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Figure 1. Illustration of our web-enabled data-intensive visualization system. 

 
ABSTRACT 
 
The recent advances in high performance computing, 
storage and networking technologies have enabled 
fundamental changes in current climate research. While 
sharing datasets and results is already common practice 
in climate modeling, direct sharing of the analysis and 
visualization process is also becoming feasible. We report 
our efforts to develop a capability, coupled with the Earth 
System Grid (ESG), for sharing an entire executable 
workspace of visualization among collaborators. 
Evolutionary history of visualizations of research findings 
can also be captured and shared. The data intensive 
nature of the visualization system requires using several 
advanced techniques of visualization and parallel 
computing. With visualization clients implemented 
through standard web browsers, however, the ensuing 
complexity is made transparent to end-users. We 
demonstrate the efficacy of our system using cutting edge 
climate datasets. 
 
 
KEYWORDS: Large Data Visualization, Climate 
Modeling, Distributed Collaborative Visualization.   
 

1. INTRODUCTION 
 
The recent advances in high performance computing, 
storage and networking technologies have enabled 
fundamental changes in modern climate research. An 
ever-closer integration of observational data with 
simulations of an unprecedented scale, both in terms of 
resolution and size of ensembles of runs, is already under 
way. Further enabled by the recent creation of the Earth 
System Grid [1,14], as a universal global repository of 
datasets from different scientific models, climate science, 
and climate modeling in particular, has become 
fundamentally collaborative in a widespread manner. 
Many previously unapproachable problems can now be 
studied. In a way, today's globally collaborative climate 
research represents a central trend that is taking place in 
all areas of computational sciences. Scientists not only 
share datasets and research results, but more importantly 
they can now also share their research processes. 
 
In this work, we describe a prototype system that enables 
sharing large-scale visualization of climate simulations in 
an executable form. By exchanging a few compact 
specification files and URLs (for instance, via email), 
geographically separated scientists can asynchronously 
execute and view the same visualization workspace for 



collaborative scientific insights. The same specification 
can be applied to other datasets for comparative study. 
 
Scientists can also edit and tweak the specifications in 
ways that reveal additional scientific findings and 
efficiently communicate with their colleagues about the 
modified visualization. An email thread, with the 
evolving versions of visualization specifications as 
attachments (or the same content published via web 
blogs), is a natural way to document and share a 
collaborative research process that has lasted over a long 
period of time. This computing interface not only makes it 
easier to reproduce the visualization results on other 
datasets, but also in essence provides a possibility to 
critique and disseminate a practice of science. 
 
The data intensive nature of collaborative climate 
visualization presents many challenges that computer 
scientists must resolve. However, the technical 
complexities must be made transparent to end users as 
much as possible. In our system, we have implemented 
our user interfaces universally through web browsers. 
Users are not required to install any additional software 
beyond those that are standard with all web browsers. 
 
Since in essence our collaborative visualization system 
and the ESG are both designed to support the global 
community of climate research, let us try to distinguish 
the role that each system plays from a high level point of 
view. To date, the ESG's primary function and benefit has 
been to make data available to a much larger and more 
general community than had previously been possible. A 
key goal of the next generation ESG architecture is to 
serve as a point of integration coupling data access with 
routine analyses and visualizations, helping to reduce 
download volumes and user-side storage and processing 
requirements. 
 
The ESG team is working to integrate with some 
“standard” climate analysis and visualization modules, 
such as the Live Access Server [10], but the development 
of novel visualization techniques and tools is beyond the 
scope of the ESG project, rather, they are expected to be 
developed through external collaboration. Our work is 
one early example of this concept in action. Collaborative 
server-side visualization is novel for the ESG community, 
where most of the ESG server-side processing use cases 
focus on the scientific needs of individual users. With the 
idea of sharing analysis and visualization results in a 
model similar to social networking just starting to gain 
attention in the field [13], no existing efforts can provide 
such a level of collaboration for data intensive 
applications. These large data applications are the norm 
for our system and the ESG, both in terms of the amount 
of data that must be handled and the complexity that is 
involved in the scientific process of research. 

