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A B S T R A C T   

Global warming is expected to cause changes in terrestrial water storage (TWS) across the land surface, with 
widespread impacts on ecosystems and society. Although extensive research has been performed to analyze TWS 
changes and possible drivers during the post-2000 period, longer-term evolution of TWS and associated envi
ronmental forcings remain relatively unexplored. In this study, we evaluated the performance of the Energy 
Exascale Earth System model (E3SM) land model ELM version 1 (ELM v1) in simulating global TWS, and used 
factorial simulations of ELMv1 to quantify global TWS changes and their drivers during 1948–2012. We found 
that ELM’s agreed best with existing satellites and reconstruction datasets in temperate regions unaffected by 
irrigation. Biome- and climate zone-averaged TWS mainly increased at rates between 0 and 10 mm/year over 
1948–2012, but the second half of that period saw smaller positive trends than the first half or even negative 
trends. Climate change explained >80 % of the TWS trends across most biomes and climate zones, followed by 
land use and land cover change. The physiological and phenological effects of CO2 primarily induced noticeable 
TWS trends in the more humid biomes and climate zones across different latitudes. In contrast, nitrogen depo
sition and aerosol deposition generally had smaller and negative impacts across the biomes and climate regions. 
Among the meteorological drivers analyzed, the long-term average imbalance between precipitation (P), 
evapotranspiration (E), and runoff (Q) contributed >50 % of the TWS trends in most biomes and climate zones, 
with nonlinearity being induced by spatially heterogenous changes in E/P and Q/P ratios. The accumulated 
detrended anomalies in P, E, and Q also often contributed substantially, while the trends difference between P, E, 
and Q contributed little. Together, these findings unveiled an intensification of the global TWS and its diverse 
patterns of climate change and different non-withdrawal human-induced alterations, contributing to a more 
comprehensive understanding and projection of the global water cycle.   

1. Introduction 

Terrestrial water storage (TWS) is the sum of individual water 
components (e.g., soil moisture, ground water, snow, canopy water 
storage) on the land surface and in the subsurface. By monitoring and 
analyzing changes in TWS over space and time, we can develop a deeper 

understanding of global and regional hydrological cycles, biogeochem
ical cycles, ecosystem services, and human sustainability (Haddeland 
et al., 2014; Jiménez Cisneros et al., 2014; Pokhrel et al., 2021; Scanlon 
et al., 2018; Strassberg et al., 2009; Syed et al., 2008; Yeh et al., 2006). 

Observations from the Gravity Recovery and Climate Experiment 
(GRACE) and GRACE Follow-On (GRACE-FO) satellite missions and land 
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and hydrological modeling results have been used to examine the 
changes and variability in TWS, especially during the post-2000 period 
(Asoka et al., 2017; Ju et al., 2023; Tapley et al., 2019). These studies 
show that TWS decreased in about 30 % of global basins, including 
endorheic basins, and basins in the northern high and midlatitudes (e.g., 
Lena, Yenisei and Ob basins and those in northern India), as well as in 
most low-latitude basins (e.g., Nile, Congo, Murray and Zambezi basins) 
(Ahmed et al., 2014; Scanlon et al., 2016; Wang et al., 2018; Zhang et al., 
2019a). Significant increasing trends in TWS were found over west (e.g., 
Gambia and Niger) and South Africa (e.g., Zambezi), South America (e. 
g., Essequibo), North America (e.g., Koksoak and Missouri), central 
India (e.g., Narmada and Godavari), the north Tibetan plateau (Li et al., 
2022), and middle Yangtze River basin (Long et al., 2017). Some studies 
have attributed changes in TWS to different factors. For example, snow 
storage was shown to impact TWS anomalies in the high-latitude basins 
and the Himalayas, while groundwater and soil moisture storage 
determined TWS variations in other regions, such as Indian and China 
(Felfelani et al., 2017; Lv et al., 2021; Rodell et al., 2018; Zhang et al., 
2019b). Zhang et al., (2019b) investigated the relative contributions of 
P, E, and Q to TWS changes across 168 river basins; they found hydro
logical fluxes (P, E, and Q) explained more than 60 % of global TWS 
changes. Moreover, the impacts of anthropogenic withdrawals on TWS 
were found to be large, primarily in regions with high irrigation de
mands (e.g. northern India, North China plain) and dam constructions 
(e.g. northern Brazil, the Three Gorges dam region in China) (Asoka 
et al., 2021; Lv et al., 2021; Rodell et al., 2018). 

