schwalm
t al., 2010) and the Multi-Scale Synthesis and Terrestrial Model
delling 232 (2012) 144– 157 155

Intercomparison Project (MsTMIP), which directly builds of the
NACP regional interim synthesis present here.
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