
Querying for Feature Extraction and

Visualization in Climate Modeling

C. Ryan Johnson1, Markus Glatter1, Wesley Kendall1, Jian Huang1,
and Forrest Hoffman2

1 University of Tennessee, Knoxville TN 37919, USA
2 Oak Ridge National Laboratory, Oak Ridge TN 37831-6016, USA

Abstract. The ultimate goal of data visualization is to clearly portray
features relevant to the problem being studied. This goal can be realized
only if users can effectively communicate to the visualization software
what features are of interest. To this end, we describe in this paper two
query languages used by scientists to locate and visually emphasize rel-
evant data in both space and time. These languages offer descriptive
feedback and interactive refinement of query parameters, which are es-
sential in any framework supporting queries of arbitrary complexity. We
apply these languages to extract features of interest from climate model
results and describe how they support rapid feature extraction from
large datasets.

1 Introduction

Given the high-resolution and high-dimensionality of the datasets resulting from
today’s large-scale climate simulations, it is typically infeasible to visualize a
dataset in its entirety. Moreover, the limits of hardware and human perception
hinder real-time investigative analysis. Possible solutions to reduce the amount
of visualized data may involve automatically detecting statistically unique loca-
tions [1] or using a problem solving environment supporting manual filtering of
the data [2]. An alternative solution offering a balance between automation and
control is to visualize or emphasize only a relevant subset of a dataset satisfying
some query or hypothesis chosen by the user. To be effective, such queries must
be expressed in terms of the problem domain and offer rich feedback, enabling
interactive refinement of query parameters.

Modern fully-coupled general circulation models (GCMs) are frequently used
to generate climate projections hundreds of years into the future. As spatial reso-
lution and temporal output frequency increase, to better resolve and understand
complex interacting phenomena, model output grows considerably. Analyzing
this output through traditional means is becoming impossible. As a result, vari-
ous data mining techniques, designed to extract features of interest and simplify
very large time series datasets, are increasingly being applied to the climate mod-
eling domain. Previous work by Hoffman et al. [3] has demonstrated the utility
of such techniques by applying k-means cluster analysis to hundreds of years

G. Allen et al. (Eds.): ICCS 2009, Part II, LNCS 5545, pp. 416–425, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Querying for Feature Extraction and Visualization 417

of climate model results. This paper describes additional techniques that show
promise in extracting regional and temporal features in an automated fashion.

Herein we describe two query languages for visualizing features in any large,
time-variant datasets. The first was initially developed for volume visualization
in a previous work [4] to enable users to express features in terms of statistical
properties of local spatio-temporal neighborhoods, while the second [5] is a tem-
poral pattern language modeled after regular expressions, a powerful tool more
commonly used for locating patterns in text. Both languages are tightly inte-
grated into the visual analysis process. We apply these language frameworks to
a recent climate modeling simulation and describe a mechanism making query
processing scalable.

2 Neighborhood Distribution Querying

Gaining insight into high-dimensional climate data often requires investigat-
ing and testing statistical hypotheses. For instance, scientists may be curious
about the differences in the interannual variability of snow coverage between
two decades, whether or not precipitation and temperature are positively cor-
related, or if mean solar radiation is decreasing through time. Investigating
these hypotheses at a global scale reveals only overall trends. Generally, it is
more informative to examine local regions independently and draw conclusions
from observations of smaller-scale phenomena. To this end, we describe a frame-
work that enables statistical querying and visualization of spatio-temporal data.
We develop a visual query language in which scientists can express arbitrary,
statistic-based queries to determine which local regions meet a set of hypotheses.

2.1 Neighborhood-Based Querying

The core structure of our framework is the distribution of values in the local
neighborhood around each data point. Scientists query for features of interest
in terms of statistics derived from intervals within these distributions. Figure 1
illustrates the process of forming a query.

Neighborhood. The exact size and shape of the local region that forms the
sample space can be customized by the user. By default, the neighborhood is
defined spatially as the set of data points within a specified Euclidean distance
of radius r. However, users can alter the shape to search for features more easily
described in an anisotropic sample space. Additionally, neighborhoods may be
defined across both space and time domains.

Bin Selection. With the neighborhood defined, the user selects which variables
are used to define the feature to be visualized. The user may focus on a particular
interval of values for each variable. We refer to the interval on which a variable
is examined as a bin. In choosing a bin, a scientist narrows the distribution for
which statistical measures are calculated to a relevant subset of the data. For
example, an investigation of liquid water may involve only temperatures above
freezing.

