
Web Enabled Collaborative Climate Visualization in the Earth System Grid

Wesley Kendall, Markus Glatter, Jian Huang
University of Tennessee, Knoxville

E-mail: {kendall, glatter, huangj}@cs.utk.edu

Forrest Hoffman and David E. Bernholdt

Oak Ridge National Laboratory, Oak Ridge
Email: {hoffmanfm, bernholdtde}@ornl.gov

Figure 1. Illustration of our web-enabled data-intensive visualization system.

ABSTRACT

The recent advances in high performance computing,
storage and networking technologies have enabled
fundamental changes in current climate research. While
sharing datasets and results is already common practice
in climate modeling, direct sharing of the analysis and
visualization process is also becoming feasible. We report
our efforts to develop a capability, coupled with the Earth
System Grid (ESG), for sharing an entire executable
workspace of visualization among collaborators.
Evolutionary history of visualizations of research findings
can also be captured and shared. The data intensive
nature of the visualization system requires using several
advanced techniques of visualization and parallel
computing. With visualization clients implemented
through standard web browsers, however, the ensuing
complexity is made transparent to end-users. We
demonstrate the efficacy of our system using cutting edge
climate datasets.

KEYWORDS: Large Data Visualization, Climate
Modeling, Distributed Collaborative Visualization.

1. INTRODUCTION

The recent advances in high performance computing,
storage and networking technologies have enabled
fundamental changes in modern climate research. An
ever-closer integration of observational data with
simulations of an unprecedented scale, both in terms of
resolution and size of ensembles of runs, is already under
way. Further enabled by the recent creation of the Earth
System Grid [1,14], as a universal global repository of
datasets from different scientific models, climate science,
and climate modeling in particular, has become
fundamentally collaborative in a widespread manner.
Many previously unapproachable problems can now be
studied. In a way, today's globally collaborative climate
research represents a central trend that is taking place in
all areas of computational sciences. Scientists not only
share datasets and research results, but more importantly
they can now also share their research processes.

In this work, we describe a prototype system that enables
sharing large-scale visualization of climate simulations in
an executable form. By exchanging a few compact
specification files and URLs (for instance, via email),
geographically separated scientists can asynchronously
execute and view the same visualization workspace for

collaborative scientific insights. The same specification
can be applied to other datasets for comparative study.

Scientists can also edit and tweak the specifications in
ways that reveal additional scientific findings and
efficiently communicate with their colleagues about the
modified visualization. An email thread, with the
evolving versions of visualization specifications as
attachments (or the same content published via web
blogs), is a natural way to document and share a
collaborative research process that has lasted over a long
period of time. This computing interface not only makes it
easier to reproduce the visualization results on other
datasets, but also in essence provides a possibility to
critique and disseminate a practice of science.

The data intensive nature of collaborative climate
visualization presents many challenges that computer
scientists must resolve. However, the technical
complexities must be made transparent to end users as
much as possible. In our system, we have implemented
our user interfaces universally through web browsers.
Users are not required to install any additional software
beyond those that are standard with all web browsers.

Since in essence our collaborative visualization system
and the ESG are both designed to support the global
community of climate research, let us try to distinguish
the role that each system plays from a high level point of
view. To date, the ESG's primary function and benefit has
been to make data available to a much larger and more
general community than had previously been possible. A
key goal of the next generation ESG architecture is to
serve as a point of integration coupling data access with
routine analyses and visualizations, helping to reduce
download volumes and user-side storage and processing
requirements.

The ESG team is working to integrate with some
“standard” climate analysis and visualization modules,
such as the Live Access Server [10], but the development
of novel visualization techniques and tools is beyond the
scope of the ESG project, rather, they are expected to be
developed through external collaboration. Our work is
one early example of this concept in action. Collaborative
server-side visualization is novel for the ESG community,
where most of the ESG server-side processing use cases
focus on the scientific needs of individual users. With the
idea of sharing analysis and visualization results in a
model similar to social networking just starting to gain
attention in the field [13], no existing efforts can provide
such a level of collaboration for data intensive
applications. These large data applications are the norm
for our system and the ESG, both in terms of the amount
of data that must be handled and the complexity that is
involved in the scientific process of research.