The rest of the paper is organized as follows. Section 2 
contains a brief discussion of the related background of 
our work. The technical components for handling data 
intensive visualization are provided in Section 3. Our web 
browser based visualization workspace is described in 
Section 4. In Section 5, we present a sample workflow 
using our system. 
 
2. Background 
 
Our driving application is to visualize results from global 
coupled climate-carbon cycle model simulations produced 
by different models. We draw our research motivation 
from the current thrust to generate accurate simulations of 
the global carbon cycle that model the interactions and 
feedbacks between the terrestrial biosphere and the 
climate system. The Carbon-Land Model Intercomparison 
Project (C-LAMP, www.climatemodeling.org/c-lamp [5] 
was initiated to allow the international scientific 
community to thoroughly test and intercompare such 
terrestrial biogeochemistry models through a set of 
carefully crafted experiments. Well-defined metrics have 
been established for comparison of model results against 
best-available observational datasets, and models are 
graded on their scientific performance with respect to 
these metrics. Visualization tools and diagnostics are 
particularly helpful in uncovering model biases and 
discovering ways for improving individual models. 
 
The visualization aspect of this task is very demanding for 
several reasons. First, there are a large number of 
variables involved in each simulation. Exacerbated by the 
need to study multiple runs in a cohesive manner, the 
combinatorial space that needs to be explored, even just 
the task of studying two variables from two simulation 
runs, is overwhelming. For instance, scientists already 
have some understanding of how net ecosystem exchange 
relates to net primary productivity.  Does the relationship 
exist as expected in a peta-scale simulation, maybe across 
different time spans of different runs? This model of 
investigative study and the need of high interactive rates 
present a challenge for large data visualization.  
 
Second, a very desirable feature in data intensive 
visualization tools in this field is for the tools to be 
available on-demand. In climate research, exhaustively 
iterating over all possible combinations is prohibitively 
expensive. One can only use the domain expertise as a 
guide to practically sample a small portion of the entire 
combinatorial space. This process of scientific research 
often involves an element of spontaneity. Hence it is 
preferable not to require advanced reservation before each 
use. We do not know of any previous systems that can 
support such spontaneous use of visualizations by 
geographically separated concurrent users. Thankfully, 
powered by the ESG, it is now feasible to investigate how 



on-demand visualization capabilities can be developed for 
large-scale climate modeling research and tested in a real-
world environment. A brief overview of the ESG follows. 
 
2.1. Earth System Grid 
 
The Earth System Grid (ESG, www.earthsystemgrid.org) 
[1, 14] has been developed as a tool to make the large 
volumes of climate simulation data more easily 
discoverable and accessible to a larger community of 
researchers interested not only in the simulations 
themselves, but also in understanding the impacts of 
climate change, and possible technological and policy 
strategies for their mitigation. The ESG collaboration 
includes seven US research laboratories (ANL, LANL, 
LBNL, LLNL, NCAR, NOAA/PMEL, and ORNL) and a 
university (USC/ISI), and is sponsored by the US 
Department of Energy, Office of Science. 
 

 
 

Figure 2. Portal Architecture of the ESG. 
 
When climate simulation results are published into the 
ESG, metadata is extracted providing a detailed 
description of the simulation context and the variables 
represented in the datasets.  ESG users can browse or 
query the metadata catalog through a web portal to 
discover datasets of interest, and then request their 
retrieval from the archive site that holds them, most often 
at the computer center where the simulation was 
originally run (see Figure 2).   
 
Among the key goals of the next generation of the ESG 
architecture, currently under development, are much more 
widely distributed deployment, and integration of analysis 
and visualization capabilities on the server side in order to 
minimize the amount of data that has to be delivered to 
users over (relatively slow) wide-area networks, and to 

reduce the local computing and storage requirements for 
many users. The work presented in this paper can be seen 
as an example of the server-side processing the next-
generation ESG plans to support.  Because of community 
interest in the next generation of biogeochemistry models, 
our work has focused on visualization of the data held in 
the C-LAMP [5] archive, which is physically located at 
ORNL, but the technique described is broadly applicable. 
 