418 C.R. Johnson et al.

Fig. 1. An illustration of the statistical querying process. (a) Scientists first choose the
spatio-temporal neighborhood serving as the sample space. (b) Next, the sample space
is refined to intervals of the variables and their distributions relevant to the problem. (c)
Lastly, scientists describe features of interest using inequalities relating the intervals’
statistical primitives.

Querying by Predicate Clauses. With the sample space and distributions in
place, queries are now expressed as a series of inequalities relating properties of
distribution intervals to target criteria. The properties currently supported in-
clude relative frequency, mean, variance and standard deviation, skewness, and
covariance. As an example predicate clause, let us consider the feature of rapid
surface temperature change in the spatial domain. We select a circular neighbor-
hood of radius 3, a bin encompassing all possible surface temperatures, and a
predicate clause stating that the standard deviation must be greater than 3. We
apply this query to the July 2000 timestep of the IPCC land-model simulation,
with the result shown in Figure 2. Large elevational gradients are the primary
feature emphasized by this query because these are the neighborhoods with large
temperature deviations.

In the proceeding example, the target criterion is constant: standard deviation
must be greater than 3.0 for a neighborhood to match. However, we can also allow
target criteria to be expressed dynamically in terms of other interval properties.
To query for locations where the mean percentage of a land grid square covered
in snow one decade is half that of another decade, we select a neighborhood

Fig. 2. A query for surface temperatures in circular neighborhoods of radius 3 in July
2000 having a standard deviation greater than 3◦K. The dark locations fully match
the query, while the lighter shade’s opacity reflects how nearly a non-matching neigh-
borhood came to matching.

Querying for Feature Extraction and Visualization 419

spanning ten years, establish two intervals from 0% to 100% on snow coverage
for each decade, and a clause requiring mean(bin 1) < 0.5 * mean(bin 0).

Additionally, features typically involve compound criteria, and our query lan-
guage readily handles multiple predicate clauses. Neighborhoods may match only
a subset of the query’s clauses, and in order to visualize partial matches, we
record a predicate signature, which is a bitfield with bit i set to 1 if the criterion
of clause i is fully met in a neighborhood. A neighborhood’s predicate signature
is used to determine its color when visualized. Each clause may also be assigned
a weight reflecting its degree of importance in defining a feature.

To avoid a misleading boundary between matching and non-matching neigh-
borhoods, each neighborhood is also assigned a score in [0, 1] indicating how
closely the criteria of the clauses are met. The score for an individual clause is
assigned according to an exponential decay function of a neighborhood’s distance
from the target criterion and a dropoff parameter that controls how quickly the
score drops with distance, as detailed in Equation (2). A neighborhood’s total
score is defined in Equation (3) as a weighted sum of the clause scores.

Δ =

{
0 if criterion is met
|lhs − rhs| otherwise

(1)

scorei = exp(
Δ2 × ln(.5)

dropoff2
i

) (2)

score =
∑

weighti × scorei (3)

2.2 Query Visualization

A query is visualized by coloring each location with its neighborhood’s predi-
cate signature, which represents the combination of clauses that are fully met.
Scientists can interactively customize the colormap indexed by these predicate
signatures or make a particular combination completely transparent. The neigh-
borhood’s score is used to increase the neighborhood’s transparency further. By
default, low-scoring neighborhoods are assigned a transparency close to 0, while
high-scoring neighborhoods are more opaque.

Figure 3 is an example visualization of a query with multiple clauses. The
query investigates the relationship between mean temperature increase and mean
precipitation between the first and last decades of the IPCC dataset. Each color
represents a different combination of the three criteria being met, though only
six of the eight possible interactions actually occur.