The rest of the paper is organized as follows. Section 2
contains a brief discussion of the related background of
our work. The technical components for handling data
intensive visualization are provided in Section 3. Our web
browser based visualization workspace is described in
Section 4. In Section 5, we present a sample workflow
using our system.

2. Background

Our driving application is to visualize results from global
coupled climate-carbon cycle model simulations produced
by different models. We draw our research motivation
from the current thrust to generate accurate simulations of
the global carbon cycle that model the interactions and
feedbacks between the terrestrial biosphere and the
climate system. The Carbon-Land Model Intercomparison
Project (C-LAMP, www.climatemodeling.org/c-lamp [5]
was initiated to allow the international scientific
community to thoroughly test and intercompare such
terrestrial biogeochemistry models through a set of
carefully crafted experiments. Well-defined metrics have
been established for comparison of model results against
best-available observational datasets, and models are
graded on their scientific performance with respect to
these metrics. Visualization tools and diagnostics are
particularly helpful in uncovering model biases and
discovering ways for improving individual models.

The visualization aspect of this task is very demanding for
several reasons. First, there are a large number of
variables involved in each simulation. Exacerbated by the
need to study multiple runs in a cohesive manner, the
combinatorial space that needs to be explored, even just
the task of studying two variables from two simulation
runs, is overwhelming. For instance, scientists already
have some understanding of how net ecosystem exchange
relates to net primary productivity. Does the relationship
exist as expected in a peta-scale simulation, maybe across
different time spans of different runs? This model of
investigative study and the need of high interactive rates
present a challenge for large data visualization.

Second, a very desirable feature in data intensive
visualization tools in this field is for the tools to be
available on-demand. In climate research, exhaustively
iterating over all possible combinations is prohibitively
expensive. One can only use the domain expertise as a
guide to practically sample a small portion of the entire
combinatorial space. This process of scientific research
often involves an element of spontaneity. Hence it is
preferable not to require advanced reservation before each
use. We do not know of any previous systems that can
support such spontaneous use of visualizations by
geographically separated concurrent users. Thankfully,
powered by the ESG, it is now feasible to investigate how

on-demand visualization capabilities can be developed for
large-scale climate modeling research and tested in a real-
world environment. A brief overview of the ESG follows.

2.1. Earth System Grid

The Earth System Grid (ESG, www.earthsystemgrid.org)
[1, 14] has been developed as a tool to make the large
volumes of climate simulation data more easily
discoverable and accessible to a larger community of
researchers interested not only in the simulations
themselves, but also in understanding the impacts of
climate change, and possible technological and policy
strategies for their mitigation. The ESG collaboration
includes seven US research laboratories (ANL, LANL,
LBNL, LLNL, NCAR, NOAA/PMEL, and ORNL) and a
university (USC/ISI), and is sponsored by the US
Department of Energy, Office of Science.

Figure 2. Portal Architecture of the ESG.

When climate simulation results are published into the
ESG, metadata is extracted providing a detailed
description of the simulation context and the variables
represented in the datasets. ESG users can browse or
query the metadata catalog through a web portal to
discover datasets of interest, and then request their
retrieval from the archive site that holds them, most often
at the computer center where the simulation was
originally run (see Figure 2).

Among the key goals of the next generation of the ESG
architecture, currently under development, are much more
widely distributed deployment, and integration of analysis
and visualization capabilities on the server side in order to
minimize the amount of data that has to be delivered to
users over (relatively slow) wide-area networks, and to

reduce the local computing and storage requirements for
many users. The work presented in this paper can be seen
as an example of the server-side processing the next-
generation ESG plans to support. Because of community
interest in the next generation of biogeochemistry models,
our work has focused on visualization of the data held in
the C-LAMP [5] archive, which is physically located at
ORNL, but the technique described is broadly applicable.