2.2. Collaborative Parallel Visualization 
using Heterogeneous Resources 
 
Researchers in distributed graphics pioneered the creation 
of distributed collaboration capabilities involving 3D 
graphics. The resulting technology is already in 
widespread use by distributed systems of virtual reality, 
networked games and visualization [2, 9]. Unfortunately, 
when it comes to data intensive applications, involving 
terabyes (TB) to petabytes (PB) datasets by today's 
standards, we still do not have a widely accepted solution 
that could scale up both in terms of the amount of data 
that can be handled and the number of concurrent users 
that can be supported. 
 
Large-scale data intensive applications dictate the use of 
parallelism. However, computing platforms that are 
capable enough to handle large datasets are still far from 
being a commodity. Even with a large-scale parallel 
machine available, it still takes time to develop 
capabilities based on non-primitive use of parallelism. 
This problem is particularly acute when it is impractical 
to provision a homogeneous large-scale visualization 
facility for dedicated use by a collaborative project. With 
today's project needs evolving faster than before, the issue 
of not having the right kind of parallel platform promptly 
available is a rather fundamentally limiting issue. 
 
In this regard, it is very appealing to alternatively consider 
using distributed heterogeneous resources as the common 
platform to support on-demand parallel visualization. This 
would allow one to efficiently use all resources available, 
regardless of their geographical location. On top of this 
platform, visualization can be implemented according to 
the software-as-a-service model and allow fast evolution 
and adaptation. In a way, this approach has been well 
studied by researchers in networked games and virtual 
environments [12] and grid computing [3]. In those 
applications, each user's own personal computer is an 
individual piece of heterogeneous resource. However, to 
assemble data intensive visualization services with fault-
tolerance, high scalability and high performance, we still 
have significant road blocks to overcome, due to the data-
intensive aspect and investigative mode of usage that 
restricts orchestrating user interaction according to 
planned scripts. 



As we have discovered through extensive previous 
research in large-scale distributed visualization, 
distributed collaborative visualization systems that do not 
include fault-tolerance and heterogeneity as primary 
design goals would be very hard to use, even just to carry 
out experiments mimicking real-world scenarios for 
multiple concurrent users [6]. This is because, in a real 
scenario, users join or leave a collaborative session on 
different schedules. The client software used by 
geographically separated users could frequently be turned 
on and off. To assume that a resource, regardless of type 
(e.g. graphics, computation, storage, and a guaranteed 
level of network bandwidth), would always be available, 
even with prior reservation, could quickly render a system 
impractical. We have discovered through previous 
research that the primary factor is that the parallel 
scheduling algorithm must be designed to consider 
heterogeneity [7]. 
 
Although collaborative visualization has been a traditional 
topic of research, its focus has been mostly about a 
synchronous mode of collaboration. In other words, all 
participants are assumed to come online at the same time 
and work on the same subject. With the advent of Web 
2.0 technology, especially represented by the introduction 
of ManyEyes [13], focus in many fields has now been 
shifted to study how geographically separated users can 
asynchronously collaborate by means such as community-
shared annotations and blogs. It would be particularly 
interesting and impactful if such asynchronous mode of 
collaboration can be inherently supported by data 
intensive visualization applications.   
 
In summary, while distributed collaboration is a concept 
that has been pioneered, reinvented in the past and is 
already in widespread use by millions of current Internet 
users, the main technical hurdle for users to effectively 
collaborate on tera- to peta-scale datasets is still a 
fundamental one. It is not a matter of simply addressing a 
few tradeoffs. We must develop creative technologies as 
well as creative ways to use current technologies to meet 
this challenge.  As an attempt, our system is described in 
Section 3 using climate visualization as an example. 
 
