
Coping at the User-Level with Resource Limitations in the Cray

Message Passing Toolkit MPI at Scale: How Not to Spend Your

Summer Vacation

Richard T. Mills, Forrest M. Hoffman, Patrick H. Worley, and Kalyan S. Perumalla
Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

Art Mirin
Lawrence Livermore National Laboratory, Livermore, CA 94551-0808

Glenn E. Hammond
Pacific Northwest National Laboratory, Richland, WA 99352

Barry F. Smith
Argonne National Laboratory, Argonne, IL 60439

ABSTRACT: As the number of processor cores available in Cray XT series computers has
rapidly grown, users have increasingly encountered instances where an MPI code that has previ-
ously worked for years unexpectedly fails at high core counts (“at scale”) due to resource limita-
tions being exceeded within the MPI implementation. Here, we examine several examples drawn
from user experiences and discuss strategies for working around these difficulties at the user level.

KEYWORDS: Message Passing Toolkit, MPT, Portals, Message Passing Interface, MPI, MPICH

1 Introduction

The number of processing elements being deployed
in the Cray XT series of computers has grown at a
prodigious pace: The Red Storm XT3 machine at
Sandia National Laboratories debuted at number 10
in the TOP500 list in June 2005 with 5 000 processor
cores; three and a half years later, the Jaguar XT5
machine at Oak Ridge National Laboratory occu-
pied the number 2 spot in the list with 150 152, more
than thirty times that of Red Storm’s debut count!
With this rapid increase, many users have encoun-
tered situations in which MPI codes that have previ-
ously worked very reliably fail at large core counts—
with puzzling error messages from the Cray Message
Passing Toolkit (MPT)—due to message passing re-
sources being exhausted.

Many of the aforementioned problems can be sat-
isfactorily addressed by setting appropriate environ-
ment variables (see [1]) to increase resource limits or

specify different algorithms for the MPI implemen-
tation to use. There are, however, several reasons
that it may be preferable to instead rely upon flow-
control mechanisms implemented in user code. For
instance, problems with resource limitation might
be encountered only in portions of an application
code in which little execution time is spent. In such
cases, using environment variable settings that sig-
nificantly reduce the amount of memory available to
the application or that have deleterious effects on
performance are likely not a worthwhile trade to get
the piece of problem code to run. In other cases,
it may not be possible to increase the resources de-
voted to the message-passing library in a way that
scales to high processor counts while maintaining ad-
equate memory and performance. Finally, a user-
level approach may be worthwhile because it does
away with the need for much trial-and-error to de-
termine adequate environment variable settings are

CUG 2009 Proceedings 1 of 14



core counts are increased.
In our interactions with other Cray XT series

users, we have found that many users have imple-
mented user-level flow control schemes in their appli-
cation codes. Their various solutions appear to have
been arrived at independently, and we are aware
of no references to which Cray XT users can refer
for ideas on how to address flow-control problems.
This paper aims to partially fill this void by pre-
senting several case studies illustrating some ways in
which application developers have coped with mes-
sage passing resource limitations on the Cray XT
series machines.

2 Resource Limitations in
the Cray Message Passing
Toolkit Implementation of
MPI

Cray provides an implementation of MPI as part
of the Cray Message Passing Toolkit (MPT) [2].
The implementation in the current version of MPT
(3.1.x) is based on MPICH2 from Argonne National
Laboratory and supports two abstract device inter-
faces (ADI3): the Portals interface for communica-
tion between nodes and the SMP ADI3 for on-node
communication.

Portals [3] is a low-level software interface for
inter-node communication. Its original design was
focused on performing MPI communication, al-
though other high-level communication interfaces
can be built on top of it. Like many message pass-
ing libraries, Portals uses a so-called eager proto-
col for sending short messages: short messages are
sent with the assumption that the receiving pro-
cess has the resources to store the message, and the
receiver is responsible for buffering the message if
the matching receive has not yet been posted. If
the matching receive has been posted, the data are
placed into that receive’s buffer; otherwise, the data
are placed in the unexpected buffer and two entries
will be generated in the unexpected event queue that
tracks incoming unexpected messages: a put start
event that is generated as the data begin to arrive,
and a put end event that is generated when the data
have been received and are ready to be used. Ex-
haustion of the unexpected buffer and exceeding the
maximum length of the unexpected event queue are
two of the most common resource limitation prob-

lems encountered when scaling up application codes.
The most obvious way to address these problems
is to increase the buffer size and maximum queue
length by increasing the MPICH UNEX BUFFER SIZE
and MPICH PTL UNEX EVENTS environment variables,
respectively. Doing so decreases available mem-
ory, however, and it may not be practical (or
even possible, if sends are posted much more
rapidly than receives) to increase these suffi-
ciently. The number of unexpected messages can
also be decreased by lowering the value of the
MPICH MAX SHORT MESSAGE SIZE, which specifies the
maximum size of messages to be classified as “short”
and sent using the eager protocol: longer messages
utilize a different protocol and do not utilize the un-
expected buffer and unexpected event queue. If some
combination of these approaches does not work, a
flow control mechanism can be enabled by setting
the environment variable MPICH PTL SEND CREDITS
to ‘-1’. This mechanism should prevent the unex-
pected event queue from being exhausted in any sit-
uation, possibly with a negative impact on perfor-
mance.

There is another Portals event queue that may
also become problematic as the MPI process count
grows: the other events queue, which handles all
other MPI-related Portals events. MPI-2 remote
memory access (RMA) requests, sending of data
(send end and reply end events), and pre-posted re-
ceives all generate events in this queue. Ironically,
this means that restructuring an application to pre-
post receives to avoid failures due to too many unex-
pected messages may in fact result in failures due to
too many other events being generated! The size of
the other events queue can be increased by setting
the MPICH PTL OTHER EVENTS environment variable,
but there is no flow control mechanism that can be
enabled to limit the number of other events.

Since MPT version 3.0, the SMP abstract device
has been available for handling intra-node communi-
cation. Although problems with resource limitations
at scale usually show up in the Portals device, some-
times application codes exceed the maximum num-
ber of internal MPI message headers, and the limit
has had to be increased via the environment variable
MPICH MSGS PER PROC. This should be much less of
a problem with MPT 3.1.x, which dynamically allo-
cates space for more message headers in quantities
of MPICH MSGS PER PROC.

CUG 2009 Proceedings 2 of 14



3 Application Case Studies

In this section we describe examples detailing how
MPT resource limitations ave been addressed in five
disparate application codes.

