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Abstract—Classification of Electro-Optical (EO) datasets using
Deep Neural Networks (DNNs) has lead to high-performance
supervised learning algorithms. However, DNNs require a large
amount of labeled data for training which often have limited
availability in ecological studies. Up-to-date classification of
vegetation in sensitive Arctic ecosystems continue to be a chal-
lenge. In an ecosystem undergoing rapid change, capturing the
dynamics of vegetation requires the existing maps of vegetation
(such as Alaska Existing Vegetation Type (AKEVT), circa 2000)
to be updated based on frequent field based observation of
vegetation. A method is needed to transfer the knowledge gained
from field-collected observations to a larger area using DNNs.
Transfer learning is a machine learning technique where a model
trained on one task is re-purposed on another similar task.
This paper seeks to train DNNs using field-collected observations
and apply transfer learning to apply the knowledge gained to
update existing vegetation map at larger scale. We test two DNN
methods, (1) a deep multilayer perceptron (MLP) model and (2)
siamese MLP network that uses a structure to rank similarity
between inputs and can be used for training datasets with few
samples and show good performance with limited datasets (e.g.
few-shot learning). The results show ∼90% accuracy (using
the field observations for evaluation) when transfer learning is
applied to a siamese network, compared to ∼45% accurate when
a MLP is trained on the AKEVT and evaluated on the field
observations. The approach show promise for improving and
update the existing vegetation maps over large areas using limited
field-based observations.

Index Terms—transfer learning, deep learning, vegetation clas-
sification, Arctic

I. INTRODUCTION

Land cover information plays an important role in un-

derstanding the impact of climate change on Arctic. Under-

standing of spatio-temporal dynamics of Arctic vegetation

is important to understand and predict warming climate on

Arctic ecosystem [1]. With vast spatial coverage and frequent

temporal revisitation, remote sensing allows assessment of

vegetation across the Arctic at a variety of spatial and temporal

scales. Additionally, remote sensing can also help understand

patterns of landscape geomorphology and parameterize land

surface models [2], [3]. However, most large-scale vegetation

maps for the Arctic are coarse resolution (e.g. 30 m), and not

frequently updated to reflect the Arctic vegetation dynamics.

Methods to incorporate new field measurements of vegetation

to continually update large–scale vegetation maps are needed.
Deep neural networks (DNNs), which learn the represen-

tative and discriminative features in a hierarchical manner

from the provided data, are becoming increasingly adopted

and applied for image classification in the remote sensing

community [4]. However, most existing DNN algorithms have

several potential issues, such as requiring large amounts of

data for training [5] and tending to overfit to particular classes

for imbalanced datasets [6], [7]. Recent approaches in few–

shot learning, which builds accurate models based on only

a few samples, show great promise especially when data is

limited and noisy.

One algorithm for few-shot learning is a siamese network,

that hold promise for overcoming the conventional drawbacks

in classification of remote sensing datasets [8], [9]. They

accept a pair of inputs to measure their similarity, in order to

learn a discriminative feature embedding and a similarity mea-

surement. Langford et al. [10] presented a siamese architecture

based on convolutional networks for signal classification and

found significant performance increase for noisy datasets.

Siamese networks has been applied to hyperspectral remote

sensing to mitigate the impact of noise in data datasets and

with only a few samples per training class [11].

Transfer learning aims to extract the knowledge from one

or more source tasks and applies the knowledge to a similar

target task [12]. Transfer learning can be an important tool to

alleviate some of the limitations of deep learning and extend

its application to problem where data is insufficient or noisy

[13]. Rostami et. al. [14] applied transfer learning to transfer

knowledge from Electro-Optical (EO) remote sensing data

based classifier to classify Synthetic Aperture Radar (SAR).

In this study, we seek to transfer knowledge from field

collected vegetation datasets to improve classification at larger

scale where only existing coarse resolution dataset are avail-

able for training. In summary, our main contributions are as

follows:

• use field-based vegetation samples for transfer learning

to a larger area; and

• compare a deep multilayer perceptron (MLP) model and

deep siamese network for vegetation mapping for a large

extent using limited field-based data.