The limitations of using GRACE/GRACE-FO data to investigate TWS 
changes include the relatively short time period of approximately 20 
years and the observational nature of the data, which means decadal to 
multidecadal variabilities may not be well-captured. Furthermore, the 
data doesn’t allow for the disentanglement of the contributions of 
different TWS components or the differing influences from various 
climate and anthropogenic drivers on TWS changes (An et al., 2021; 
Rodell et al., 2018). Therefore, global hydrological and land surface 
models are typically used to achieve those purposes. However, it is 
known that they underestimate decadal TWS trends compared to the 
GRACE observations due to missing components such as snow water and 
ground water storage, as well as inadequate representations of human 
processes such as land use and land cover change (LULCC), irrigation, 
and impoundment (Asoka and Mishra, 2020; Jing et al., 2019; Scanlon 
et al., 2018). For example, hydrological and land surface modeling was 
used to analyze the contributions of hydrological components to TWS 
changes by Chao et al. (2021) and Guo et al. (2022). They revealed that 
human-induced ground water changes accounted for approximately half 
of the total ground water storge of the Yangtze River basin and ground 
water storage changes also contributed more than 50 % of TWS changes 
in Inner Mongolia. 

Based on the above literature review, previous studies have mainly 
focused on the impacts of human withdrawals and trends in meteoro
logical drivers on TWS changes. However, there has been limited 
exploration of the specific roles played by non-withdrawal natural or 
human forcings (e.g., atmospheric CO2 concentration, LULCC, nitrogen 
deposition and aerosol deposition), which may be important for un
derstanding TWS changes in the less disturbed natural ecosystems. 
Those forcings have been shown to notably modulate the land hydro
logical cycle (Almendra-Martín et al., 2022; Forbes et al., 2019, 2018; 
Gentine et al., 2019; Mao et al., 2015; Naha et al., 2021; Piao et al., 
2007; Shi et al., 2013, 2011). Factorial experiments have been widely 
used to quantify the contributions of those forcings on the changes of 
hydrological cycle (Cui et al., 2021; Forbes et al., 2019, 2018; Mao et al., 
2015; Padrón et al., 2020; Shi et al., 2013, 2011; Yang et al., 2019; Zhu 
et al., 2021). 

As part of the Land Surface, Snow and Soil Moisture Model Inter
comparison project (LS3MIP [van den Hurk et al., 2016]), ELM v1 
conducted a unique set of 36 factorial simulations. These simulations 
effectively separated the effects of individual environmental forcings 

(including climate change, atmospheric CO2 concentration, LULCC, ni
trogen deposition and aerosol deposition) on land surface variables and 
sampled different model configurations and meteorological forcing 
datasets. In offline land model simulations, it’s worth noting that the 
climate change factor is based on observational meteorological datasets, 
encompassing the impacts of increasing atmospheric CO2 concentration 
and anthropogenic aerosol emissions on the climate. The atmospheric 
CO2 concentration factor here refers specifically to both physiological 
(e.g., stomatal opening and closure) and phenological (e.g., leaf area 
index) effects of CO2 (Zhu et al., 2021; Fatichi et al., 2016). The aerosol 
deposition factor refers specifically to the effect on snow albedo, which 
further affects the hydrological cycle. In this study, we took advantage of 
those factorial simulations to answer questions such as how global TWS 
evolved before the satellite period (1948–2012), how individual envi
ronmental forcings contributed to annual TWS trends, how the TWS 
trends related to the meteorological factors P, E, and Q, and the un
certainty therein. We note that ELM v1 does not simulate human water 
withdrawal processes. Therefore, the value of this paper mainly lies in 
illustrating how the environmental forcings affect TWS changes in nat
ural ecosystems, which are still important to understanding global TWS 
changes. 