2.2. Collaborative Parallel Visualization
using Heterogeneous Resources

Researchers in distributed graphics pioneered the creation
of distributed collaboration capabilities involving 3D
graphics. The resulting technology is already in
widespread use by distributed systems of virtual reality,
networked games and visualization [2, 9]. Unfortunately,
when it comes to data intensive applications, involving
terabyes (TB) to petabytes (PB) datasets by today's
standards, we still do not have a widely accepted solution
that could scale up both in terms of the amount of data
that can be handled and the number of concurrent users
that can be supported.

Large-scale data intensive applications dictate the use of
parallelism. However, computing platforms that are
capable enough to handle large datasets are still far from
being a commodity. Even with a large-scale parallel
machine available, it still takes time to develop
capabilities based on non-primitive use of parallelism.
This problem is particularly acute when it is impractical
to provision a homogeneous large-scale visualization
facility for dedicated use by a collaborative project. With
today's project needs evolving faster than before, the issue
of not having the right kind of parallel platform promptly
available is a rather fundamentally limiting issue.

In this regard, it is very appealing to alternatively consider
using distributed heterogeneous resources as the common
platform to support on-demand parallel visualization. This
would allow one to efficiently use all resources available,
regardless of their geographical location. On top of this
platform, visualization can be implemented according to
the software-as-a-service model and allow fast evolution
and adaptation. In a way, this approach has been well
studied by researchers in networked games and virtual
environments [12] and grid computing [3]. In those
applications, each user's own personal computer is an
individual piece of heterogeneous resource. However, to
assemble data intensive visualization services with fault-
tolerance, high scalability and high performance, we still
have significant road blocks to overcome, due to the data-
intensive aspect and investigative mode of usage that
restricts orchestrating user interaction according to
planned scripts.

As we have discovered through extensive previous
research in large-scale distributed visualization,
distributed collaborative visualization systems that do not
include fault-tolerance and heterogeneity as primary
design goals would be very hard to use, even just to carry
out experiments mimicking real-world scenarios for
multiple concurrent users [6]. This is because, in a real
scenario, users join or leave a collaborative session on
different schedules. The client software used by
geographically separated users could frequently be turned
on and off. To assume that a resource, regardless of type
(e.g. graphics, computation, storage, and a guaranteed
level of network bandwidth), would always be available,
even with prior reservation, could quickly render a system
impractical. We have discovered through previous
research that the primary factor is that the parallel
scheduling algorithm must be designed to consider
heterogeneity [7].

Although collaborative visualization has been a traditional
topic of research, its focus has been mostly about a
synchronous mode of collaboration. In other words, all
participants are assumed to come online at the same time
and work on the same subject. With the advent of Web
2.0 technology, especially represented by the introduction
of ManyEyes [13], focus in many fields has now been
shifted to study how geographically separated users can
asynchronously collaborate by means such as community-
shared annotations and blogs. It would be particularly
interesting and impactful if such asynchronous mode of
collaboration can be inherently supported by data
intensive visualization applications.

In summary, while distributed collaboration is a concept
that has been pioneered, reinvented in the past and is
already in widespread use by millions of current Internet
users, the main technical hurdle for users to effectively
collaborate on tera- to peta-scale datasets is still a
fundamental one. It is not a matter of simply addressing a
few tradeoffs. We must develop creative technologies as
well as creative ways to use current technologies to meet
this challenge. As an attempt, our system is described in
Section 3 using climate visualization as an example.

3. PARALLEL VISUALIZATION

3.1. Overview

Our prototype system inherently utilizes heterogeneous
computing resources. All nodes involved can be
distributed by nature; in fact, each node is uniquely
identified by its IP address. Any regular personal
computer can serve as a node used in a session of parallel
computing. Figure 1 illustrates the concept. The high
performance computers (lower-right corner) represent the

typical hardware maintained by ESG. Climate-carbon
cycle model results are queried, subsetted and retrieved
from high-performance systems maintained by the ESG.
The data are transformed, partitioned and replicated on
standard Internet computing nodes for fault-tolerance and
later use in on-demand parallel visualization. In a way,
the nodes in our visualization system can be considered as
a set of function-rich data caches. A set of visualization
servers manages the parallel visualization process
(illustrated as blade servers). The colored arrows illustrate
parallel visualization results computed on heterogeneous
nodes are being assembled by the schedulers, which then
forward the results to the web browser running on the
client workstation. In the client's visualization workspace,
the final visualizations are displayed for viewing,
annotation and interaction.