II. STUDY REGION AND DATASETS

A. Study Region

The study region is located on the Seward Peninsula on

the western coast of Alaska (Fig. 1). The Seward Peninsula is
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at transition zone of vegetation from boreal forest to tundra

[15] witnessing stressors from warming climate, making this

part of Alaska an important region for characterizing and

understanding vegetation distribution. We focused our analysis

at a watershed in Kougarok region of the Seward Peninsula

(Figure 1), where intensive field campaigns to study hydrol-

ogy, biogeochemistry, and vegetation are being conducted by

the US Department of Energy’s Next Generation Ecosystem

Experiments (NGEE) – Arctic project.

B. Remote Sensing Datasets

We used datasets derived from Satellite for Observation

of Earth (SPOT-5) and Interferometric Synthetic Aperture

Radar (IfSAR) to map vegetation across the Seward Peninsula.

SPOT-5 satellite images used in this study were gathered and

made available by the “Alaska Statewide Digital Mapping

Initiative”, which produced a new statewide orthomosaic that

provides complete multispectral coverage of the state at 2.5 m

spatial resolution. This satellite image mosaic is the first con-

sistent, high-resolution, high-accuracy, digital orthoimagery

base layer ever produced across the entire state of Alaska.

Three statewide mosaics are available and were used for

this study: color infrared (CIR), psuedo-natural color, and

panchromatic (grayscale). Quantum Spatial and Fugro Geospa-

tial, Inc. performed the image processing, orthorectification,

and mosaicing of the datasets. The SPOT-5 orthoimage was

radiometrically corrected for tone, balance, and geometry

quality control along tile edges for terrain and linear features.

Table I lists the remote sensing datasets used in this study.

IfSAR based digital terrain model for the Seward Peninsula

of Alaska was obtained from the Geographical Information

Network of Alaska (GINA) (http://ifsar.gina.alaska.edu/).

C. Vegetation Datasets

We acquired the 30 m Alaska Existing Vegetation Type

(AKEVT; http://akevt.gi.alaska.edu/) vegetation map and

clipped the dataset to our study region (Fig. 1). The AKEVT

map was prepared using Landsat 7 ETM+ (30 m spatial

resolution) around the year 2000 [16], however, has limited

accuracy and has not been updated [17]. The AKEVT map

legends are based on Alaska Vegetation Classification [18] and

19 vegetation classes exist within our study region. However,

our field vegetation observations focused on three dominant

vegetation classes: Mixed Shrub-Sedge Tussock Tundra-Bog

(MS), Dryas/Lichen Dwarf Shrub Tundra (DL), and Alder-

Willow Shrub (AW). The AKEVT dataset was subset to three

classes, to match the field-based observations. Fig. 1(a,b)

shows the three main vegetation classes that were focus on

our study, while the vegetation classes ignored shown in

gray. Three vegetation types show differences in their spectral

signatures in remote sensing dataset, which we exploit for their

classification (Figure 2).

Sampling of vegetation plots in the field [19] utilized

methods recommended for the Arctic region by the authors of

the Arctic Vegetation Archive prototype [20]. These vegetation

types were crosswalked to the AKEVT map resulting in

three main classes of vegetation including Mixed Shrub-Sedge

Tussock Tundra-Bog, Dryas/Lichen Dwarf Shrub Tundra, and

Alder-Willow Shrub. Each sample was collected in a 5×5 m

grid to match the remote sensing datasets. Fig. 1 (b and

c) shows the location of the field-based samples collected

over the study region. Table II shows the number of samples

collected and area distribution of vegetation classes in AKEVT

over the study region.