3. PARALLEL VISUALIZATION 
 
3.1. Overview 
 
Our prototype system inherently utilizes heterogeneous 
computing resources. All nodes involved can be 
distributed by nature; in fact, each node is uniquely 
identified by its IP address. Any regular personal 
computer can serve as a node used in a session of parallel 
computing. Figure 1 illustrates the concept. The high 
performance computers (lower-right corner) represent the 

typical hardware maintained by ESG. Climate-carbon 
cycle model results are queried, subsetted and retrieved 
from high-performance systems maintained by the ESG. 
The data are transformed, partitioned and replicated on 
standard Internet computing nodes for fault-tolerance and 
later use in on-demand parallel visualization. In a way, 
the nodes in our visualization system can be considered as 
a set of function-rich data caches. A set of visualization 
servers manages the parallel visualization process 
(illustrated as blade servers). The colored arrows illustrate 
parallel visualization results computed on heterogeneous 
nodes are being assembled by the schedulers, which then 
forward the results to the web browser running on the 
client workstation. In the client's visualization workspace, 
the final visualizations are displayed for viewing, 
annotation and interaction. 
 
A set of concurrent users can switch on the visualization 
clients through their web browser to work in their 
individual visualization workspaces. The visualization 
operations initiated by each workspace are computed in 
parallel and orchestrated by a set of fault-tolerant and 
heterogeneity-aware visualization schedulers. The most 
generic visualization operation in our system centers 
around the notion of query-based visualization. After 
discussing some details of how to implement this 
technique in a scalable manner, we follow with a 
discussion of how to integrate parallel query-based 
visualization using heterogeneous computing resources. 
 
3.2. Parallel Query-Based Visualization 
 
Decadal to century time scale climate simulations 
typically output a large number of two- and three-
dimensional variables at regular intervals, usually 
monthly. While identifying features is difficult, it is 
actually intuitive and practical to select a subset of the 
data from within that high-dimensional value/variable 
space to obtain a qualitative understanding of the overall 
results [11]. This approach is not hard to implement if the 
resulting dataset is small enough to be stored entirely in-
core, but to handle datasets sized at hundreds of gigabytes 
and beyond, more sophisticated solutions are required. 
 
Our solution [4] involves designing specialized scalable 
visualization data servers with large-scale parallelism. It 
indexes general data items, including vertex, voxel, 
particle, or a general tuple describing height, weight and 
gender. Due to this design consideration, it is independent 
of grid type. The core data structure is a heavily 
optimized M-ary search tree to support parallel 
visualization. The tree structure as metadata only amounts 
to ~1% the size of the whole dataset, which can exist 
entirely on external hard drives and can be compressed. 
Our method only decompresses the parts of the data (and 
caches the decompression results) that are used by the 



user. The compression rates vary from dataset to dataset. 
For typical datasets, we saw 20x compression rates, while 
on highly turbulent or noisy datasets, we could obtain as 
low as 4x compression. Using a conservative compression 
rate of 4 times as a benchmark, a typical mid-sized cluster 
could already support parallel visualization of a 
dynamically queried dataset sized at 1 TeraByte (TB). 
 
The M-ary tree serves the role of meta data to guide a 
search process. Assuming the balanced M-ary search tree 
is of depth N, a practical combination could be M = 256 
and N = 3; in all situations, M should always be 
significantly larger than N. This is one of the primary 
differences between this search data structure and 
previous data structures, such as interval tree, k-d tree, 
quadtree and octree. Due to the large branching factor, M, 
the M-ary search tree requires little storage space. Actual 
data items are not stored in the tree, but in a linear list 
sorted by a key function. The leaf nodes of the tree store 
pointers to the respective records in a sorted linear list.  
 
M-ary search trees have been widely used, for instance in 
the form of B-trees as in database systems. We have 
discovered that conventional methods to access records 
by traversing B-trees to be too expensive, both in terms of 
the large number of addressing operations and caching 
performance. To address this, we use a novel method to 
accelerate range searches in an M-ary tree, optimized 
specifically for multivariate datasets [4].  
 
Data items are partitioned into groups by round-robin 
assignment according to high-dimensional space filling 
curve [8] order in attribute space. By using this type of 
data partition to distribute data amongst all visualization 
data servers, we can achieve a nearly optimal load-
balance for almost all kinds of queries. An M-ary search 
tree is then used to manage the data on each server.  
 