A set of concurrent users can switch on the visualization
clients through their web browser to work in their
individual visualization workspaces. The visualization
operations initiated by each workspace are computed in
parallel and orchestrated by a set of fault-tolerant and
heterogeneity-aware visualization schedulers. The most
generic visualization operation in our system centers
around the notion of query-based visualization. After
discussing some details of how to implement this
technique in a scalable manner, we follow with a
discussion of how to integrate parallel query-based
visualization using heterogeneous computing resources.

3.2. Parallel Query-Based Visualization

Decadal to century time scale climate simulations
typically output a large number of two- and three-
dimensional variables at regular intervals, usually
monthly. While identifying features is difficult, it is
actually intuitive and practical to select a subset of the
data from within that high-dimensional value/variable
space to obtain a qualitative understanding of the overall
results [11]. This approach is not hard to implement if the
resulting dataset is small enough to be stored entirely in-
core, but to handle datasets sized at hundreds of gigabytes
and beyond, more sophisticated solutions are required.

Our solution [4] involves designing specialized scalable
visualization data servers with large-scale parallelism. It
indexes general data items, including vertex, voxel,
particle, or a general tuple describing height, weight and
gender. Due to this design consideration, it is independent
of grid type. The core data structure is a heavily
optimized M-ary search tree to support parallel
visualization. The tree structure as metadata only amounts
to ~1% the size of the whole dataset, which can exist
entirely on external hard drives and can be compressed.
Our method only decompresses the parts of the data (and
caches the decompression results) that are used by the

user. The compression rates vary from dataset to dataset.
For typical datasets, we saw 20x compression rates, while
on highly turbulent or noisy datasets, we could obtain as
low as 4x compression. Using a conservative compression
rate of 4 times as a benchmark, a typical mid-sized cluster
could already support parallel visualization of a
dynamically queried dataset sized at 1 TeraByte (TB).

The M-ary tree serves the role of meta data to guide a
search process. Assuming the balanced M-ary search tree
is of depth N, a practical combination could be M = 256
and N = 3; in all situations, M should always be
significantly larger than N. This is one of the primary
differences between this search data structure and
previous data structures, such as interval tree, k-d tree,
quadtree and octree. Due to the large branching factor, M,
the M-ary search tree requires little storage space. Actual
data items are not stored in the tree, but in a linear list
sorted by a key function. The leaf nodes of the tree store
pointers to the respective records in a sorted linear list.

M-ary search trees have been widely used, for instance in
the form of B-trees as in database systems. We have
discovered that conventional methods to access records
by traversing B-trees to be too expensive, both in terms of
the large number of addressing operations and caching
performance. To address this, we use a novel method to
accelerate range searches in an M-ary tree, optimized
specifically for multivariate datasets [4].

Data items are partitioned into groups by round-robin
assignment according to high-dimensional space filling
curve [8] order in attribute space. By using this type of
data partition to distribute data amongst all visualization
data servers, we can achieve a nearly optimal load-
balance for almost all kinds of queries. An M-ary search
tree is then used to manage the data on each server.

For a user of our system, e.g., an application scientist, it is
often of interest to interact with the dataset of a simulation
to verify correctness or to explore newly formulated
hypotheses. To this end, one should be able to navigate
not only in time and space, but also in the high-
dimensional attribute space. Additionally, every server in
our system accepts queries in the same way that web
servers function. This allows parallel servers to operate
persistently, while the client can choose to dynamically
start, stop or simply shutdown.