D. Preparing Datsets for DNNs
All remote sensing datasets were processed and put together

in a three dimensional (X × Y × bands) image stack for

analysis. While all SPOT-5 datasets were available at 2.5 m

resolution, the IfSAR DEM and AKEVT dataset were resam-

pled to 2.5 m using the nearest neighbor interpolation to match

the SPOT-5 layers. Additionally, all remote sensing datasets

were normalized to between 0 and 1 for consistency before

they were input to classification model. This was performed

by:

zi =
xi −min(x)

max(x)−min(x)
(1)

where x = (x1,. . . ,xn) are the DN values of the datasets and zi
is the the normalized data. The images were stacked together

to form a multidimensional array, where the final image

consisted of a size of 8000× 8000× 8, corresponding to X ,

Y , and bands, respectively. Only the pixels corresponding to

the three vegetation classes were extracted based on AKEVT

dataset (Table II). Finally, grids of 2×2 around each pixel

were extracted to match the field plot sizes (5×5 m) and

the dataset was converted from a 3-dimensional array to a

2-dimensional array, such that each row of this array contains

the ‘’flattened” version of the bands respectively. Figure 3

illustrates the image extraction for the field-based model. This

consisted of extracting a 2×2 grid around the center for each

field sample and using this dataset to train the model. For

the labeled dataset, the field sample was converted to a pixel

corresponding to the class label (Figure 3(c)).

III. MODELING APPROACH

Traditional machine learning techniques try to learn each

task from scratch, while transfer learning techniques try to

transfer the knowledge learned from a previous task to another

similar task [12]. Fig 4 shows an overview of the transfer

learning approach developed in this study. First, the Multilayer

Perceptron (MLP) and siamese MLP models are trained using

the 30 field vegetation observations. Second, we transfer the

weights to new MLP and siamese MLP models and freeze the

weights. Third, we add extra layers to both models and train

with the AKEVT dataset. Finally, we validate both transfer

learning models using the 30 field samples. We also build

models without transfer learning for comparison, validating on

the 30 field vegetation observations. Section III-A discusses

the MLP models. Section III-B describes the development

of siamese MLP model. Section III-C discusses the transfer

learning approach using the field observation trained MLP and

siamese MLP models.
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Fig. 1: Study area based on the SPOT-5 footprint, showing (a) AW, DL, MS vegetation types from Alaska Existing Vegetation

(AKEVT) map for Seward peninsula with footprint of study region shown as red box; (b) AW, DL, MS types over Kougarok

watershed. Shown by colored circles are the location of field vegetation plots; (c) SPOT-5 true color image over the watershed;

and (d) location of study region with respect to the Seward Peninsula. AW: Alder Willow Shrubs, DL: Dryas/Lichen Dwarf

Shrub Tundra, MS: Mixed Shrub Sedge Tussock Tundra Bog. Vegetation types not included in the study are shown in grey

color and non-vegetated areas in black.

TABLE I: Spectral and topographic variables used in the classifications

Sensor Predictor Variable Unit Date Bands Resolution

SPOT-5
Green, Red, NIR (0.5–0.9 μm) DN August 2010 & June 2013 3 2.5 m
Blue, Green, Red (0.4–0.7 μm) DN August 2010 & June 2013 3 2.5 m
Panchromatic (0.5–0.7 μm) DN August 2010 & June 2013 1 2.5 m

IfSAR Elevation m July 2012 1 5 m

TABLE II: Area (km2) of the AKEVT vegetation classes for

the study region (SR). The number of samples collected are

also presented.

AKEVT Class SR Area Samples
Alder-Willow Shrub 19.85 10
Mixed Shrub-Sedge Tussock Tundra-Bog 24.49 10
Dryas/Lichen Dwarf Shrub Tundra 9.33 10