For a user of our system, e.g., an application scientist, it is 
often of interest to interact with the dataset of a simulation 
to verify correctness or to explore newly formulated 
hypotheses. To this end, one should be able to navigate 
not only in time and space, but also in the high-
dimensional attribute space. Additionally, every server in 
our system accepts queries in the same way that web 
servers function. This allows parallel servers to operate 
persistently, while the client can choose to dynamically 
start, stop or simply shutdown.  
 
Our approach is relatively easy to deploy on networked 
commodity computers, whether they are clustered or not. 
The necessary number of parallel data servers depends on 
the size of the dataset. As long as more computers are 
available to function as data servers, our system could be 
scaled to handle larger and larger datasets. For 
performance reasons, it is desirable that the combined 

memory of all data servers be sufficient to hold the entire 
preprocessed data in core. However our implementation 
remains operable even if this requirement is not met. 
 
3.3. Fault-Tolerant Job Scheduling 
 
Each data server operates as an independent parallel 
process. Server processes will be replicated on multiple 
nodes for scalable performance as well as fault-tolerance. 
Considering each request to any one of the servers as a 
task to be completed in parallel, the scheduler of the 
parallel tasks is crucial for our system. 
 
The scheduler we use was designed to achieve scalability 
while considering heterogeneity and fault-tolerance [7]. 
Our scheduler implements co-scheduling of computation 
and replication, by adaptively measuring node 
performance to dynamically assign visualization tasks and 
direct runtime data movements. This is necessary because 
the nodes used for parallel computation will be 
heterogeneous, non-dedicated nodes. Geographically 
distributed users access the system with competing goals 
of obtaining computing resources. 
 
Our scheduler needs to discover fast processors on the fly, 
assign as many tasks to them as possible and avoid being 
stalled by slow or faulty nodes. We devised three generic 
mechanisms for this need: (i) a dynamically ranked pool 
of nodes, (ii) a two-level priority queue of tasks and (iii) a 
competition avoidant task assignment scheme. Each 
processor is ranked by its estimated time to process a task 
of unit size. This measurement roughly reflects 
performance of processors delivered to the experiment. It 
is updated adaptively by computing a running average of 
measured processor performance, with older 
measurements given an exponentially decreasing weight. 
 
A two-level priority queue maintains unfinished tasks. 
The higher priority queue (HPQ) contains tasks that are 
ready to be assigned and the lower priority queue (LPQ) 
contains tasks that have been assigned to one or more 
processors but not finished. Initially, only the first w tasks 
are placed in the HPQ, where w is the size of task window. 
It controls the degree of parallelism and number of tasks 
that can be finished out-of-order. In most cases, w is 
greater than the number of available processors so that 
every processor can contribute. However, w is decreased 
in cases of severe resource contention as a processor 
“back off” strategy. Each task in the HPQ is keyed by the 
minimum unit task processing time of all nodes holding 
the required data partition. This priority ranks new tasks 
by their likelihood of being finished by a fast node. Each 
task in the LPQ is keyed by its estimated waiting time. 
Tasks in both the HPQ and LPQ are sorted by their keys 
in decreasing order. Figure 3 shows an illustrative 



example of how the scheduler operates in general, and a 
snapshot of the window-based task assignment. 
 
When a parallel visualization starts, tasks in the HPQ are 
sequentially assigned to available processors and demoted 
to the LPQ. In case of failure, the task in the LPQ is 
promoted back to the HPQ so that other processors can 
take it over. When tasks are completed, every available 
node will be directly assigned the first task in the HPQ 
that it can handle. In this way, slow processors do not 
compete for tasks with fast processors to ensure fast 
processors are assigned as many tasks as possible. If a 
processor is not assigned a task in the HPQ, the first task 
in the LPQ that it can handle is considered. This is the 
slowest task among all unfinished tasks that the processor 
can assume. Thus, multiple processors can work in 
parallel on the same unfinished task. If any instance of the 
duplicated tasks is done, other instances are aborted. 
 

 
 

Figure 3. Our Heterogeneous Scheduler. 
 