2.3 Implementation

To formulate distribution queries for spatio-temporal neighborhoods, we have
built a graphical tool that guides the user in selecting neighborhood sizes, bin
ranges, and criteria. Changes to query parameters instantaneously update the
visualization for immediate and interactive feedback. Using the mouse, users can
hover over each pixel and see exactly which clauses are fully met without having

420 C.R. Johnson et al.

Fig. 3. An investigation of mean temperature and precipitation between decades 2000–
2009 and 2090–2099. Six possible interactions are observed in the simulation: mean
temperature may or may not go up 4◦K or more, and mean precipitation may in-
crease, decrease, or stay constant. Each possible combination of events yields a unique
predicate signature and color.

to decipher the colormap. A separate pane allows each individual clause to be
studied in isolation from the entire query. The visually-composed neighborhood,
bin, and clause information can be saved in an XML format and reloaded and
modified as needed.

for each neighborhood h

for each neighbor n

for each variable v to be binned

if n.v in bin

add n.v to bin

calculate bin statistics

for each clause c

if c.criteria met

c.score = 1

set bit in h.predicate_signature

else

calculate c.score according to dropoff

h.score = h.score + c.weight * c.score

Fig. 4. The algorithm for evaluating a neighborhood distribution query. The output of
this algorithm is a set of predicate signatures and scores for each neighborhood in the
dataset.

3 Temporal Querying

Using query-based visualization, users can sift through very large and highly
complex multivariate data. Though queries are often guided by human-domain
knowledge, query-based visualization commonly involves trial and error. Unfor-
tunately, this approach typically does not scale as datasets grow exponentially
large. In this work, we describe a query language for accelerating discovery of
temporal connections between multivariate patterns of interest in climate mod-
eling simulation data.

Querying for Feature Extraction and Visualization 421

3.1 Textual Pattern Matching

Motivated by the elegance and power of regular expressions and globbing in text
string searching, we have developed a text-based search language for concisely
specifying temporal patterns. In our system, a user hypothesis can be loosely
defined. In traditional regular expressions, wildcards are used to support inex-
act matching. For example, file*.pdf is an expression that matches any files
named with prefix file and extension pdf. Our system accepts a similar kind
of qualitative query. We use wildcards to provide a powerful way of representing
the existence of temporal events.

To application scientists, this method of vaguely specifying temporal patterns
to visualize is extremely useful. Domain knowledge is often expressed in a quali-
tative manner, and scientists can be hard-pressed to define exact data queries to
extract meaningful subsets of the data. Using our temporal regular expression
language, qualitative patterns containing wildcard characters can be entered and
expanded to a set of discrete data queries that are extracted from the dataset.
For a scientist, this offers a more natural way of entering qualitative domain
knowledge and avoids a potentially lengthy search process guided only by trial
and error.

3.2 Pattern Matching and Syntax

For querying, we employ range queries, a widely used method for selecting sub-
sets of multivariate data. Even though range queries are usually discrete, our
system accepts quantitative queries that match and support a user’s unclear or
imprecise understanding of data. Thus, we allow a user to issue “fuzzy queries”
in order to explore a data set he is not highly familiar with. Range queries may
contain wildcard characters such as * and ? that are expanded to generate ac-
tual range queries, much like the UNIX function glob() expands wildcards in
file??.pdf and regular expressions expand patterns such as file.*\.pdf.

However, our language has a few non-traditional elements. The first one is
T, the temporal mark. A search of [4]*T[5]* means that we are looking for
patterns where an attribute is valued at 4 for zero or more timesteps and then
changes to value 5. The temporal mark is the time of this event’s occurrence,
and in this case it is chosen to be the instant of the first timestep of the value 5.
Our parser extracts the T from the expression and then generates all discrete
patterns of interest. The location of T is recorded so as to indicate the precise
time of the event’s occurrence in further visualizations or data explorations.

The following list of examples demonstrates accepted wildcards, special char-
acters, and valid data ranges:

– [-1e15 - 1025.7] – data ranges for a single timestep. This range contains
a from-value and a to-value. [74.2] has both values being identical (same
as [74.2 - 74.2]).

– [0.3 - 10e9]* – a data range applied to zero or more sequential timesteps.
– ?, ?* – wildcard ranges. The first represents the entire range of data values

for a single timestep. The second represents the entire range of data values
for zero or more timesteps.

422 C.R. Johnson et al.

– T – the (optional) temporal mark. It marks the time index at which the event
that is subject of the query occurs.

– [1 - 5]*[8] – a query without a temporal mark is also valid. This query
addresses all items for which values in all timesteps are between 1 and 5,
and a value of 8 in the last timestep.