A. Multilayer Perceptron Model

A deep neural network is an artificial neural network that

consists of multiple hidden layers between the input and

output layers. In this study we used multilayer perceptron

(MLP) model that are trained using feed-forward error back-

propagation algorithm [21]. Each hidden layer consists of

many units that act in parallel, each representing a vector-

to-scalar function [22]. If the dataset D =
{(

x(n), y(n)
)}N

n=1
,

where x is the n-dimensional vector and y is the class label

associated with the instance x, then a feed-forward neural

network models the data as a nonlinear function of:

p
(
y(n) = 1 | x(n), θ

)
= σ

(∑
i

θix
(n)
i

)
, (2)

where θ represents the parameters of the network (e.g.,

weights) and σ represents the activation function that is used

to determine the value at the output node. A MLP learns to

optimize the parameters θ that result in the best functional

approximation of the output [22]. This can be represented as

y(n) =
∑
j

θ
(2)
j σ

(∑
i

θ
(1)
ji x

(n)
i

)
+ ε(n), (3)

where ε represents the learning rate. Learning requires com-

puting the gradients using the back-propagation algorithm,

which calculates the direction and magnitude during training

that is used to update the network weights. Training also

requires making decisions such as choosing the optimizer, cost

function, activation functions (which are used to compute the

values at the hidden layer), and the form of the output units

[22].

We implemented our approach using the TensorFlow [23]

and Keras framework [24] in Python. Table III lists the param-

eters used for the MLP model. The model consists of three

dense (hidden) layers, three dropout layers (which prevent

overfitting [25]), loss function (categorical cross-entropy), and

the Adam optimizer.

TABLE III: MLP model parameters.

Parameter Value Description
Dense Layer 1 128 Units ReLU Activation
Dropout 1 0.1 Random Selection
Dense Layer 2 128 Units ReLU Activation
Dropout 2 0.1 Random Selection
Dense Layer 3 128 Units ReLU Activation
Dropout 3 0.1 Random Selection
Loss Function Categorical Cross-Entropy Measures Performance
Optimizer Adam Learning Rate (0.001)
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(a) SPOT-5 CIR (b) SPOT-5 RGB

(c) SPOT-5 Pan (d) DEM

Fig. 2: Distribution of vegetation spectral response across all

remote sensing datasets used in the study show distinguishing

(with some overlap) signatures.

Fig. 3: Schematic of data processing over (a) watershed, (b)

where 2×2 grid (i.e. 4 pixels) was extracted from remote

sensing dataset, and (c) and the patch was assigned a single

vegetation label.

B. Siamese Network

The siamese network in this study is composed of twin

MLP networks that share parameters and weights. Figure 5

illustrates the proposed siamese MLP. The parameters of both

linked MLPs are jointly updated through backpropagation by a

loss function, which computes a particular metric between the

feature representations of each MLP model. Sharing weights

causes similar input images to be mapped to similar positions

in feature space [11].

a) Contrastive Loss Function: A common siamese net-

work learns by minimizing the contrastive loss, which is

defined as the distance between the outputs from the two

identical inner neural networks [8]. Let x1 and x2 be a pair

of image inputs to the MLP and y be a binary label of

the pair, where y = 0 if the images belong to the same

pairs and y = 1 if belongs to different pairs. Let W be

the shared parameter vector that is subject to learning and

let GW (x1) and GW (x2) be the two points in the low-

dimensional space that are generated by mapping x1 and x2.

Then the siamese network can be regarded as a scalar metric

function DW (x1, x2) to measure the compatibility between

x1 and x2, and the Euclidean distance, DW . Designed to

minimize L with respect to W , it result in low values of DW

for similar pairs and high values for dissimilar pairs [8]:

DW (x1, x2) = ‖GW (x1)−GW (x2)‖2 (4)

To simplify notation DW (x1, x2) will be represented as

DW . Then the contrastive loss is implemented as:

L
p∑

i=1

L(W, (x1, x2)
i) (5)

L(W, (y, x1, x2)
i) = (1− y) + Ls(D

i
W ) + yLD(Di

W ) (6)

where (y, x1, x
i
2) is the i-th labeled sample pair, LS is the

partial loss function for a pair of similar points, LD is the

partial loss function for a pair of dissimilar points, and P is

the number of training pairs. LS and LD must be designed

such that minimizing L with respect to W would result in low

values of DW for similar pairs and high values for dissimilar

pairs [8]. The siamese model architecture is similar to the

MLP model (Table III), with the only change being the loss

function.