Our approach is relatively easy to deploy on networked
commodity computers, whether they are clustered or not.
The necessary number of parallel data servers depends on
the size of the dataset. As long as more computers are
available to function as data servers, our system could be
scaled to handle larger and larger datasets. For
performance reasons, it is desirable that the combined

memory of all data servers be sufficient to hold the entire
preprocessed data in core. However our implementation
remains operable even if this requirement is not met.

3.3. Fault-Tolerant Job Scheduling

Each data server operates as an independent parallel
process. Server processes will be replicated on multiple
nodes for scalable performance as well as fault-tolerance.
Considering each request to any one of the servers as a
task to be completed in parallel, the scheduler of the
parallel tasks is crucial for our system.

The scheduler we use was designed to achieve scalability
while considering heterogeneity and fault-tolerance [7].
Our scheduler implements co-scheduling of computation
and replication, by adaptively measuring node
performance to dynamically assign visualization tasks and
direct runtime data movements. This is necessary because
the nodes used for parallel computation will be
heterogeneous, non-dedicated nodes. Geographically
distributed users access the system with competing goals
of obtaining computing resources.

Our scheduler needs to discover fast processors on the fly,
assign as many tasks to them as possible and avoid being
stalled by slow or faulty nodes. We devised three generic
mechanisms for this need: (i) a dynamically ranked pool
of nodes, (ii) a two-level priority queue of tasks and (iii) a
competition avoidant task assignment scheme. Each
processor is ranked by its estimated time to process a task
of unit size. This measurement roughly reflects
performance of processors delivered to the experiment. It
is updated adaptively by computing a running average of
measured processor performance, with older
measurements given an exponentially decreasing weight.

A two-level priority queue maintains unfinished tasks.
The higher priority queue (HPQ) contains tasks that are
ready to be assigned and the lower priority queue (LPQ)
contains tasks that have been assigned to one or more
processors but not finished. Initially, only the first w tasks
are placed in the HPQ, where w is the size of task window.
It controls the degree of parallelism and number of tasks
that can be finished out-of-order. In most cases, w is
greater than the number of available processors so that
every processor can contribute. However, w is decreased
in cases of severe resource contention as a processor
“back off” strategy. Each task in the HPQ is keyed by the
minimum unit task processing time of all nodes holding
the required data partition. This priority ranks new tasks
by their likelihood of being finished by a fast node. Each
task in the LPQ is keyed by its estimated waiting time.
Tasks in both the HPQ and LPQ are sorted by their keys
in decreasing order. Figure 3 shows an illustrative

example of how the scheduler operates in general, and a
snapshot of the window-based task assignment.

When a parallel visualization starts, tasks in the HPQ are
sequentially assigned to available processors and demoted
to the LPQ. In case of failure, the task in the LPQ is
promoted back to the HPQ so that other processors can
take it over. When tasks are completed, every available
node will be directly assigned the first task in the HPQ
that it can handle. In this way, slow processors do not
compete for tasks with fast processors to ensure fast
processors are assigned as many tasks as possible. If a
processor is not assigned a task in the HPQ, the first task
in the LPQ that it can handle is considered. This is the
slowest task among all unfinished tasks that the processor
can assume. Thus, multiple processors can work in
parallel on the same unfinished task. If any instance of the
duplicated tasks is done, other instances are aborted.

Figure 3. Our Heterogeneous Scheduler.

There are also situations where moving data from a
slower processor to a vacant faster processor may be
beneficial. To ensure that the overhead of data movement
does not exceed the benefit that we might gain, bandwidth
information between processors needs to be acquired. We
then leverage a multi-source partial download scheme
with deadline to drive data movement between nodes.

3.4. System Integration

Currently data replication is our only method of fault-
tolerance for addressing failing processors as well as
overloaded processors. Each data server node holds a
portion of the entire dataset to be visualized. Through
experimentation, we have found a replication factor of k =
3 to be sufficient for most situations and not cause too
much operating overhead. In this case, each piece of data

is held by 3 server nodes, and each server node holds 3
pieces of data. In other words, assuming a 1 TB dataset
has been partitioned for hosting by 100 data server, each
server holds 30 GBs of the data (before compression).