3.1 Parallel k-means Cluster Analysis

Cluster analysis is a statistical method for group-
ing like objects together based on their multivariate
characteristics. Cluster analysis is often applied to
geophysical data analysis, and Hargrove and Hoff-
man have applied cluster analysis to a variety of
environmental science domains, including ecological
regionalization; environmental monitoring network
design; analysis of satellite-, airborne-, and ground-
based remote sensing, and climate model-model and
model-measurement intercomparison [4]. For these
applications, Hoffman and Hargrove have developed
a scalable, parallel k-means clustering algorithm for
use on high performance computing platforms that
can be applied as a data mining tool to analyze and
compare very large data sets of high dimensionality,
such as very long or high frequency/resolution time
series measurements or model output. Originally de-
veloped and implemented on a 128-node Beowulf-
style parallel computer, called the Stone Souper-
Computer and constructed from surplus commod-
ity desktop PCs [5], the high-performance parallel
clustering algorithm [6] scales to at least thousands
of processors. More recently, algorithm improve-
ments that significantly reduce the time-to-solution
by exploiting the triangle inequality have been im-
plemented into the parallel clustering code [7].

The clustering method consists of two parts: ini-
tial centroid determination and iterative assignment
of points to centroids until convergence is reached.
In the iterative portion of the clustering algorithm,
each point is assigned to the cluster centroid to
which it is closest, by simple Euclidean distance,
in the data space formed by using each character-
istic as an axis in this n-dimensional space. After
all the points are assigned to a cluster, new posi-
tions are calculated for each centroid as the mean
value along every axis of the points assigned to that
centroid. This procedure of assigning points to cen-
troids and recomputing the centroid locations re-
peats until the number of points that change clus-
ter assignment drops below a convergence thresh-
old. Once this threshold is met, the final clus-
ter assignments and centroid locations are saved.
This algorithm is implemented with a traditional

master/slave parallel architecture using the Message
Passing Interface (MPI). The algorithm is nearly
perfectly parallelizable and produces the same re-
sult whether run in serial or in parallel. In each
iteration, the master process distributes the current
centroids to the slave processes, assigns blocks of
points to slaves for classification (i.e., assignment to
nearest centroid), collects those classifications, and
recomputes new centroid locations based on cluster
membership. This procedure repeats until conver-
gence is attained. The block size is specified by the
user and can be set to optimize code performance
on various parallel systems with different numbers
of processors, amounts of memory, and I/O charac-
teristics.

In porting and benchmarking the cluster analy-
sis code on a Cray XT4, it was discovered that the
program crashed with MPI/Portals errors at certain
process counts. In particular for the AmeriFlux IIIA
data set with k = 8000 clusters, the code performs
very well using 1 025 cores (1 024 slaves plus 1 mas-
ter), it crashes at 2 049 cores, and runs to completion
at 4 097 cores, albeit with longer run time than with
1 025 cores because of increased communication and
an insufficient quantity of work. Specifically, with
Cray MPT 3.0.3, the program aborted with the fol-
lowing error:

[128] MPICH has run out of unexpected
buffer space.
Try increasing the value of env
var MPICH UNEX BUFFER SIZE (cur
value is 62914560),
and/or reducing the size of
MPICH MAX SHORT MSG SIZE (cur
value is 128000).
aborting job:
out of unexpected buffer space

This error appeared to occur in the
MPI Allgatherv() call that collects from all the
slave processes the 8000 × 8000 element array of
sorted centroid distances used in the accelerated
version of the algorithm. In an attempt to get
the code to run, the MPI UNEX BUFFER SIZE en-
vironment variable was set to twice the default
(shown in the error message above), but the pro-
gram still aborted with the same error, listing
the larger current value for MPI UNEX BUFFER SIZE.
Next, MPI UNEX BUFFER SIZE was set to four times
the default, and this time the program ran to
normal completion in 28 min. With Cray MPT

CUG 2009 Proceedings 3 of 14



3.1.0, the same problem runs in 28 min when
MPI UNEX BUFFER SIZE is set to four times the de-
fault value, but curiously, it runs in 14 min when
the environment variable is not set and the default
value is used.

Additional development was performed on the
clustering code to pre-post receives on the mas-
ter process to improve communications performance,
based on Cray recommendations. When the master
process assigns blocks of data to slave processes, the
master first pre-posts a receive (using MPI Irecv())
that is satisfied when the slave process completes
processing the assigned data block. On a vanilla
Linux cluster using only a few processes, runtime
was improved by a few percent; however, when
tested on the XT4 with the same problem described
above using 2 049 processes, the program crashed
with the following error:

[0] : (/tmp/ulib/mpt/nightly/3.1/
112008/mpich2/src/mpid/cray/src/adi/
ptldev.c:2854) PtlMEMDPost()
failed : PTL NO SPACE
aborting job:
PtlMEMDPost() failed

Apparently, the 2 048 pre-posted receives ex-
ceeded some Portals resource limit. A space limi-
tation was unexpected because only a single long in-
teger is to be received from each slave process. This
Portals error was eliminated by disabling the regis-
tration of receive requests in Portals by setting the
MPICH PTL MATCH OFF environment variable. How-
ever, doing so results in ∼15% longer runtime than
the previous code on the same problem. In this case,
pre-posting receives requires disabling a communica-
tions feature on the XT4 and has a deleterious effect
on performance.

3.2 Subsurface Flow and Reactive
Transport (PFLOTRAN)

PFLOTRAN [8; 9; 10; 11] is a parallel code for simu-
lation of multiphase flow and multicomponent reac-
tive (geochemical) transport in porous media. The
code is composed of different modules for flow and
transport, with the option of running the modules
in coupled or decoupled mode. PFLOTRAN is ca-
pable of simulating fluid flow though porous media
with the following fluid phases: air, water, supercrit-
ical CO2. PFLOTRAN-generated fluid flow veloci-
ties or fluxes are utilized by the transport module

to compute solute transport. Within PFLOTRAN,
transport and reaction are fully coupled. PFLO-
TRAN’s problem domain is discretized spatially us-
ing an integrated finite volume approach, with fully-
implicit backward-Euler time differencing. The use
of fully-implicit time stepping leads to large, sparse
systems of algebraic equations that must be solved
at each time step, and the great majority of the ex-
ecution time is spent in such solves. PFLOTRAN
is built on top of the PETSc framework [12; 13; 14]
and employs numerous features from PETSc, includ-
ing nonlinear and linear solvers, sparse matrix data
structures (both blocked and non-blocked matrices),
vectors, constructs for managing parallel communi-
cations for structured mesh problems, and binary
I/O.

PFLOTRAN’s parallel paradigm is based on
domain decomposition: each MPI process is as-
signed a subdomain of the problem and a paral-
lel solve is implemented over all processors. Mes-
sage passing (3D “halo exchange”) is required at
the subdomain boundaries with adjacent MPI pro-
cesses to fill ghost points in order to compute flux
terms. Domain decomposition preconditioners are
usually employed inside of a global inexact Newton-
Krylov solver. Within the Krylov solver, numer-
ous MPI Allreduce() operations are required to com-
pute vector inner products and norms, and com-
munication is highly latency-bound. In addition to
these “computation phase” communications men-
tioned above, the other significant source of com-
munication occurs during I/O. The output files
used for visualization and analysis are written us-
ing Parallel HDF5 (which employs MPI-IO). PFLO-
TRAN also generates checkpoint files using the bi-
nary PetscViewer format.