C. Transfer Learning Models

Fig. 6 shows the overall approach for transfer learning

using the field-based models to another network trained on

the AKEVT dataset. Model A represents the MLP/siamese

MLP model trained on the field dataset and Model B repre-

sents the MLP/siamese model trained on the AKEVT dataset

(Figure 6). First, Model A is trained using the 30 field

vegetation observations and the weights are saved. Second, the

weights corresponding to the three dense layers (Table III) are

transferred and frozen, i.e. they do not change when training

Model B. Finally, additional layers are added (Table IV) to

Model B and it is trained using the AKEVT dataset. The

approach helps incorporate the field vegetation observations

into training the classifier for the larger area, thus improving

and updating and updating the information contained in the

AKEVT dataset.
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Remote Sensing and
Field Datasets

Train Field Model
with SPOT-5

(MLP/Siamese)

Transfer and Freeze
Weights

Add Extra Layers

Train SPOT-5 with
AKEVT Dataset
(MLP/Siamese)

Validation with Field
Dataset

Fig. 4: Overview of developed transfer learning approach.

X1 X2

MLP
(GW)

MLP
(GW)

Euclidean Distance
(DW)

Contrastive Loss Function

Output

Shared Weights

Positive/Negative Pairs

Fig. 5: Siamese MLP architecture.

TABLE IV: Additional layers when performing transfer learn-

ing

Parameter Value Description
Dense Layer 4 1024 Units ReLU Activation
Dropout 4 0.5 Random Selection
Dense Layer 5 1024 Units ReLU Activation

IV. RESULTS

A. Field-Based Models

Figure 7 shows the results for the MLP (Figure 7 (a)) and

siamese MLP model (Figure 7 (b)) when training with the 30

field vegetation observations. Both models reach 97 % training

accuracy within 50 epochs. Additionally, the weights are only

saved for the highest scoring model. A test set with the field

observations were not selected in order to give the model the

most samples during training.

Data

Dense Layer 2

Dense Layer 1

Dense Layer 3

Softmax

Loss

Data

Dense Layer 2

Dense Layer 1

Dense Layer 3

Dense Layer 4

Dense Layer 5

Softmax

LossLegend

Normal Training

Frozen Layers

Model A

Data

Dense Layer 2

Dense Layer 1

Dense Layer 3

Dense Layer 4

Dense Layer 5

Softmax

Loss

Model B

Fig. 6: Transfer learning approach, where model A represents

a normal training process using the field observations. Model

A weights are transferred to model B and frozen (blue boxes)

with additional layers added on when training for the larger

study region (Fig. 1).

B. AKEVT-Based Models

Figure 8 shows the results when training with the AKEVT

dataset and validating on the field observations. Figure 8 (a)

shows the MLP model, where the validation accuracy doesn’t

reach above 47 % accurate and the training accuracy stays at

consistent 76 % after a few epochs. Figure 8 (b) shows the

siamese MLP model, that achieves better results for the field

observations compared to the MLP model. The siamese MLP

model achieves 65% accuracy for the field observations after

6 epochs, and the training accuracy is similar to the MLP

(75 % accurate). Both models seem to lose performance when

validating on the field samples after a few epochs.
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(a) MLP model accuracy over 50 epochs.

(b) Siamese MLP model accuracy.

Fig. 7: Training accuracy for the 30 field observations for (a)

MLP model and (b) siamese MLP model.

C. Transfer Learning Models

Figure 9 shows the results when applying transfer learning

for training with the AKEVT dataset and validating on the

field observations. Figure 9 (a) shows the MLP when transfer

learning is applied. The results are better compared to when

transfer learning is not applied (Fig. 8 (a)), with validation

scores reaching 60% accurate. However, this is achieved after

the second epoch with performance decreasing for each model

run. Similar to original MLP model, the model seem to

learn the noise within the AKEVT dataset and performance

decreases as the model is trained. Training accuracy is also

lower when applying transfer learning, with scores achieving

70% accuracy.

Fig. 9 (b) shows the siamese MLP model with transfer

learning. The validation accuracy is always above the training

accuracy, with accuracy scores reaching 89 % accurate when

(a) MLP model accuracy over 50 epochs.