To ascertain the quality of the ELM simulations, we evaluated the 
modeled TWS with respect to trend using GRACE satellites observations 
during the short overlapping period (2003–2012), and with respect to 
de-trended anomalies using two GRACE-based TWS reconstruction 
datasets, GRACE-REC (Humphrey and Gudmundsson, 2019) and Li et al. 
(2021) (hereafter called Li-REC). Although the reconstruction datasets 
cannot be used to evaluate TWS trends due to the setup of the meth
odologies (Humphrey and Gudmundsson, 2019; Li et al., 2021), they 
were useful supplements to the GRACE data. This is attributed to their 
long period of availability (GRACE-REC: 1902–2014, Li-REC: July 
1979–June 2020) and their utility in evaluation on interannual anom
alies. Such evaluations can still reveal any large errors in ELM hydro
logical processes that affect TWS. Past studies have used the GRACE-REC 
dataset in attributing changes in global dry-season water availability to 
human-induced climate change (Padrón et al., 2020), and the Li-REC 
dataset was also used in a few hydrological studies (Mo et al., 2022; 
Xiong et al., 2022a; Zou et al., 2022). The evaluation methods and re
sults are reported in Sections 2.1–2.2 and 3.1. Based on the evaluation 
results, we found ELM performance was mainly satisfactory in 
temperate biomes and climate zones not heavily affected by irrigation, 
but unsatisfactory in heavily irrigated, high-latitude, and tropical re
gions. Section 4.1 discusses the region-specific potential sources of error. 

We then used the factorial simulations to decompose historical 
regional trends in TWS into contributions from the individual environ
mental forcings and contributions from different hydrological compo
nents (climatology, trends, and variability in P, E, and Q). The methods 
and results of the decomposition are reported in Section 2.3, 3.2, and 
3.3. We found globally increasing trends in TWS during 1948–2012, but 
weakened increasing trends or decreasing trends in many temperate 
regions since the 70 s or 80 s. Both the increasing and decreasing trends 
were mainly driven by climate forcing, followed by LULCC (mainly 
conversion from natural vegetation to croplands) in the temperate re
gions and CO2 effects in the boreal forests. Among the hydrological 
components, the increasing or decreasing trends in TWS were always 
mainly driven by climatological imbalance between P, E, and Q and very 
little by the trends in P, E, and Q. This finding implies TWS trends should 
be better understood in terms of changes in the partitioning of precipi
tation instead of changes in the component fluxes (Section 4.2). 

2. Methodology 

2.1. Model configurations and simulations 

ELM v1 used here is based on the Community Land Model version 4.5 
(CLM 4.5), including terrestrial hydrological processes such as 

X. Shi et al.                                                                                                                                                                                                                                      



Journal of Hydrology 635 (2024) 131096

3

interception of precipitation by the vegetation canopy, throughfall, 
infiltration, surface and subsurface runoff, snow and soil moisture evo
lution, evaporation from soil and vegetation and transpiration (Oleson 
et al., 2013). Subsurface hydrology in ELM v1 consists of a 10-layer soil 
column spanning the uppermost 3.8 m of the land surface coupled to an 
additional “aquifer” layer representing the time-varying volume of soil 
between the deepest layer of the static soil column and the water table 
(Lawrence et al., 2011; Niu et al., 2007). The aquifer layer represents 
changes in saturated subsurface water storage, i.e., groundwater. 

The TWS in ELM v1 consists of the following components: canopy 
water, snow water equivalent, surface water storage, soil liquid water 
and ice contents, and groundwater. Each component is simulated 
separately and added up to give the TWS value. Those components 
capture main components of TWS in the real world, but miss glacier 
water storage and the direct impacts from human land–water manage
ment activities (e.g., water withdrawals, mining, and dam constructions 
(Chao et al., 2021; Guo et al., 2022), and minor biological storages such 
as in tree stems. Since ELM v1 does not include glacier storage in its TWS 
term, it cannot be expected to capture TWS changes in glaciated regions. 
Therefore, we used the land cover input to the ELM v1 simulations to 
exclude the maximum region with glacier cover from all the model 
evaluations and analysis in this paper, resulting in some blank regions in 
the global maps (e.g., Greenland, southern coast of Alaska, southern part 
of the Andes mountains, the Himalayas). The lack of human land–water 
management activities may introduce some degree of errors in TWS 
trend over regions where such activities are intensive (e.g., India and 
north China Plain) (Fig. S3). 

The 36 ELM offline simulations were driven by atmospheric and 
other environmental forcings. ELM was first spun up for preindustrial 
conditions in 1850, followed by historical transient simulations with 
time-varying atmospheric CO2 concentration, LULCC, nitrogen deposi
tion, aerosol deposition, and/or climate forcings (Table 1). Three 
climate forcings were used, including GSWP3 (Kim, 2017), CRUNCEP 
(Viovy, 2009), and PRINCETON (Sheffield et al., 2006). Details about 
the data sources for other forcings, such as CO2 concentration, LULCC, 
nitrogen deposition, and aerosol deposition, are described in Burrows 
et al. (2020). For each climate forcing setup, we used two model con
figurations, carbon–nitrogen-phosphorus (CNP) (Yang et al., 2019) and 
carbon–nitrogen only (CN). The CN configuration was executed with the 
same model code as CNP but assuming phosphorus saturation. At the 
time of the simulations, the GSWP3 forcing spans 1901–2014, the 
CRUNCEP forcing spans 1901–2016, and the PRINCETON forcing spans 
1901–2012. However, we found the simulations prior to 1920 have 
degraded quality compared to later years. We also considered the fact 
that meteorological observations that feed into the construction of those 
global forcings are relatively sparse during the first half of the 20th 
century, especially in the Middle East, Asia, Africa, and South America 