Despite the significant amount of communication
performed in PFLOTRAN, we have actually found
that most phases of the code are fairly robust in
terms of MPT resource limits and have required lit-
tle adjustment of the default settings. The exception
has been the generation of the binary PetscViewer
checkpoint files. Here, we detail our experiences in
investigating and correcting this problem.

PFLOTRAN checkpoint files are relatively
lightweight and essentially consist only of a few
scalar values and a handful of PETSc vectors, which
are written via calls to PETSc’s VecView() function.
The default behavior of VecView is to send all en-
tries of the vector through process 0 for writing to
disk: All processes with nonzero rank post a send to

CUG 2009 Proceedings 4 of 14



process 0, and process 0 loops through the receives,
writing the portion of the vector to disk before pro-
cessing the next receive. For jobs of any significant
size, this of course causes problems with the unex-
pected buffer and unexpected event queue, and for
very large jobs the size of these must be increased
to impractical size for the VecView() to complete.

A very simple attempt we tried was chang-
ing the MPI Send() to the synchronous version,
MPI Ssend(). Our hope was that this not incur any
buffering by the MPI implementation, as the MPI
standard offers the following advice to implementors:
“Since a synchronous send cannot complete before a
matching receive is posted, one will not normally
buffer messages sent by such an operation.” This
failed to fix our problem, however.

Our first real attempt to address this problem
was to add a backend to VecView() that utilized
collective MPI-IO writes. This would address the
unscalable performance of the default VecView() be-
havior (though this was not a real problem in PFLO-
TRAN, since comparatively little time is spent writ-
ing checkpoints) and would also prevent resource ex-
haustion due to so many simultaneous sends being
posted to process 0. Unfortunately, although this
did allow the code to run at somewhat higher core
counts, we quickly encountered a new failure mode in
which Portals reported “PtlMEMDPost() failed :
PTL NO SPACE”. We were unable to determine why
this message appeared.

As our MPI-IO backend did not work, we im-
plemented a simple flow-control scheme that proved
successful. The processes of nonzero rank are
divided into groups of flow control group size
processes. All processes participate in a se-
ries of broadcasts, in which process 0 sends
out a minimum rank, increased in increments of
flow control group size, that a process must pos-
sess before it is permissible for it to send its message
to process 0. Although the numerous broadcasts
mean a deal of wasteful communication, our perfor-
mance tests indicated that the flow-control scheme
makes no discernible difference in execution time,
likely because the performance is entirely limited by
the rate at which process 0 can write to disk. We
later implemented a more elegant scheme in which
we divide the nonzero rank processes into disjoint
sets of size flow control group size. An MPI
sub-communicator is then formed from the union
of each disjoint set with process 0. At the initia-
tion of the VecView() call, each process issues an

MPI Barrier() on its sub-communicator. Process 0
joins each barrier only when it is ready to process the
receives for those processes. This scheme eliminates
the numerous broadcasts of the first scheme, though
we have found that it makes no practical difference
for the message sizes typical in PFLOTRAN.

We note that the PTL NO SPACE error that we
encountered when using our MPI-IO backend have
since been eliminated. When attempting to use
this backend with the default environment variable
settings in MPT 3.1.x, we encounter a somewhat
different error: “PtlMDBind failed with error :
PTL NO SPACE”. This problem proves easily fixed by
setting MPICH MPIIO CB ALIGN to 1, which enables
new algorithms that align collective buffering file do-
mains on Lustre boundaries. The MPI-IO version of
VecView() now scales to large processor counts and
displays appreciable speedup as well.

3.3 Community Atmosphere Model
(CAM)

The Community Atmosphere Model (CAM) [15] is
an atmospheric general circulation model (AGCM)
that has been developed at the National Center for
Atmospheric Research (NCAR), with contributions
from external National Science Foundation (NSF),
Department of Energy (DOE), and National Aero-
nautics and Space Administration (NASA) funded
researchers. CAM is also the atmospheric compo-
nent of the Community Climate System Model [16;
17]. CAM is characterized by two computational
phases: the dynamics, which advances the evo-
lutionary equations for the atmospheric flow, and
the physics, which approximates subgrid phenom-
ena such as precipitation processes, clouds, long- and
short-wave radiation, and turbulent mixing. Con-
trol moves between the dynamics and the physics
during each model simulation timestep. The ap-
proach to parallelization in CAM is domain decom-
position, where each subdomain is assigned to a sin-
gle MPI [18] process; when available, OpenMP [19]
is used for additional parallelization. The dynam-
ics and physics each use separate decompositions,
and in typical usage the dynamics itself uses two dif-
ferent decompositions. These decompositions need
not be the same size, enabling, for example, the
use of more active processes in the physics than
in the dynamics. These decompositions are linked
by “transposes” of the associated distributed arrays
at each model timestep, and are implemented with

CUG 2009 Proceedings 5 of 14



MPI collectives or point-to-point commands. The
decomposition strategy also requires halo-update-
like communications between logically neighboring
processes when calculating the wind velocities and
in the advection of other quantities. A number
of distributed sums are also calculated during each
timestep. Model input requires reading input files by
a subset of “reader” processes, followed by a scatter
to the rest of the processes. Model output requires
a gather to a subset of “writer” processes before the
data are written to the parallel file system. Model
input is most prevalent during the model initializa-
tion phase, but tables of data are read periodically
during a model run. Output frequency is a run-
time parameter, but typically occurs at least once
per simulation month.

MPI communication patterns in CAM are static,
but include both global and local communication
operators, and both bandwidth (large message)
and latency-sensitive communications. Performance
portability requirements of this community code
have led to the support of a large number of MPI
communication protocols and options [20; 21; 22].
Adapting CAM to the current idiosyncrasies of MPI
communication on the Cray XT systems has been
relatively straightforward. Identifying the appropri-
ate options has been more of a challenge.

In general, the default communication protocol
has been to pre-post all receive requests, issue all
(non-blocking) send requests, then wait for the re-
ceive requests to be satisfied. At scale, this has the
potential of overwhelming any given process with
messages for which it has not yet posted receive re-
quests. This can cause failures if the system cannot
allocate sufficient system buffer space to handle all
of the requests, and will degrade performance in any
case with all of the additional buffer copying. When
there are different numbers of active processes in dif-
ferent phases of the code, the likelihood of this situa-
tion to occur increases significantly. For example, we
noticed anomalously large communication times in
MPI-only experiments on the XT4 and XT5 when
transposing between two dynamics decompositions
in which one decomposition was three times smaller.
In this instance, the runtime for the model was 50%
to 100% slower than when using one-third as many
processes but using decompositions with the same
size. Apparently the early arrival of messages from
the otherwise idle two-thirds of the processes at the
one-third active processes was causing the perfor-
mance anomaly. Similar performance problems have

been observed in both gather and scatter operations
(using both MPI collective calls and point-to-point
implementations), resulting in runs terminating with
error messages indicating that, for example, MPI
has “run out of unexpected buffer space” or that
an event was “dropped.” The first error message oc-
curred on an XT5 during a gather associated with
writing a restart file. This particular run used 4-way
OpenMP parallelism and 256 MPI processes. The
second error message occurred on an XT5 during a
series of scatters as part of the initialization for an
MPI-only run on 3 328 processors.