Any visualization query is parsed and issued first to only
one server holding data that are needed. Secondary
requests are only issued when a result is not returned by a
server before a timeout period has expired. The processes
for different visualization queries take place in parallel. It
is typical for each user's visualization workspace to
include a handful of different visualizations, while several
users can use the system concurrently.

4. WEB-ENABLED INTERFACE

All the visualization results are viewable through a
standard web browser, together with an information
visualization viewer that monitors the parallel run. The
web interface was designed using Flex Builder 2 and
Action Script 3. To create a generalized framework for
any web visualization, the web interface is set up by an
XML configuration file. This configuration file specifies
what controls are to be shown on the interface along with
the properties of the controls and the visualization server
(hostname and port). Each control is given a separate
smaller window inside the web console, giving users their
own desktop for organizing the visualization.

Once the controls for the visualization are set up on the
web interface, it then connects to the visualization server
with the Action Script 3 Socket library. Using our own
visualization server API, the visualization server can relay
messages to the web interface using notification messages.
This message transmission procedure is set up in the
configuration file. The user has complete control of which
components of the web interface the messages are sent to.

To allow the components of the web interface to interact
with the visualization server, the visualization server must
register callback functions for any component of the
interface that might interact with it. For example, if a
query comes from a video viewer on the web interface,
the user would register a specific callback function, and
any queries from the video viewer with that ID would be
sent to the function in a special generalized format that is
easily parsed by another function in the API. This API
and the configurable web interface combined allow any
user to create their own web visualizations without any
knowledge of web or socket programming. It also allows
the user to plug in any back-end system, regardless of a
cluster or a home desktop, to their web visualization.

4.1 Data Selection Interface with ESG

In the absence of more flexible interfaces to the metadata
and data, which are currently under development by the
ESG team, we have implemented our prototype system as
a post-processing client to the ESG. A web-based client
(shown in Figure 4, top-left) utilizes the the FTP-based
access provided to the C-LAMP archive to allow the user
to browse and select the data to be downloaded to our
system. When submitting their request, users are asked to
provide their name, affiliation, and email address. When
the download is complete, they receive an email with their
session ID, password, and a link to process the data. The
password provides a simple mechanism to restrict control
of the processing of the data to the requesting user, but
anyone will be able to analyze the data in a given session.
In the next-generation ESG architecture, we anticipate
that it will be possible to provide the user with a seamless
interface, including integration with the ESG's
authentication and authorization model to allow more
control over access to the analysis results if desired.

4.2 Data Processing & Linking with Data
Servers

After the files have been transferred, data processing
starts for visualization purpose. The user goes to a web
address, enters their session ID and password, and then
browses/selects the variables in the NetCDF files. As
illustrated in Figure 4 (top-right), the variables are added
to a cart similar to how the previously mentioned FTP
client worked. Once the users select all the variables that
are of interest to them, the data is then sent to the data
servers and processed. A configuration file for the web
interface is automatically generated, and a link to the web
visualization is sent to the user. The user may then query
the variables chosen in the data processing stage. Any
person may go to this link and analyze the data.

4.3 Collaboration through the Web Interface

Each web visualization has a specific session ID that is
assigned to it when created. Users can type in the URL to
the web interface along with the session ID as a parameter
in the URL and this will bring up the visualization. Along
with each interface is a control that allows users to leave
comments along with the previous comments that have
been left. Since the interface is connected to a background
server via sockets, this allows the comments to be updated
in real time. If multiple users are running the same session,
they will all see any new comments posted without
having to refresh the browser, simulating a chat room.
Another component of each web visualization is a button
to capture the state of the visualization. When pressed, a
URL will be created that automatically generates the same

visualization of the captured one. Since these captures are
still associated with the individual sessions, multiple
scientists could be in a web visualization session at once
sending each other these URLs to simulate a live, real-
time collaboration of the same visualization.