(Harris et al., 2020, 2014; Sheffield et al., 2006). Therefore, we decided 
to limit the time period of analysis to 1948–2012. 

All the simulations were conducted at global 0.5◦ spatial resolution. 
All the non-TWS outputs (we used P, E, and Q in this study) were saved 
as monthly averages and we further averaged them to annual level in 
subsequent analysis. ELM saves two different types of TWS outputs: the 
monthly averages, and the instantaneous values at the end of each 
month. The monthly averages are comparable to observational data and 
we averaged them to annual level for model evaluation. The instanta
neous TWS values satisfy the water balance equation by virtue of mass 
conservation in ELM: TWSt = TWSt− 1 + (Pt − Et − Qt), where t can be 
any time step, P, E, and Q are, respectively, the ELM-simulated total P, E, 
and Q between time step t-1 and t. We converted the end-of-month TWS 
values to end-of-year values by retaining only the December value of 
each year, whereupon the total P, E, Q in the water balance equation 
would be the annual average rates (mm/day) multiplied by number of 
days in a year. The water balance equation facilitates decomposition of 
the contributions to TWS changes by meteorological drivers. For the 
purpose of consistency, we therefore used the end-of-year values for 
decomposition analysis on both environmental forcings and meteoro
logical drivers. 

To attribute TWS changes to climate change and other environ
mental forcings, we used differences between two simulations that 
differed in only one forcing, which is a common approach in attributing 
the effects of environmental forcings on climate variables (Langen
brunner et al., 2019; Zhao et al., 2019). We interpreted S6–S1 as the 
total effect of all forcings, which is equal to the sum of the effects of 
changes in climate change (S2–S1), LULCC (S3–S2), atmospheric CO2 
concentration (S4–S3), nitrogen deposition (S5–S4) and aerosol depo
sition (S6–S5) (Table 1). A forcing contributed more to the total effect if 
the magnitude of its effect was greater relative to the total effect. We also 
note that the effects of the individual forcings, here evaluated by sub
tractions, include incremental interactive effects. For example, the CO2 
concentration’s effect, evaluated by S4–S3, includes both the effect of 
CO2 concentration alone and the interactive effects between CO2 con
centration and all the previously included forcings in S3 (transient 
climate and LULCC). 

2.2. Observational data 

We employed three widely used mass concentration (mascon) 
GRACE solutions to evaluate the trend in ELM-simulated annual TWS 
over the longest overlapping period (2003–2012) (Hasan and Tarhule, 
2021; Humphrey and Gudmundsson, 2019) (Table 2). Note the over
lapping period was before the launch of the GRACE-FO mission. The 
mascon GRACE solutions are more accurate than traditional spherical 
harmonic solutions because of reduced leakage errors and no need for 
empirical smoothing (Hasan and Tarhule, 2021). We bilinearly inter
polated the original GRACE data to 0.5◦ and averaged the monthly 
values to annual averages before the comparison with ELM v1. We 
calculated the linear least squares trend separately for each GRACE 
dataset and each ELM v1 S6 simulation, and then compared between the 
average, maximum, and minimum trends over all three GRACE datasets 
and the average, maximum, and minimum trends over the ELM v1 S6 
simulations driven by all the combinations of model configurations and 
meteorological forcings. 

In order to understand potential causes of disagreement between the 
ELM v1 trends and the GRACE trends, we also evaluated the ELM v1 
trends in selected major components of TWS: soil moisture, snow water 
equivalent, and the sum of soil moisture and groundwater. We used the 
MERRA and GLDAS Noah2.0 reanalysis to evaluate ELM-simulated soil 
moisture and snow water equivalent because they were well-accepted 
data sources for the two variables (Beck et al., 2021; Mortimer et al., 
2020) and because they provide column-integrated soil moisture beyond 
the root zone, which were comparable to the definition of soil moisture 
in ELM v1. We also found an existing groundwater dataset from G3P 

Table 1 
Global factorial (S1 to S6) offline simulations of ELMv1.0 with CN or CNP dy
namics driven by the GSWP3v2 (1850–2014), CRUNCEPv8 (1850–2016), and 
PRINCETON (1850–2012) meteorology forcings (36 simulations).  