Setting appropriate MPI environment variables
to larger values does eliminate the errors in the pre-
vious two examples. However, this is a fragile ap-
proach because a sufficient value is a function of the
process count and problem size, and is difficult to
predict. In some circumstances we have not been
able to set the environment variable large enough,
because it exhausts the available memory.

One option to address these issues is to use flow
control in the form of handshaking messages. After
each non-blocking receive is posted, a “zero-byte”
message is sent to the source process. Upon receipt
of this signal, the source process can send the mes-
sage. This eliminates all unexpected messages of size
greater than zero. There is still a potential problem
in pre-posting more non-blocking receive requests
than are supported on a given system (with any
given MPI environment variable settings). There
may also be a performance impact from having a
large number posted, if only in the cost of matching
receive requests with the incoming messages. There
is also a potential problem of overwhelming a given
process with the handshaking messages. To address
these issues, another option is to limit the maximum
number of outstanding send and receive requests.

The handshaking and message request limit pro-
tocols allow us to address problems within the point-
to-point implementation of a single logical collective
operation. Problems can also arise from commu-
nication demands of a series of collective requests,
for example the series of scatter requests described
above, even though any single collective request may
not cause a problem. Moreover, invoking a hand-
shaking protocol in a scatter may replace one prob-
lem with another. We have found that replacing the
non-blocking send requests with blocking sends in
the point-to-point implementations can slow down
the rate at which message requests are generated,
slow enough to avoid problems arising from multiple

CUG 2009 Proceedings 6 of 14



collective calls.
The second approach, using MPI Send() instead

of MPI Isend(), eliminated the failure in the I/O-
related scatters. The first approach, handshaking
and message request limits, eliminated the failure in
I/O-related gathers and eliminated the performance
problem when transposing between two different-size
decompositions. In certain situations this approach
also improved performance significantly (up to a fac-
tor of 5) in I/O-related gathers that had not been
failing. Using MPI Alltoallv() also decreased the
performance anomaly, but the point-to-point imple-
mentation with handshaking is still approximately
twice as fast for transposes between the two decom-
positions, resulting in a 10% improvement in model
runtime in typical cases as compared to the imple-
mentation using the MPI collective. However, in our
experience MPI Alltoallv() is faster than the point-
to-point implementation when all processes are send-
ing and receiving from all other processes.

3.4 XGC1

XGC1 is a five-dimensional (three-dimensional real
space and two-dimensional velocity space) particle-
in-cell code used to study turbulent transport in
magnetic confinement fusion plasmas. XGC1 is able
to model the plasma and neutral species in the
edge region of a tokamak, allowing the first full-
function gyrokinetic simulation of whole device toka-
mak plasma in diverted geometry. XGC1 has been
developed by S. Ku and C. S. Chang within the
Department of Energy SciDAC project “Center for
Plasma Edge Simulation” (CPES), with contribu-
tions from the CPES project team [23].

Each timestep of an XGC1 execution includes,
minimally, the following.

1. Calculate charge density on underlying grid
(from particles);

2. Solve gyrokinetic Poisson equation on grid;

3. Calculate electric field and time derivatives
used in integration of particle equations of mo-
tion;

4. (periodically) Calculate and output diagnostic
quantities;

5. Calculate new particle positions and velocities.

This is a simplified view of the algorithm in that
these steps are used within a Runge-Kutta or

predictor-corrector time integration method. De-
pending on the experiment configuration, particles
are ions, electrons, or both. Experiments can also
include collisions and other physical processes im-
portant to full device simulations.

Parallelization of XGC1 is based on decomposi-
tions of both the spatial grid and of the particles. In
particular, the assignment of particles to processes
is based on a decomposition of the spatial domain.
Minimally, both the spatial grid and the particles
decompositions utilize a one-dimensional decompo-
sition in the toroidal direction of the toroidal geom-
etry.

All but one of the above steps (step 3) requires
MPI communication in the parallel implementation.
The charge density calculation step requires MPI
communication between processes assigned adjacent
parts of the spatial grid in neighboring poloidal
planes (neighboring slices in the one-dimensional
toroidal decomposition), as well as two distributed
reductions. The Poisson problem is solved using
(numerical and parallel) algorithms supplied by the
PETSc library [12; 13; 14]. MPI communication
in the diagnostic routines is limited to gathers and
reductions. The calculation of the new particle po-
sitions requires reassigning some of the particles to
different processes.

A recent modification to XGC1 introduced
an option to decompose particles using a two-
dimensional spatial decomposition. The initial im-
plementation of the particle reassignment required
in step 5 was as follows. For each process i,

1. determine the number of particles being sent
to i (MPI Allreduce() call);

2. send all particles that need to go off process
(Pack send buffers and call MPI Isend());

3. rearrange particles to remove holes in data
structures introduced by particles that have
moved off process;

4. receive particles sent from other processes (call
MPI Recv() and copy into local data struc-
tures, repeating until the required number of
particles has been received).

For small numbers of processes (no more than
8 000), this communication algorithm is very effi-
cient. Unfortunately, for larger process counts it fails
on the Cray XT4 and Cray XT5. Since the receives
are not posted before the sends, and due to the work

CUG 2009 Proceedings 7 of 14



between the sends and the receives, many of these
sends are going into MPI system buffer space on the
destination processes. Eventually there is no more
space available to receive the messages and the pro-
gram fails. Note that due to the nature of the sim-
ulations, the number of processes sending particles
to any given process is typically not large, but the
number of particles received can be large.

Initial alternative implementations, for example,
introducing flow control into the original algorithm,
eliminated runtime failure. However, they were sig-
nificantly more expensive than the original algo-
rithm at process counts for which both worked. Af-
ter examining a number of alternatives, the following
was determined to be robust and as efficient as the
original algorithm.

1. pack send buffers with particles that need to
go off processor;

2. determine number of processes sending to i
(MPI Allreduce() call);

3. determine which processes are sending to
i, and how many particles each is sending
(MPI Irecv() and MPI Send() calls);

4. post receive requests (MPI Irecv() calls);

5. post send requests (MPI Isend() calls);

6. receive particles and copy into local data struc-
tures

with options for handshaking messages and limiting
the number of outstanding MPI requests in steps
4, 5, and 6. The default is to use both handshaking
and to limit the number of requests. With this logic,
XGC1 has been run successfully with over 20 000
processes, and runs on 150 000 cores will be at-
tempted in the near future. Based on our experi-
ences with the Community Atmosphere Model, we
also introduced flow control options into the gather
algorithms used in the diagnostic routines, and have
set these as the default.