3.3 Querying Global Climate Model Results

Using the results from a global climate model, we establish “events” that are
defined by one or more variables changing over time at different spatial locations.
We mark the time of such events at each spatial location with the temporal
mark T, and color individual pixels according to the extracted times. As we are
considering temporal change between consecutive months, color indicates the
point in time in between the months in which the event occurred, e.g., given
the colormap in Figure 5(g), a blue pixel depicts that the event happened in the
transition from January to February.

In Figures 5(a) through 5(c), we display the temporal change of the variable
ELAI (Exposed one-sided leaf area index in units of m2 of leaf area per m2

of ground area) over the course of one year. We query for data locations that
experience a positive relative change of more than 40% after a period of zero or
more timesteps in which the relative change is low (between −40% and +40%).
The purpose of this query is to find the beginning of the growing season in
the Northern Hemisphere. We mark the first timestep (month) in which the
threshold of change is exceeded and color the pixels accordingly. We chose 40%
as the threshold for spring green-up because smaller changes in leaf area index
do not represent a temporal feature of interest.

We can immediately see how the event of marked temporal change in ELAI
follows a certain path as the year progresses. As we expect, it begins in the south-
ern parts of North and Central America and generally advances north month by
month. On the Eurasian landmass, a similar progression to the north is visible,
as is a progression from central Europe towards central Russia and Siberia. We
also notice that the differences between years are minor and almost impercep-
tible. The temporal change of the variable ELAI over the course of each year
appears to be very stable.

Figures 5(d)-(f) display the results of a query designed to identify the point in
time when the first large snowfall between May and December occurs. The query
then considers only data locations with snow cover (variable FSNO, representing
the fraction of ground covered by snow) is either reduced or increased by no more
than 7%. When we encounter the first temporal change of the snow fraction larger
than 7%, we consider it the first large snowfall and mark its timestep (month).
We chose 7% since it gives us a good threshold that makes our query resistant to
minor changes of the snow fraction which would generate a false and potentially
early temporal mark. Again, we can clearly make out the underlying pattern.
The snow cover first grows larger by more than 7% in northern Canada and
Siberia, as well as the Himalayas, and then progresses into the warmer regions
to the south and, in the case of the Eurasian landmass, to the west. One can also
recognize the Rocky Mountains in the Western U.S. as an area of early snowfall.

Querying for Feature Extraction and Visualization 423

(a) Year 2030 of ELAI

(b) Year 2050 of ELAI

(c) Year 2090 of ELAI

(d) Year 2050 of FSNO

(e) Year 2051 of FSNO

(f) Year 2052 of FSNO

(g) Legend for 11 month-to-month changes

Fig. 5. (a-c). A query for significant change in ELAI in the northern hemisphere.
Locations are colored according to their temporal mark T, which indicates the time
at which the change occurs. The colormap is shown in (g). Areas highlighted in red
circles indicate locations where the temporal marker shifts most between decades. (d-f)
A query for the time of the first large snowfall in the northern hemisphere.

3.4 Query Performance

Our system for evaluating queries is implemented using scalable data servers
described in Section 4. All timing results have been collected using an AMD
2.6 GHz Opteron cluster connected by InfiniBand DDR 4X network and the
climate data set from section 3.3. Measured performance metrics of our system
are highly dependent on the data and the query. With most tests that we have
run using 20 compute nodes as data servers, the query performance is acceptable
for interactive use.

4 Scalable Querying

With the ever-increasing size of scientific simulation data, fast querying requires
a scalable solution to managing and extracting features of the data. Previous
methods have demonstrated scalable querying of large multivariate data [6], but
I/O and preprocessing times have not been considered. However, for in situ
querying of simulation data—in which the data is examined as it is created—
these I/O and preprocessing times play a crucial role in the user experience. We
describe a method of leveraging the power of modern supercomputing resources
and parallel I/O to make this data-intensive query processing as fast as possible.

424 C.R. Johnson et al.

Table 1. Performance results on 20 compute servers. Running time is the wall clock
time between query invocation and receipt of all matched locations.