Simulations Climate forcing and two configurations  

GSWP3 (CN and 
CNP) 

CRUNCEP (CN and 
CNP) 

PRINCETON (CN and 
CNP) 

S1 1901–1920 climate cycling and 1850 conditions 
S2 Transient climate only 
S3 Transient climate and LULCC 
S4 Transient climate, LULCC and CO2 

S5 Transient climate, LULCC, CO2 and nitrogen deposition 
S6 Transient climate, LULCC, CO2, nitrogen and aerosol depositions 
S2-S1 Climate only 
S3-S2 LULCC only 
S4-S3 CO2 only 
S5-S4 Nitrogen deposition only 
S6-S5 Aerosol deposition only  
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(https://www.g3p.eu/). This groundwater dataset was derived by sub
tracting the other components from the GRACE/GRACE-FO observa
tions, and the soil moisture component was separated from groundwater 
at 1 m depth, which is shallower than in ELM v1 (G3P, 2023). As a result, 
the definition of groundwater in this dataset is not comparable to that in 
ELM v1. Instead, the sum of soil moisture and groundwater has com
parable definitions between this dataset and ELM. Therefore, we 
compared the sum of groundwater and soil moisture between G3P and 
ELM. We converted all these variables into the same unit as TWS, i.e. 
mm, or kg water equivalent/m2, before calculating the trend, to make 
the results comparable to TWS trends. 

Since the overlapping period between GRACE and ELM is short, we 
supplemented the trend evaluation with evaluation of de-trended 
anomalies using GRACE and two longer reconstruction datasets, 
GRACE-REC (Humphrey and Gudmundsson, 2019) and Li-REC (Li et al., 
2021). We calculated the de-trended TWS anomalies by subtracting the 
fitted linear regression equation between year and the TWS values. The 
evaluation metrics were (1) Pearson correlation between ELM and the 
GRACE observations/reconstructions, and (2) the root mean squared 
error between ELM and the GRACE observations/reconstructions, sub
tracted by the standard deviation of the ELM detrended anomalies 
(“RMSE – ELM std”). When the metric is negative, it means the 
detrended ELM anomalies are more similar to the observations/re
constructions than to a vanilla prediction (zero), i.e., ELM has predictive 
power of the observed/reconstructed anomalies. We chose to subtract 
the standard deviation of ELM, instead of the standard deviation of the 
observations/reconstructions, because during preliminary analysis, we 
found the detrended interannual variabilities in the reconstruction 
datasets to almost always underestimate the GRACE observed detrended 
interannual variabilities, while the ELM did not. This might reflect the 
inherent inability of statistical regression to capture all the sources of 
variability in their predictands (Humphrey and Gudmundsson, 2019; Li 
et al., 2021), but its investigation is beyond the scope of this study. Both 
reconstruction datasets were based on calibrated relationships between 
climate variables and the GRACE/GRACE-FO-based TWS observations. 
Such relationships were unsuitable for estimating long-term trends in 
TWS, but performed better than hydrological and land surface models in 
capturing the interannual TWS anomalies (Humphrey and Gudmunds
son, 2019; Li et al., 2021). The reconstruction method for GRACE-REC 
was an exponential filter-like statistical model that predicts TWS 
anomalies from precipitation and near surface temperature (Humphrey 
and Gudmundsson, 2019). To consider the uncertainty in input fields, 
the reconstruction method was applied on combinations of two sources 
of GRACE/GRACE-FO satellites data (JPL mascons RL06 with CRI and 