3.5 Parallel Discrete Event Simula-
tion (PDES)

PDES is a class of simulations representing a wide
range of emerging, large-scale applications, such as
packet-level Internet simulations, agent-based social
behavioral models, epidemiological disease spread

models, vehicular traffic models, and air traffic con-
trol simulations, to name a few.

Here, we document our difficulties in attempting
to port and scale a unique PDES engine, µsik, to
the NCCS Jaguar machine (Cray XT5 with approx.
150 000 processor cores). µsik has been previously
demonstrated to scale to 32 768 processor cores on
the Blue Gene/L platform. Our interest was to be-
gin porting µsik to the full scale of 150 000 processor
cores of the Cray XT5, planned as a series of phased
improvements to the µsik software, algorithms and
application benchmarking. However, the port en-
countered unforeseen difficulties in the first phase
itself, many of which could be traced to the MPI
communication subsystem of the Cray XT5.

We document the details of some of these dif-
ficulties, along with our current (sub-optimal) ad-
hoc solutions (much additional optimization beyond
what is reported here is clearly possible).

We will first briefly review the PDES execution
style, followed by its ramifications on MPI-based
communication patterns, the nature of some of our
problems on our Cray XT5 port, and our ad-hoc
solutions.

3.5.1 Modeling Paradigm and Parallel Exe-
cution Style

Parallel discrete event simulation (PDES) is a mod-
eling and execution paradigm that is in direct con-
trast to time-stepped simulations [24]. In parallel
time-stepped simulations, simulation time is globally
advanced in fixed increments, with all processors ex-
ecuting in synchrony with respect to the time-step
of their state updates. In contrast, in PDES, sim-
ulation time can be an arbitrary real value (typi-
cally, a double precision floating point value), with
state updates “scheduled” to be executed in arbi-
trary time instants in the future on the real-valued
simulation-time axis. Each processor can potentially
be updating its system state at simulation time in-
stants that are later or earlier than the simulation
time of other processors. Processors exchange data
using “timestamped” events scheduled by one pro-
cessor to another. Events, which are payload (data)
tagged with a timestamp value, are thus scheduled
for arbitrary times in the future. To ensure global
causality, events are constrained to be executed at
every processor in non-decreasing timestamp order.

The schedulability of updates, the timestamp-
ordered event execution, and the staggered process-
ing of events across processors, all together trans-

CUG 2009 Proceedings 8 of 14



late into a unique parallel execution style of PDES.
The difference in styles ends up exercising the com-
munication subsystems of the parallel platform in
ways and combinations not typically encountered by
traditional time-stepped simulations. Processors are
typically highly staggered in simulation time. Due to
such staggered execution, even small levels of local
jitter due to communication overheads can accumu-
late globally. Message sizes are typically small (in
the range of 64 to 512 bytes each), but the num-
ber of messages and the frequency of sends can be
very high (102–104 of inter-processor messages per
second). Non-blocking messaging is used heavily, to
permit the processors to overlap computation and
communication. All these messaging characteris-
tics serve to stress the communication subsystems,
amplifying even the slightest inefficiencies and over-
heads.

3.5.2 Application Interface and the µsik En-
gine

In PDES, one or more units, called logical pro-
cesses (LPs), are mapped to each processor core.
The LPs are abstractions that correspond to mod-
eling units that interact asynchronously with each
other by scheduling events to each other in simu-
lation time future. For example, each LP repre-
sents either an agent in an agent-based simulation
(exchanging timestamped events representing social
behavioral influences), or a host in an Internet sim-
ulation (exchanging timestamped events represent-
ing TCP/IP packet exchanges), or an intersection
in a transportation network simulation (exchanging
timestamped events representing vehicular arrivals
and departures).

Due to the unique communication and syn-
chronization properties, PDES “engines” are used
to implement and reuse a wide variety of impor-
tant functionalities and concepts such as logical
processes, timestamped events, global timestamp-
ordered event processing at every processor, dy-
namic concurrency enhancement, and so on.

µsik is a scalable PDES engine, under develop-
ment for over half a decade, providing many in-
terface features needed in a large variety of appli-
cations. µsik’s scalability has been gradually in-
creased from 102 to 104 processors; more recently
(2006–07), we were able to scale µsik to a large
Blue Gene/L installation, demonstrating scalability
to 32 768 cores. The software is written in standard
C/C++, with support for multiple communication

subsystems, including MPI. Additional detail can be
found in [25; 26].

3.5.3 Computation and Synchronization
Granularities

Many PDES applications involve very fine-grained
event computation. The granularity can be as low as
2–10 µs in applications such as Internet simulations
and vehicular traffic simulations. In other words, the
execution of model-level code computation only con-
sumes 2–10 µs inside each event. Notionally, PDES
execution requires synchronization (safety against
timestamp order violation) after processing every
event, and/or scheduling one or more events to an-
other logical process (potentially off-processor). In
practice, this strict notion of synchronization gets
somewhat relaxed by using concepts such as “look-
ahead.”

For the purposes of this article, the PDES ex-
ecution of each processor can be expressed as the
regular expression: ((E[S+]) ∗ [Y ])∗, where E is an
event execution, [S+] is an (optional) scheduling of
one or more events, and [Y ] is a (dynamically deter-
mined) participation in synchronization with other
processor-cores, and ∗ represents zero or more repe-
titions.

3.5.4 MPI-based Implementation

Many PDES applications are unstructured in na-
ture. Due to the unstructured state spaces, inter-
state dependencies, and staggered time evolution,
no processor has knowledge of to which processor it
might send a message and from which processor it
should expect to receive. As a result, it is infeasible
to post receives before sends. However, non-blocking
communication is a necessity to deal with dynamic
load imbalances. With these considerations, the
non-blocking, buffered-send MPI Bsend() is used to
send messages, and the non-blocking MPI Iprobe() is
used to poll for incoming messages, and MPI Recv()
is used to retrieve probed messages.

While an event is being processed, that event
could generate new events destined for other pro-
cessors. Such events are immediately sent using
MPI Bsend(). Since many events could be sent in
this manner before the MPI subsystem can dispatch
them, MPI is given user buffer space at initializa-
tion via MPI Buffer attach(). The space allocated
for this is in tens of megabytes to a couple of hun-
dred megabytes (per core), which has been found to

CUG 2009 Proceedings 9 of 14



be more than adequate on the Blue Gene/L platform
on up to 32 768 cores.

Plain MPI is used, with one MPI rank per core.
No multithreading (OpenMP) is used.