5. TYPICAL USE CASES & DISCUSSIONS

We use the screen capture shown in Figure 4 (bottom) to
demonstrate a typical use of our visualization system. Our
current user interfaces illustrated in Figure 4: (top-left) for
selecting datasets from ESG; (top-right) for specifying
which subsets of the selected datasets are to be further
processed for visualization and analysis; and (bottom) is a
screen capture of the web-enabled visualization interface
in operation. This example shows that the user selected C-
LAMP runs from the ESG and chose variables such as
CO2 concentrations, net ecosystem exchange (NEE), net
primary productivity (NPP), and vegetation temperature
(TV). The time span of interest is from 1800 to 2005. A
user could either examine how each variable evolves over
time in a 2D movie, or do the same with the (first order)
derivative of each variable.

In addition, we allow the user to study pairs of variables.
It may be interesting, for instance, to visualize the first
derivative of NEE vs. the first derivative of NPP. If both
derivatives are of the same sign, we assign the colors blue
(both positive) and red (both negative), while green and
yellow are used for cases where the two derivatives are of
opposite signs. This is useful for revealing patterns in
which the two variables, NEE and NPP, vary in tandem of
each other. The two variables could be given a different
time lag as well. For instance, have the time sequences of
NEE start from January 1950 and NPP start from January
1980. Similarly, we can also study the monthly pattern
variations between NEE from 1900-1920 vs. NEE from
1980-2000.

A user can create an unlimited number of analyses. Each
analysis is given a separate floating viewport. All
viewports can be moved around in the workspace in the
web browser. This design allows the user to selectively
position viewports in neighboring positions for closer
comparisons. For an intuitive control by our domain users,
each viewport essentially acts as a movie viewer, with its
own set of controls including play, pause, and time tick.
In addition, at the bottom of the browser, there are
overriding play and pause buttons for the whole
workspace. This design allows each viewport to be set to
a different starting point and to be started and paused in a
synchronized manner. At the lower-right corner, there is a
universal frames per second control. For fast browsing,
we have found 10 frames per second or more is necessary.
For detailed study, the frame rates can be manually
changed to low single digit values such as one or two.

In total there are several orthogonal dimensions of
controls: which variables, the starting time tick of each
variable and the starting point within each viewport. The
overall configuration of the whole workspace can be
captured and saved. The configuration is identifiable as a
URL and can also be retrieved using a session ID.
Password authentication is used to restrict editing
privilege to only those who have the passwords. General
users can have viewing access without editing privileges.

Through our work, we realized that the impact of making
previously hard to find datasets available as a common
commodity for scientific research, like how climate
research is undergoing influences by the ESG, cannot be
over estimated. Visualization and analytical tools that
operate on ESG-caliber scientific datasets must embrace
this future model of sharing data. For this purpose, it is
crucial for the visualization community to proactively
explore ways to develop new technology as well as find
creative ways to use existing technology.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the primary source of
funding for this work is provided through Institute of
Ultra-Scale Visualization (www.ultravis.org), under the
auspices of the DOE Scientific Discovery through
Advanced Computing (SciDAC) program. This work is
also supported in part by NSF grant CNS-0437508 and a
DOE Early Career PI grant awarded to Jian Huang (grant
no. DOE DE-FG02-04ER25610). We are in debt for our
crucial collaboration with the Logistical Computing
Laboratory (LoCI) co-directed by Dr. Micah Beck and Dr.
Terry Moore at the University of Tennessee. LoCI lab
researcher, Huadong Liu, is the primary designer of the
heterogeneous scheduler [7] used in our system. We
would also like to thank Dr. David Erickson a nd Dr. John
Drake (ORNL) for the many in-depth discussions that
helped us to conceive our system, and Jamison Daniel
(ORNL) for his expertise on climate datasets.

The Earth System Grid (ESG) and the Carbon-Land
Model Intercomparison Project (C-LAMP) are partially
sponsored by the Climate Change Research Division
(CCRD) of the Office of Biological and Environmental
Research (OBER) and the Computational Science
Research and Partnerships (SciDAC) Division of the
Office of Advanced Scientific Computing Research
(OASCR) within the U.S. Department of Energy's Office
of Science (SC). This research used resources of the
National Center for Computational Science (NCCS) at
Oak Ridge National Laboratory (ORNL), which is
managed by UT-Battelle, LLC, for the U.S. Department
of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] Ananthakrishnan, R., D. E. Bernholdt, S. Bharathi, D.