GSFC mascons v2.4 ICE6G) and three sources of meteorological data 
(MSWEP, ERA5, and GSWP3). The resulting six GRACE-REC datasets are 
JPL-MSWEP, JPL-ERA5, JPL-GSWP3, GSFC-MSWEP, GSFC-ERA5, and 
GSFC-GSWP3. Due to different lengths of the meteorological data, JPL- 
MSWEP and GSFC-MSWEP span 1979–2016, JPL-ERA5 and GSFC-ERA5 
span 1979–2019, and JPL-GSWP3 and GSFC-GSWP3 span 1901–2014. 
We therefore calculated the evaluation metrics separately between each 
ELM S6 simulation and each GRACE-REC dataset, using the longest 
reliable overlapping period (i.e., 1979–2012 or 1948–2012). We then 
averaged the evaluation metrics individually for each meteorological 
input of GRACE-REC (MSWEP, ERA5, or GSWP3), over all combinations 
of the six ELM S6 simulations and two GRACE inputs of GRACE-REC 
(JPL, GSFC). The reconstruction method for Li-REC involved decom
posing the TWS fields into spatial modes and time series, and then 
predicting the time series using traditional statistical or neural network 
models and the best predictor set selected from hundreds to thousands of 
potential predictors (Li et al., 2021, 2020). The resulting single dataset 
span June 1979–June 2020. We therefore calculated the evaluation 
metrics between the dataset and each ELM S6 simulation over the 
longest feasible overlapping period (1980–2012), and averaged the re
sults over all six combinations of ELM configuration and meteorological 
forcings. 

In order to understand the spatial variations in ELM performance, we 
calculated all the evaluation metrics at the levels of individual 0.5◦

grids, biome average TWS, and climate-zone average TWS. The grid- 
level comparison between ELM simulations and GRACE observations 
may be impacted by the coarse native spatial resolutions of the GRACE 
satellites (~200,000 km2, implying nearly one hundred 0.5◦ grids near 
the tropics and much more in the polar regions) (Long et al., 2015). 
Therefore, performance evaluation at more aggregated levels may pro
vide a fairer view of ELM performance. The biome classification was 
based on the MODIS MCD12C1 product, and the spatial extent of the 
biomes used in this study is shown in Fig. S1 (Friedl and Sulla-Menashe, 
2015). The climate zone classification was based on a recent high res
olution Köppen-Geiger climate classification product (Beck et al., 2018) 
and the spatial extent of the climate zones is shown in Fig. S2. We 
excluded a few climate zones smaller than or close to the GRACE foot
print from comparison because those would face high uncertainty (Cfc – 
9.81 * 104 km, Dsa – 2.17 * 105 km2, Dsb–5.43 * 105 km2, Dsd – 5.21 * 
104 km2, Dwd – 2.26 * 105 km2, Dfd – 6.18 * 105 km2) (Long et al., 
2015). 

Table 2 
List of non-ELM datasets used in this study.  

Variable Time period Source resolution Data source Reference 

GRACE TWS observations April 2022–June 2023 0.25o CSR RL06 v2 Himanshu, 2020; Save et al., 2016 
April 2022–present 0.5o JPL RL06.1 v3 CRI Watkins et al., 2015; Wiese et al., 2023 
April 2022–May 2023 0.5o GSFC RL06 v2 Loomis et al., 2019  

GRACE-REC TWS reconstructions 1979–2016 0.5o JPL-MSWEP, GSFC-MSWEP Humphrey and Gudmundsson, 2019 
1979–2019 0.5o JPL-ERA5, GSFC-ERA5 
1901–2014 0.5o JPL-GSWP3, GSFC-GSWP3  

Li-REC TWS reconstructions June 1979–June 2020 0.5o – Li et al., 2021  

Column total soil moisture 1980–present 0.5◦ × 0.625◦ MERRA2 Gelaro et al., 2017 
1948–2014 0.25o GLDAS Noah 2.0 Beaudoing et al., 2019  

Snow water equivalent 1980–present 0.5◦ × 0.625◦ MERRA2 Gelaro et al., 2017 
1948–2014 0.25o GLDAS Noah 2.0 Beaudoing et al., 2019  

Sum of soil moisture and groundwater April 2022–May 2023 0.5o G3P G3P, 2023  

X. Shi et al.                                                                                                                                                                                                                                      

https://www.g3p.eu/


Journal of Hydrology 635 (2024) 131096

5

2.3. Decomposition of the contributions to TWS trends 

As noted in Section 2.1, we used annual average TWS in assessing the 
performance of ELM v1, but used end-of-year TWS values to decompose 
the contributions from environmental forcings or meteorological drivers 
because of the water balance equation and for consistency. To account 
for uncertainty in ELM v1 configurations and meteorological forcings, 
we performed the decomposition separately over different ways of 
averaging the ELM v1 simulations: average over all the meteorological 
forcings for the CN/CNP configuration only (CN-met/CNP-met), average 
over all the configurations for the CRUNCEP/PRINCETON/GSWP3 
meteorological forcings only (elm-CRUNCEP/elm-PRINCETON/elm- 
GSWP3), and average over all the ensemble members (Avg). 