3.5.5 PDES Benchmark: PHOLD

The PHOLD benchmark application is a parame-
terized abstract model, designed as a generalized
core of parallel discrete event simulations, model-
ing multiple entities that interact via time stamped
events/messages.

Good performance of the PDES engine on the
PHOLD benchmark is a necessary condition for
good performance of PDES applications.

The benchmark is designed to capture the
essence of simulation dynamics to exercise and ex-
periment with computational performance of event-
based model execution in parallel. Most interacting-
entity simulations map well to this model.

In PHOLD, the interactions are abstracted by
each unit selecting a target unit at random for in-
teraction in the future. Each interaction is realized
as a timestamped event sent from one LP to another.

In our experiments, we use weak scaling, with 10
LPs per core. An event population of 1 000 events
per core, which implies that, at any given moment,
there are an average of 1 000 events active per core,
all with exponentially distributed timestamps into
the future. Every LP, when it processes an event
(in timestamp order), sends an event with a ran-
domly chosen timestamp increment into the future
to a random LP. The event is scheduled in the timed
future with a period drawn from an exponential dis-
tribution with mean 1.0, plus a minimum increment
of 0.1 (i.e., a “look ahead” of 0.1). A percentage
ρ of events is biased to be sent to a local core LP,
while the others are sent to randomly selected re-
mote LPs. Typical values for ρ are 80–99%, giv-
ing reasonably high locality, and low inter-processor
communication.

3.5.6 Runtime Issues and Ad-hoc
Workarounds

The PHOLD benchmark was initially executed with
ρ = 90, to match the inter-processor communica-
tion percentage used in our earlier runs on the Blue
Gene/L. As expected, everything worked flawlessly
until core counts of 32 768. However, execution
on the next doubling of cores resulted in fatal run-
time errors (segmentation faults). The source of

the problem was hard to detect, partly because of
the difficulty of discovering the MPI error message
(about the overflow of the unexpected event queue
and the need to increase the queue size using the
MPICH PTL UNEX EVENTS environment variable) lost
in the standard output of the simulation. Exhaus-
tion of network resources resulted in generation of
this error.

Our understanding of the reason for the segmen-
tation fault is that the (apparent) transient loss of
some events seemed to violate the FIFO message or-
dering assumptions made in the code, which made
the engine enter an invalid software state (invalid
event buffer space). Notwithstanding the reason be-
hind the runtime error, it was clear that the cores
needed to be throttled, using some kind of flow con-
trol mechanism. Alternatively, the amount of com-
munication needed to be reduced.

We first experimented with the easier alternative,
namely, reducing the inter-processor communication
by one order of magnitude, increasing ρ from 90 to 99
percent. The problem persisted—this is because of
the random selection of the destination for the mes-
sages, spanning the entire range of MPI ranks, which
makes the destination list highly dynamic when only
a small number of “active connections” per proces-
sor are established and maintained by the Cray’s
network system. This active connection table was
easily being flushed and refilled with newer connec-
tions established on demand to newer destinations
at runtime, resulting in significant latencies. While
the application managed to terminate without er-
rors, the performance degraded by one to two or-
ders of magnitude (with hundreds of microseconds
per event, as opposed to an average of 10–20 µs per
event on 32 768 cores). When the inter-processor
communication was decreased by an additional one
order of magnitude (increasing ρ to 99.9%), the av-
erage event cost decreased to 400–600 µs per event.
This confirmed that the inter-processor communica-
tion was the contributing factor to the total cost.

In order to get decent performance on the de-
sired value range of inter-processor communication,
we implemented a simple flow control algorithm at
the user level. For every sender-receiver pair of cores
exchanging events, a user-level (MPI message-based)
acknowledgement is sent by the receiver once ev-
ery k events, and the sender stalls to receive the
acknowledgement message before transmitting the
next (k + 1)th message. This scheme ensures that
the network subsystem is burdened by at most k

CUG 2009 Proceedings 10 of 14



messages for any given (i, j) ordered pair of MPI
ranks. This flow control scheme improved the per-
formance dramatically, bringing the amortized event
cost down to around 100 µs on 100 000 cores. An-
other modification that led to this improvement was
the use of message bundling such that MPI Bsend()
was invoked only outside of an event computa-
tion (instead of during event computation), mak-
ing it somewhat less vulnerable to the delays in
MPI Bsend() processing. Nevertheless, the event
performance of 100 µs is far from the expected levels
of 10–20 µs for the low inter-processor communica-
tion percentage of ρ = 99.9.

The selection of k is ad-hoc in nature, and is cho-
sen by trial-and-error empirically. Larger k is good
for concurrency, but is more prone to network errors.
Smaller k ensures normal termination, but at signif-
icant loss of runtime efficiency. We are currently
investigating additional solutions to this issue, in-
cluding some of the environment variables for flow
control in Cray MPT. An additional, drastic alter-
native is to move one level down in the network stack
and use the Portals interface, which is the commu-
nication layer on which Cray XT5’s MPT is based.

For PDES virtual time synchronization, µsik em-
ploys user-level messaging-based asynchronous re-
ductions based on butterfly (and other) commu-
nication patterns to compute the global minimum
of event timestamps at all processors (this global
value, called global virtual time [27], is needed
for proper execution order, and to detect termi-
nation). Suspecting that our implementation is a
potential source of runtime cost, we attempted to
use MPI Allreduce() to compute the global mini-
mum of event timestamps. To our amazement, the
MPI Allreduce()-based solution resulted in poorer
performance, instead of improved performance. The
performance differential reached close to one order
of magnitude on the largest core counts of 147 576
cores.

Much remains to be investigated with respect
to performance problems, most of which have been
traceable to the MPI subsystem when our PDES
runs were executed on core counts larger than
32 768.

4 Conclusions

In this paper, we have examined several case studies
detailing modifications made to user codes in order
to prevent exceeding resource limits within the Cray

Message Passing Toolkit (MPT) implementation of
MPI. Although it is often possible to remedy such
problems by using appropriate settings of MPT en-
vironment variables, user-level solutions are some-
times preferable: they can eliminate the need for
trial and error in determining environment variable
settings when scaling to higher processor counts,
they can avoid use of MPT settings that might be
deleterious to the performance of other portions of
the code, and they can preserve more physical mem-
ory for use by the application code. We hope that
the examples presented here can provide guidance
for other users who need to implement user-level so-
lutions in their codes.

Acknowledgments

The authors wish to thank Jeff Larkin of Cray, Inc.,
for helpful conversations about issues encountered
in MPT, and Dr. Vinod Tipparaju of ORNL for his
insight and suggestions for flow control in the PDES
application, and for putting the author of this code
(Perumalla) in contact with the other authors of this
paper.