(b) Siamese MLP model accuracy.

Fig. 8: Training accuracy with the AKEVT dataset for (a) MLP

model and (b) siamese MLP model The red line indicates

training accuracy and the black line indicates the validation

accuracy.

using the field observations for validation. Training accuracy

reaches 66 % after a few epochs and is consistent during 50

epochs. This shows ideal performance when validating against

the field observations and acceptable performance for AKEVT.

D. Summary of Model Performance

Table V shows a summary of results for this study. Overall,

the siamese networks show better performance over the MLP

model. Applying transfer learning using the field observations-

based model weights shows better performance when trained

on the AKEVT dataset, with both methods achieving better

validation accuracy compared to training solely on the AKEVT

dataset. The transfer learning siamese network validation ac-

curacy is much higher than training accuracy, compared to the

MLP model.
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(a) MLP model accuracy over 50 epochs.

(b) Siamese MLP model accuracy.

Fig. 9: Training accuracy with the AKEVT dataset for transfer

learning (a) MLP model and (b) transfer learning siamese MLP

model. The red line indicates training accuracy and the black

line indicates the validation accuracy.

TABLE V: Summary of results for regular training and transfer

learning (TL)

Model Train Accuracy Validation Accuracy
Field MLP 100% N/A
Field Siamese 96% N/A
AKEVT MLP 76% 47%
AKEVT Siamese MLP 75% 65%
TL AKEVT MLP 70% 60%
TL AKEVT Siamese MLP 66% 89%

V. CONCLUSIONS AND FUTURE WORK

This study used deep learning on field-based datasets and

transferred this knowledge by freezing the weights for other

MLP and siamese MLP models applied to larger areas. This is

a first approach using deep transfer learning and other sophisti-

cated methods should be tested, such as siamese convolutional

neural networks (CNNs) [11]. Additionally, hyperparameter

optimization is needed to evaluate the current approach and

see how to improve the study. For example, one could optimize

the increase of field datasets and associated impacts to model

structure.

The siamese architecture shows better performance when

validated on the field observations for both regular training and

transfer learning, with transfer learning having a much higher

validation accuracy than training accuracy. This demonstrated

the potential of few-shot learning methods. Some recent ap-

proaches in few-shot learning are prototypical networks, which

uses the support set to extract a prototype vector from each

class and classifies the inputs in the query set based on their

distance to the prototype of each class [26]. This method shows

state-of-the performance for few-shot learning and an approach

using transfer learning could yield better results. Additionally,

meta-learning approach could be utilized to adjust the model

weights during training that is representative of the clean

unbiased dataset (i.e. field samples). For example, Ren et

al. [27] applied meta gradient descent step on the current

mini-batch example weights to minimize the loss on a clean

unbiased validation set.

One issue is the overfitting of models to the AKEVT dataset

when transfer learning is not applied. Both models when

trained on the AKEVT dataset (without transfer learning) seem

to lose performance when validating on the field observations

after a few epochs. This is mainly caused by the AKEVT

dataset, meaning the model is learning the noise and is not

representative of the field samples. Additional methods that

could be done by increasing the batch size or lowering the

learning rate [28]. Another approach could be batch normal-

ization, a technique that aims to improve the training of neural

networks by stabilizing the distributions of layer inputs [29].

These approaches combined with transfer learning could yield

better results for all methods in this study.

Another issue in applying this type of method is imbalance

classes [7]. The original AKEVT contained 19 classes and

we condensed this down to 3 classes to match the field-

based dataset, which had a similar distribution. One approach

to solve this problem would be to incorporate all classes to

increase the field dataset size and apply methods mentioned

above related to few-shot learning [26] and meta-learning [27].

We show that the approach of using transfer learning with a

siamese network shows great potential for incorporating expert

knowledge into another dataset that contains problems, such as

being coarse, noise and possibly out of date. Future directions

of this work include preventing model overfitting, test out

new few-shot learning approaches with transfer learning, and

handling class imbalance.
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