We performed the decomposition at both biome and climate zone 
levels. The time period 1948–2012 is long and visual inspection of the 
evolution of TWS during this period suggested that nonlinear trends 
existed in at least some biomes and climate zones (Fig. S10). We 
accounted for this fact by searching for breakpoints in linear trends 
using the dynamic programming method implemented in the “ruptures” 
package in python (Truong et al., 2020). The resulting breakpoints were 
generally floating point numbers that fell between two integer years. We 
then fitted separate least squares linear regression before and after the 
breakpoint, and compared whether such two-piece linear regression 
results better described the data than simple linear regression using the 
Bayesian Information Criterion (BIC), a metric for model selection that 
balances model complexity and performance (Hastie et al., 2009). 
Table S1 displays the comparison results for the biome- and climate 
zone-average trends under all forcing (S6–S1) and shows that piecewise 
linear regression was indeed sometimes superior. Therefore, for those 
biomes and climate zones, we performed the decomposition by forcing 
and by meteorological drivers separately for before and after the 
breakpoints. We identified the breakpoints separately for different ways 
of averaging the ELM simulations (CNP-met, CN-met, elm-CRUNCEP, 
elm-PRINCETON, elm-GSWP3, Avg). 

As noted in Section 2.1, we decomposed the effects of all environ
mental forcings on TWS (S6–S1) as the sum of the effects of individual 
forcings (S2–S1, S3–S2, S4–S3, S5–S4, S6–S5). The formula of the slope 
of least squares linear regression is a linear transformation of the 
dependent variable using a matrix that is purely based on the indepen
dent variable (DeGroot and Schervish, 2018). Since the independent 
variable was the same (the years 1948–breakpoint or breakpoint–2012) 
in calculating the trends of any ELM v1 simulations, the trends of the 
individual forcing ELM v1 simulations were additive. In other words, the 
TWS trends due to the effects of all forcings (i.e., TWS trends calculated 
on the TWS series obtained by S6–S1) are also equal to the sum of the 
TWS trends due to the individual forcings (S2–S1, S3–S2, S4–S3, S5–S4, 
S6–S5). We therefore interpreted the TWS trends of the individual 
forcing simulations as the contributions of individual forcings to the 
total TWS trends. 

To decompose the TWS trends due to the effects of all forcings 
(S6–S1) into contributions by meteorological variables, we used the 
water balance equation TWSt = TWSt− 1 +(Pt − Et − Qt) and wrote both 
the TWS and each meteorological driver as the sum of its mean value 
over the time period of interest (t = 1,2,⋯,T, T being the length of the 
time period), a linear trend, and remainder anomalies. Here, we also 
denote Dt = Pt − Et − Qt for brevity. Thus 

Dt = D+ βDt′ + εt = (P − E − Q)+
(
βP − βE − βQ

)
t′ +

(
εP,t − εE,t − εQ,t

)

(1)  

where the overbar denotes mean value over the time period, and the 
conversion t′ = t − T+1

2 ensures that P + βPt′ + εP,t , E + βETt′ + εET,t , and 
Q+βQt′+εQ,t were simply re-written forms of least squares linear 
regression between Pt , Et, Qt , respectively, and t. Substituting Eq. (1) 
into the balance equation and taking the cumulative sum yields: 

TWSt = TWS0 + tD+ βD
(t − T)t

2
+
∑t

i=1
εi (2) 

Since the formula of linear regression gives the trend in TWS as 

â =

∑T
t=1(TWSt − TWS)

(

t − T+1
2

)

∑T
t=1

(

t − T+1
2

)2 (3) 

One can substitute (2) into (3), and after some simplifications obtain 

â = D+
βD

2
+

∑T
t=1

( ∑t
i=1εi

)
(

t − T+1
2

)

∑T
t=1

(

t − T+1
2

)2 = (P − E − Q)

+
βP − βE − βQ

2
+

⎡

⎢
⎢
⎢
⎣

∑T
t=1

( ∑t
i=1εP,i

)
(

t − T+1
2

)

∑T
t=1

(

t − T+1
2

)2

−

∑T
t=1

( ∑t
i=1εE,i

)
(

t − T+1
2

)

∑T
t=1

(

t − T+1
2

)2 −

∑T
t=1

( ∑t
i=1εQ,i

)
(

t − T+1
2

)

∑T
t=1

(

t − T+1
2

)2

⎤

⎥
⎥
⎥
⎦

(4) 

Based on Eq. (4), the trend in TWS was influenced by the climato
logical imbalance between P, E, and Q (P − E − Q), the trends in P, E, and 
Q (βP − βE − βQ

2 ), and accumulated random anomalies. Note the “random” 
here only means not accounted by the climatology or trend, and may still 
be accounted by non-random physical factors like teleconnections (Guo 
et al., 2021). 