Query # Locations matched Running time
(secs)

[0-10][0]?[0-1e10]* 3 3.168
[0-99][0]?[0-1e10]* 3 26.522
[40-60]??[0-1e10]* 342 6.067
[50]??*?* 3,615,888 7.454
[70]?[-5-1e10]*[5--1e10]* 6,584 7.485
[0-20]??[0-1e10]*?* 3,593,696 159.97
[80]?[-100-1e10]*[100--1e10]*[-100-1e10]* 16,994,091 248.87
[80-82]?[-100-1e10]*[100--1e10]*[-100-1e10]* 50,565,859 757
[0-99]?[-100-1e10]*[100--1e10]*[-100-1e10]* ≈ 1, 685, 529, 000 ≈ 72, 500

With the present ability to do calculations at one petaflop and beyond, many
applications are bound by I/O speeds, and users of high performance systems
realize that the memory access rate often determines the performance of their
applications [7]. To reduce I/O bottlenecks, we employ existing parallel I/O
libraries such as Parallel netCDF [8] for high-performance access to scientific
datasets. Scientists create a configuration file of all the variables of interest from
an arbitrary number of files. The configuration file is passed on to a routine that
encapsulates the task of loading the data from disk using all available processors.
This routine achieves maximum bandwidth by dividing the loading of data across
processors and performing collective I/O when possible.

After being read from disk, the data must be distributed to keep the query
processing load-balanced. In previous work [6], we have shown a method that of-
fers near-optimal load-balancing among servers. Both query languages described
above operate on value ranges of the data, and accordingly, processing a query
can be accelerated by first sorting the data. The entire dataset is sorted in Hilbert
space and distributed to the servers. To provide scalable sorting, we use an algo-
rithm that keeps the data distributed among all the processors throughout the
entire sort. This algorithm performs a global merge of the data and then swaps
the data in a round-robin fashion. With the data quickly narrowed down to only
relevant intervals, the rest of the query criteria can be evaluated in a distributed
manner.

5 Conclusion

We have described two query languages for extracting features from very large
scientific datasets, and have demonstrated their utility by applying them to
extract and visualize features of interest from climate model output. Such tools
are becoming increasingly important as simulations generate higher spatial and
temporal resolution datasets that necessitate use of novel techniques for analysis.
Neighborhood-based querying is useful for extracting spatial patterns from large
datasets based on the statistical parameters of a region’s frequency distribution.
Temporal querying is useful for extracting patterns of change from very large

Querying for Feature Extraction and Visualization 425

time-variant datasets. High performance I/O and parallel data processing are
technologies that enable interactive query evaluation.

References

1. Jänicke, H., Wiebel, A., Scheuermann, G., Kollmann, W.: Multifield visualization
using local statistical complexity. IEEE Transactions on Visualization and Computer
Graphics 13, 1384–1391 (2007)

2. Kehrer, J., Ladstädter, F., Muigg, P., Doleisch, H., Steiner, A., Hauser, H.: Hypoth-
esis generation in climate research with interactive visual data exploration. IEEE
Transactions on Visualization and Computer Graphics 14(6), 1579–1586 (2008)

3. Hoffman, F.M., Hargrove, W.W., Erickson, D.J., Oglesby, R.J.: Using clustered
climate regimes to analyze and compare predictions from fully coupled general cir-
culation models. Earth Interactions 9(10), 1–27 (2005)

4. Johnson, C.R., Huang, J.: Distribution driven visualization of volume data. IEEE
Transactions on Visualization and Computer Graphics (2009) (to appear)

5. Glatter, M., Huang, J., Ahern, S., Daniel, J., Lu, A.: Visualizing temporal patterns
in large multivariate data using textual pattern matching. IEEE Transactions on
Visualization and Computer Graphics 14(6), 1467–1474 (2008)

6. Glatter, M., Mollenhour, C., Huang, J., Gao, J.: Scalable data servers for large mul-
tivariate volume visualization. IEEE Transactions on Visualization and Computer
Graphics 12(5), 1291–1298 (2006)

7. Ross, R., Peterka, T., Shen, H.-W., Ma, K.-L., Yu, H., Moreland, K.: Visualization
and parallel I/O at extreme scale. Journal of Physics (Conference Series) 125 (July
2008)

8. Li, J., Liao, W.K., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R.,
Siegel, A., Gallagher, B., Zingale, M.: Parallel netCDF: A high-performance scientific
I/O interface. In: Proceedings of Supercomputing (November 2003)

	Querying for Feature Extraction and Visualization in Climate Modeling
	Introduction
	Neighborhood Distribution Querying
	Neighborhood-Based Querying
	Query Visualization
	Implementation

	Temporal Querying
	Textual Pattern Matching
	Pattern Matching and Syntax
	Querying Global Climate Model Results
	Query Performance

	Scalable Querying
	Conclusion