Brown, M. Chen, A. Chervenak, L. Cinquini, R.
Drach, I. Foster, P. Fox, D. Fraser, K. Halliday, S.
Hankin, P. Jones, C. Kesselman, D. Middleton, J.
Schwidder, R. Schweitzer, R. Schuler, A. Shoshani,
F. Siebenlist, A. Sim, W. Strand, N. Wilhelmi, M. Su,
D. Williams. “Building a global federation system for
climate change research: The earth system grid center
for enabling technologies”. SciDAC 2007, June 2007,
Boston. Journal of Physics: Conference Series, Vol.
78, page 012050. Institute of Physics, 2007.

[2] Bethel, W. “Visualization dot com”. IEEE Computer
Graphics and Applications, 20(3): 17–20, 2000.

[3] Brodlie, K., D. Duce, J. Gallop, M. Sagar, J. Walton,
and J. Wood. “Visualization in grid computing
environments”. Proc. of IEEE Visualization
Conference, Austin, TX, 2004.

[4] Glatter, M., C. Mollenhour, J. Huang, and J. Gao.
“Scalable data servers for large multivariate volume
visualization”. IEEE Transactions on Visualization
and Computer Graphics, 12(5):1291–1299, 2006.

[5] Hoffman, F., C. Covey, I. Fung, J. Randerson, P.
Thornton, Y-H Lee, N. Rosenbloom, R. Stockli, S.
Running, D. E. Bernholdt, and D. Williams. “Results
from the Carbon-Land Model Intercomparison
Project (C-LAMP) and availability of the data on the
Earth System Grid (ESG)”. SciDAC 2007, June 2007,
Boston. Journal of Physics: Conference Series, Vol.
78, page 012026. Institute of Physics, 2007.

[6] Huang, J., H. Liu, J. Gao, A. Gaston, M. Beck, and T.
Moore. “Visualization viewpoints: Dynamic sharing
of large-scale visualization.” IEEE Computer
Graphics and Applications, 27(1): 20-25, 2007.

[7] Liu, H., M. Beck, and J. Huang. “Dynamic co-
scheduling of distributed computation and
replication”. Proc. of IEEE/ACM CCGrid: Intl Symp.
on Cluster Computing and the Grid, Singapore, 2006.

[8] Pascucci, V., and R. Frank. “Global static indexing for
real-time exploration of very large regular grids”. In
ACM/IEEE Conference on Supercomputing (SC’01),
page 2, 2001.

[9] Singhal, S., and M. Zyda. “Networked Virtual
Environments: Design & Implementation”. Addison-
Wesley Professional, 1999.

[10] Sirott, J., J. Callahan, and S. Hankin. “Inside the live
access server”. In 17th Intl Conference on Interactive
Information and Processing Systems for Meteorology,
Oceanography, and Hydrology, AMS, 2001.

[11] Stockinger, K., J. Shalf, K. Wu, and W. Bethel.
“Query-driven visualization of large data sets”. In
IEEE Visualization’05, page 22, 2005.

[12] Trefftz, H., I. Marsic, and M. Zyda. “Handling
heterogeneity in networked virtual environments”. In
Proc. of IEEE VR, pages 7–15, Orlando, FL, 2002.

[13] Viegas, F., M. Wattenberg, F. van Ham, J. Kriss, and
M. McKeon. “Manyeyes: a site for visualization at
internet scale”. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1121–1128, 2007.

[14] Williams, D., D. E. Bernholdt, I. Foster, and D.

Middleton. “The earth system grid center for enabling
technologies: Enabling community access to
petascale climate datasets”. CTWatch Quarterly, 3(4),
November 2007.

Figure 4. Our Current User Interfaces and a Runtime Screen Capture of Our System.