This research was partially sponsored by the Cli-
mate and Environmental Sciences Division (CESD)
of the Office of Biological and Environmental Re-
search (BER) and the Computational Science Re-
search and Partnerships (SciDAC) Division of the
Office of Advanced Scientific Computing Research
(ASCR) within the U.S. Department of Energy’s Of-
fice of Science (SC). Portions of the PDES work re-
ported here were supported under the DHS SERRI
program. This research used resources of the Na-
tional Center for Computational Sciences (NCCS)
at Oak Ridge National Laboratory (ORNL), which
is managed by UT-Battelle, LLC, for the U.S. De-
partment of Energy under Contract No. DE-AC05-
00OR22725. Lawrence Livermore National Labo-
ratory (LLNL) is managed by Lawrence Livermore
National Security, LLC, for the U.S. Department of
Energy under Contract No. DE-AC52-07NA27344.
Pacific Northwest National Laboratory is managed
for the U.S. Department of Energy by Battelle
Memorial Institute under Contract No. DE-AC06-
76RL01830. Argonne National Laboratory is man-
aged by UChicago Argonne, LLC, for the U.S. De-
partment of Energy under Contract No. DE-AC02-
06CH11357.

CUG 2009 Proceedings 11 of 14



About the Authors

Richard Tran Mills is a computational scientist
in the Computational Earth Sciences Group of
the Computer Science & Mathematics Division at
ORNL. After dropping out of high school, he earned
a B.A. in Geology and Geophysics from the Univer-
sity of Tennessee, Knoxville, and a Ph.D. in Com-
puter Science from the College of William and Mary.
His research interests include parallel and high-
performance computing, computational science and
scientific computing, software for the iterative solu-
tion of sparse algebraic systems of equations, compu-
tational geoscience applications, geospatiotemporal
data mining, and execution context-aware scientific
software. He can be reached at ORNL, MS 6015,
Oak Ridge, TN 37831, E-Mail: rmills@ornl.gov.

Forrest M. Hoffman is a computational scien-
tist in the Computational Earth Sciences Group
of the Computer Science & Mathematics Division
at ORNL. His research focuses primarily on global
climate, ecological, and terrestrial biogeochemical
modeling and biogeophysical data mining. He can be
reached at ORNL, MS 6016, Oak Ridge, TN 37831,
E-Mail: forrest@climatemodeling.org.

Patrick H. Worley is a senior R&D staff member
in the Computer Science and Mathematics Division
of Oak Ridge National Laboratory. His research in-
terests include parallel algorithm design and imple-
mentation (especially as applied to simulation mod-
els used in climate and fusion energy research) and
the performance evaluation of parallel applications
and computer systems. Worley has a Ph.D. in com-
puter science from Stanford University. He is a mem-
ber of the Association for Computing Machinery and
the Society for Industrial and Applied Mathematics.
E-mail: worleyph@ornl.gov.

Kalyan S. Perumalla is a senior research staff
member in the Modeling & Simulation Group of
the Computational Sciences & Engineering Divi-
sion at ORNL, and holds an Adjunct Professor
appointment at the Georgia Institute of Technol-
ogy (Georgia Tech). His areas of interest include
high performance computing, and parallel simula-
tion/optimization applications. He can be reached
at ORNL, MS 6085, Oak Ridge, TN 37831, E-Mail:
perumallaks@ornl.gov.

Art Mirin is a computational physicist in
the Center for Applied Scientific Computing at
Lawrence Livermore National Laboratory. His re-
search interests include scientific computing, high-
performance computing, numerical hydrodynamics,

and global climate modeling. He can be reached at
LLNL, Box 808, L-561, Livermore, CA 94551, E-
Mail: mirin1@llnl.gov.

Glenn Hammond is a computational hydrologist
in the Hydrology Technical Group at Pacific North-
west National Laboratory. His research interests in-
clude high-performance computing and subsurface
reactive transport. He can be reached via E-Mail at
ghammond@pnl.gov.

Barry Smith is a Senior Computational Mathe-
matician in the Mathematics and Computer Science
Division at Argonne National Laboratory and is the
leader of the PETSc project. He can be reached via
E-Mail at bsmith@mcs.anl.gov.

References

[1] Geir Johansen. Managing cray XT MPI run-
time environment variables to optimize and
scale applications. In Proceedings of the Cray
User Group 2008 Meeting (CUG2008), 2008.

[2] Howard Pritchard, Doug Gilmore, Monika ten
Bruggencate, David Knaak, and Mark Pagel.
Message passing toolkit (MPT) software on
XT3. In Proceedings of the Cray User Group
2006 Meeting (CUG2006), 2006.

[3] Ron Brightwell, Bill Lawry, Arthur B. Mac-
Cabe, and Rolf Riesen. Portals 3.0: Protocol
building blocks for low overhead communica-
tion. In IPDPS ’02: Proceedings of the 16th In-
ternational Parallel and Distributed Processing
Symposium, page 268, Washington, DC, USA,
2002. IEEE Computer Society.

[4] William W. Hargrove and Forrest M. Hoffman.
Potential of multivariate quantitative meth-
ods for delineation and visualization of ecore-
gions. Environmental Management, 34(5):s39–
s60, 2004. doi:10.1007/s00267-003-1084-0.

[5] William W. Hargrove, Forrest M. Hoffman, and
Thomas Sterling. The Do-It-Yourself Super-
computer. Scientific American, 265(2):72–79,
August 2001.

[6] Forrest M. Hoffman and William W. Har-
grove. Multivariate geographic clustering us-
ing a Beowulf-style parallel computer. In
Hamid R. Arabnia, editor, Proceedings of the

CUG 2009 Proceedings 12 of 14

http://dx.doi.org/10.1007/s00267-003-1084-0
http://www.sciam.com/article.cfm?articleID=000E238B-33EC-1C6F-84A9809EC588EF21&pageNumber=1&catID=2
http://www.sciam.com/article.cfm?articleID=000E238B-33EC-1C6F-84A9809EC588EF21&pageNumber=1&catID=2


International Conference on Parallel and Dis-
tributed Processing Techniques and Applica-
tions (PDPTA ’99), volume III, pages 1292–
1298, Las Vegas, Nevada, June 1999. CSREA
Press.

[7] Forrest M. Hoffman, William W. Hargrove,
Richard T. Mills, Salil Mahajan, David J. Er-
ickson, and Robert J. Oglesby. Multivariate
Spatio-Temporal Clustering (MSTC) as a data
mining tool for environmental applications. In
Miquel Sànchez-Marrè, Javier Béjar, Joaquim
Comas, Andrea E. Rizzoli, and Giorgio Guar-
iso, editors, Proceedings of the iEMSs Fourth
Biennial Meeting: International Congress on
Environmental Modelling and Software (iEMSs
2008), Barcelona, Catalonia, Spain, July 2008.

[8] Richard T. Mills, Chuan Lu, Peter C. Lichtner,
and Glenn E. Hammond. Simulating subsur-
face flow and transport on ultrascale comput-
ers using PFLOTRAN. In David Keyes, edi-
tor, SciDAC 2007 Scientific Discovery through
Advanced Computing, volume 78 of Journal
of Physics: Conference Series, page 012051,
Boston, Massachusetts, 2007. IOP Publishing.