There are also situations where moving data from a 
slower processor to a vacant faster processor may be 
beneficial. To ensure that the overhead of data movement 
does not exceed the benefit that we might gain, bandwidth 
information between processors needs to be acquired. We 
then leverage a multi-source partial download scheme 
with deadline to drive data movement between nodes.  
 
3.4. System Integration 
 
Currently data replication is our only method of fault-
tolerance for addressing failing processors as well as 
overloaded processors. Each data server node holds a 
portion of the entire dataset to be visualized. Through 
experimentation, we have found a replication factor of k = 
3 to be sufficient for most situations and not cause too 
much operating overhead. In this case, each piece of data 

is held by 3 server nodes, and each server node holds 3 
pieces of data. In other words, assuming a 1 TB dataset 
has been partitioned for hosting by 100 data server, each 
server holds 30 GBs of the data (before compression).  
 
Any visualization query is parsed and issued first to only 
one server holding data that are needed. Secondary 
requests are only issued when a result is not returned by a 
server before a timeout period has expired.  The processes 
for different visualization queries take place in parallel. It 
is typical for each user's visualization workspace to 
include a handful of different visualizations, while several 
users can use the system concurrently. 
 
 
 
4. WEB-ENABLED INTERFACE 
 
All the visualization results are viewable through a 
standard web browser, together with an information 
visualization viewer that monitors the parallel run. The 
web interface was designed using Flex Builder 2 and 
Action Script 3. To create a generalized framework for 
any web visualization, the web interface is set up by an 
XML configuration file. This configuration file specifies 
what controls are to be shown on the interface along with 
the properties of the controls and the visualization server 
(hostname and port). Each control is given a separate 
smaller window inside the web console, giving users their 
own desktop for organizing the visualization.  
 
Once the controls for the visualization are set up on the 
web interface, it then connects to the visualization server 
with the Action Script 3 Socket library. Using our own 
visualization server API, the visualization server can relay 
messages to the web interface using notification messages. 
This message transmission procedure is set up in the 
configuration file. The user has complete control of which 
components of the web interface the messages are sent to. 
 
To allow the components of the web interface to interact 
with the visualization server, the visualization server must 
register callback functions for any component of the 
interface that might interact with it. For example, if a 
query comes from a video viewer on the web interface, 
the user would register a specific callback function, and 
any queries from the video viewer with that ID would be 
sent to the function in a special generalized format that is 
easily parsed by another function in the API. This API 
and the configurable web interface combined allow any 
user to create their own web visualizations without any 
knowledge of web or socket programming. It also allows 
the user to plug in any back-end system, regardless of a 
cluster or a home desktop, to their web visualization. 
 
 



4.1 Data Selection Interface with ESG 
 
In the absence of more flexible interfaces to the metadata 
and data, which are currently under development by the 
ESG team, we have implemented our prototype system as 
a post-processing client to the ESG. A web-based client 
(shown in Figure 4, top-left) utilizes the the FTP-based 
access provided to the C-LAMP archive to allow the user 
to browse and select the data to be downloaded to our 
system.  When submitting their request, users are asked to 
provide their name, affiliation, and email address. When 
the download is complete, they receive an email with their 
session ID, password, and a link to process the data.  The 
password provides a simple mechanism to restrict control 
of the processing of the data to the requesting user, but 
anyone will be able to analyze the data in a given session.  
In the next-generation ESG architecture, we anticipate 
that it will be possible to provide the user with a seamless 
interface, including integration with the ESG's 
authentication and authorization model to allow more 
control over access to the analysis results if desired. 
 
4.2 Data Processing & Linking with Data 
Servers 
 
After the files have been transferred, data processing 
starts for visualization purpose. The user goes to a web 
address, enters their session ID and password, and then 
browses/selects the variables in the NetCDF files. As 
illustrated in Figure 4 (top-right), the variables are added 
to a cart similar to how the previously mentioned FTP 
client worked. Once the users select all the variables that 
are of interest to them, the data is then sent to the data 
servers and processed. A configuration file for the web 
interface is automatically generated, and a link to the web 
visualization is sent to the user. The user may then query 
the variables chosen in the data processing stage. Any 
person may go to this link and analyze the data. 
 