[9] Glenn E. Hammond, Peter C. Lichtner, and
Chuan Lu. Subsurface multiphase flow and
multicomponent reactive transpo rt modeling
using high-performance computing. In David
Keyes, editor, SciDAC 2007 Scientific Discov-
ery through Advanced Computing, volume 78
of Journal of Physics: Conference Series, page
012025, Boston, Massachusetts, 2007. IOP Pub-
lishing.

[10] Chuan Lu and Peter C. Lichtner. High reso-
lution numerical investigation on the effect of
conve ctive istability on long term co2 stor-
age in saline aqui fers. In David Keyes, edi-
tor, SciDAC 2007 Scientific Discovery through
Advanced Computing, volume 78 of Journal
of Physics: Conference Series, page 012042,
Boston, Massachusetts, 2007. IOP Publishing.

[11] Glenn E. Hammond, Peter C. Lichtner, ,
Richard T. Mills, and Chuan Lu. Towards
petascale computing in geosciences: application
to the hanford 300 area. In David Keyes, edi-
tor, SciDAC 2008 Scientific Discovery through
Advanced Computing, volume 125 of Journal of
Physics: Conference Series, page 012051, Seat-
tle, Washington, 2008. IOP Publishing.

[12] Satish Balay, Kris Buschelman, William D.
Gropp, Dinesh Kaushik, Matthew G. Knep-
ley, Lois Curfman McInnes, Barry F. Smith,
and Hong Zhang. PETSc Web page, 2001.
http://www.mcs.anl.gov/petsc.

[13] Satish Balay, Kris Buschelman, Victor Ei-
jkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes,
Barry F. Smith, and Hong Zhang. PETSc users
manual. Technical Report ANL-95/11 - Revi-
sion 2.1.5, Argonne National Laboratory, 2004.

[14] Satish Balay, William D. Gropp, Lois Curfman
McInnes, and Barry F. Smith. Efficient man-
agement of parallelism in object oriented nu-
merical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages
163–202. Birkhäuser Press, 1997.

[15] W. D. Collins, P. J. Rasch, B. A. Boville, J. J.
Hack, J. R. McCaa, D. L. Williamson, B. P.
Briegleb, C. M. Bitz, S.-J. Lin, and M. Zhang.
The Formulation and Atmospheric Simulation
of the Community Atmosphere Model: CAM3.
Journal of Climate, 19(11):2144–2161, June
2006.

[16] Community Climate System Model.
http://www.ccsm.ucar.edu/.

[17] W. D. Collins, C. M. Bitz, M. L. Blackmon,
G. B. Bonan, C. S. Bretherton, J. A. Car-
ton, P. Chang, S. C. Doney, J. H. Hack, T. B.
Henderson, J. T. Kiehl, W. G. Large, D. S.
McKenna, B. D. Santer, and R. D. Smith. The
Community Climate System Model Version 3
(CCSM3). J. Climate, 19(11):2122–2143, 2006.

[18] W. Gropp, M. Snir, B. Nitzberg, and E. Lusk.
MPI: The Complete Reference. MIT Press,
Boston, 1998. second edition.

[19] L. Dagum and R. Menon. OpenMP: an
industry-standard API for shared-memory pro-
gramming. IEEE Computational Science & En-
gineering, 5(1):46–55, January/March 1998.

[20] A.A. Mirin and W. B. Sawyer. A scalable im-
plemenation of a finite-volume dynamical core
in the Community Atmosphere Model. Interna-
tional Journal of High Performance Computing
Applications, 19(3):203–212, Fall 2005.

CUG 2009 Proceedings 13 of 14



[21] W.M. Putman, S. J. Lin, and B. Shen. Cross-
platform performance of a portable communica-
tion module and the NASA finite volume gen-
eral circulation model. International Journal
of High Performance Computing Applications,
19(3):213–224, Fall 2005.

[22] P. H. Worley and J. B. Drake. Performance
portability in the physical parameterizations of
the Community Atmosphere Model. Interna-
tional Journal of High Performance Computing
Applications, 19(3):187–202, August 2005.

[23] C. S. Chang, S. Klasky, J. Cummings, R. Sam-
taney, A. Shoshani, L. Sugiyama, D. Keyes,
S. Ku, G. Park, S. Parker, N. Podhorszki,
H. Strauss, H. Abbasi, M. Adams, R. Bar-
reta, G. Bateman, K. Bennett, Y. Chen,
E. D’Azevedo, C. Docan, S. Ethier, E. Feibush,
L. Greengard, T. Hahm, F. Hinton, C. Jin,
A. Khan, A. Kritz, P. Krsti, T. Lao, W. Lee,
Z. Lin, J. Lofstead, P. Mouallem, M, Nagappan,
A. Pankin, M. Parashar, M. Pindzola, C. Rein-
hold, D. Schultz, K. Schwan, D. Silver, A. Sim,
D. Stotler, M. Vouk, M. Wolf, H. Weitzner,

P. Worley, Y. Xiao, E. Yoon, and D. Zorin.
Toward a first-principles integrated simulation
of tokamak edge plasmas. Journal of Physics:
Conference Series, 125(012042), July 2008.

[24] K. S. Perumalla. Parallel and Distributed Simu-
lation: Traditional Techniques and Recent Ad-
vances. In Proc. of the Winter Simulation Con-
ference, pages 84–95, 2006.

[25] K. S. Perumalla. µsik – A Micro-Kernel for
Parallel and Distributed Simulation Systems.
In Proc. of the Workshop on Parallel and Dis-
tributed Simulation, pages 59–68, 2005.

[26] K. S. Perumalla. Scaling Time Warp-based
Discrete Event Execution to 104 Processors
on a Blue Gene Supercomputer. In Procs of
the ACM Conference on Computing Frontiers,
pages 69–76, 2007.

[27] K. S. Perumalla and R. M. Fujimoto. Virtual
Time Synchronization over Unreliable Network
Transport. In Proc. of the Workshop on Paral-
lel and Distributed Simulation, pages 129–136,
2001.

CUG 2009 Proceedings 14 of 14


	Introduction
	Resource Limitations in the Cray Message Passing Toolkit Implementation of MPI
	Application Case Studies
	Parallel k-means Cluster Analysis
	Subsurface Flow and Reactive Transport (PFLOTRAN)
	Community Atmosphere Model (CAM)
	XGC1
	Parallel Discrete Event Simulation (PDES)
	Modeling Paradigm and Parallel Execution Style
	Application Interface and the sik Engine
	Computation and Synchronization Granularities
	MPI-based Implementation
	PDES Benchmark: PHOLD
	Runtime Issues and Ad-hoc Workarounds


	Conclusions