4.3 Collaboration through the Web Interface 
 
Each web visualization has a specific session ID that is 
assigned to it when created. Users can type in the URL to 
the web interface along with the session ID as a parameter 
in the URL and this will bring up the visualization. Along 
with each interface is a control that allows users to leave 
comments along with the previous comments that have 
been left. Since the interface is connected to a background 
server via sockets, this allows the comments to be updated 
in real time. If multiple users are running the same session, 
they will all see any new comments posted without 
having to refresh the browser, simulating a chat room. 
Another component of each web visualization is a button 
to capture the state of the visualization. When pressed, a 
URL will be created that automatically generates the same 

visualization of the captured one. Since these captures are 
still associated with the individual sessions, multiple 
scientists could be in a web visualization session at once 
sending each other these URLs to simulate a live, real-
time collaboration of the same visualization. 
 
5. TYPICAL USE CASES & DISCUSSIONS 
 
We use the screen capture shown in Figure 4 (bottom) to 
demonstrate a typical use of our visualization system. Our 
current user interfaces illustrated in Figure 4: (top-left) for 
selecting datasets from ESG; (top-right) for specifying 
which subsets of the selected datasets are to be further 
processed for visualization and analysis; and (bottom) is a 
screen capture of the web-enabled visualization interface 
in operation. This example shows that the user selected C-
LAMP runs from the ESG and chose variables such as 
CO2 concentrations, net ecosystem exchange (NEE), net 
primary productivity (NPP), and vegetation temperature 
(TV). The time span of interest is from 1800 to 2005. A 
user could either examine how each variable evolves over 
time in a 2D movie, or do the same with the (first order) 
derivative of each variable. 
 
In addition, we allow the user to study pairs of variables. 
It may be interesting, for instance, to visualize the first 
derivative of NEE vs. the first derivative of NPP. If both 
derivatives are of the same sign, we assign the colors blue 
(both positive) and red (both negative), while green and 
yellow are used for cases where the two derivatives are of 
opposite signs. This is useful for revealing patterns in 
which the two variables, NEE and NPP, vary in tandem of 
each other. The two variables could be given a different 
time lag as well. For instance, have the time sequences of 
NEE start from January 1950 and NPP start from January 
1980. Similarly, we can also study the monthly pattern 
variations between NEE from 1900-1920 vs. NEE from 
1980-2000. 
 
A user can create an unlimited number of analyses. Each 
analysis is given a separate floating viewport. All 
viewports can be moved around in the workspace in the 
web browser. This design allows the user to selectively 
position viewports in neighboring positions for closer 
comparisons. For an intuitive control by our domain users, 
each viewport essentially acts as a movie viewer, with its 
own set of controls including play, pause, and time tick. 
In addition, at the bottom of the browser, there are 
overriding play and pause buttons for the whole 
workspace. This design allows each viewport to be set to 
a different starting point and to be started and paused in a 
synchronized manner. At the lower-right corner, there is a 
universal frames per second control. For fast browsing, 
we have found 10 frames per second or more is necessary. 
For detailed study, the frame rates can be manually 
changed to low single digit values such as one or two. 



In total there are several orthogonal dimensions of 
controls: which variables, the starting time tick of each 
variable and the starting point within each viewport. The 
overall configuration of the whole workspace can be 
captured and saved. The configuration is identifiable as a 
URL and can also be retrieved using a session ID. 
Password authentication is used to restrict editing 
privilege to only those who have the passwords. General 
users can have viewing access without editing privileges.  
 
Through our work, we realized that the impact of making 
previously hard to find datasets available as a common 
commodity for scientific research, like how climate 
research is undergoing influences by the ESG, cannot be 
over estimated. Visualization and analytical tools that 
operate on ESG-caliber scientific datasets must embrace 
this future model of sharing data. For this purpose, it is 
crucial for the visualization community to proactively 
explore ways to develop new technology as well as find 
creative ways to use existing technology. 
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Figure 4. Our Current User Interfaces and a Runtime Screen Capture of Our System. 
 