3. Results 

3.1. Evaluation of ELM performance on TWS 

3.1.1. Grid-level evaluation 
The broad patterns of ELM-simulated and GRACE observed trends in 

annual average TWS over 2003–2012 were similar (Fig. 1). Both had 
positive trends in the center of North America, central and northern 
Europe, western and southern India, the northern half of South America, 
the Sahel region, southern Africa, and northeastern Australia (Fig. 1ad). 
Both had negative trends in eastern Europe, Mongolia, southeastern U. 
S., the Sahara, the Middle East, the eastern coast of Africa, western 
Australia, and southern South America (Fig. 1ad). The ranges of un
certainty across the ELM v1 simulations and GRACE observations were 
large, which may be partially due to the short length of feasible com
parison between ELM v1 and GRACE data (10 years), but the broad 
spatial patterns of relative positivity and negativity of the trends held 
(Fig. 1bcefhi). The main regions of discrepancy between ELM v1 and 
GRACE were the northern high latitudes (Alaska, western Canada, and 
much of Siberia), central Asia and southwestern Russia, Syria-Iraq-Iran, 
northern India, the North China Plain, and the center of Africa, where 
ELM v1 underestimated the magnitude of negative trends beyond 10 
mm/year (Fig. 1ad). When averaged latitudinally, ELM v1 reproduced 
the observed trends fairly well, with some overestimation towards the 
high norther latitudes and the southernmost tip of South America. 

To supplement the evaluation of ELM v1 performances on short-term 
trends, we evaluated ELM on its ability to simulate detrended interan
nual anomalies in TWS using GRACE and various GRACE/GRACE-FO 
based reconstruction data (Section 2.2). The Pearson correlations of 
ELM were the highest against the GSWP3 forced GRACE-REC, inter
mediate against GRACE observations and the MSWEP and ERA5 forced 
GRACE-REC, and worst against Li-REC (Fig. S4a–e). In all the datasets, 
the lower Pearson correlations occurred over northern Canada, the 
grassland regions of South America, and northern to central Africa. In 
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addition to Pearson correlations, we evaluated ELM v1 using root mean 
squared error minus the standard deviation of the ELM detrended 
anomalies (“RMSE – ELM std”, second column of Fig. S4). When the 
metric is negative, it means the detrended ELM anomalies is more 
similar to the observation than to its average, and we interpret such as 
satisfactory ELM v1 performance. ELM v1 performance is more satis
factory compared to GRACE-REC than GRACE observations, and least 
satisfactory compared to Li-REC (Fig. S4d–h). The worst performance 
was seen in the South American tropical forests, central Africa, and parts 
of northern high latitudes. In the arid regions of northern Africa and 
central Asia, the metric was around zero. In most of the mid-latitude 
regions and the high-latitude regions of Eurasia, the metric was gener
ally negative. 

3.1.2. Biome and climate zone level evaluation of TWS 
In addition to the grid-level evaluation, we performed the evaluation 

at biomes (Fig. S1) and Köppen-Geiger climate zones (Fig. S2) levels in 
order to better match the spatial scales of the ELM v1 simulations and 
GRACE observations (Section 2.2). 

Upon examining biome-average TWS (Fig. 2a), both ELM v1 simu
lations and GRACE observations showed significant positive trends in 
the South American tropical forests (except for elm-CRUNCEP) and 
Tropical savannahs & grasslands, insignificant positive trends in Asian 
tropical forests (except for elm-GSPW3), and significant negative trends 

in Temperate grasslands & shrublands. In Wetlands, ELM simulations 
exhibited significant positive trends, and the GRACE trend was insig
nificant but had comparable magnitude. ELM simulations had insignif
icant negative trends in Temperate forests, while GRACE has significant 
negative trends that were stronger. ELM simulations demonstrated 
insignificant positive trends but were in contrast to GRACE’s insignifi
cant negative trends in African tropical forests and Boreal forests. ELM 
simulations displayed partially insignificant or significant trends in 
Croplands, Deserts and Tundra, whereas GRACE indicated significant 
negative trends in these biome regions (Fig. 2a). For the climate zone- 
average TWS, the signs and significances of the trends of the ELM sim
ulations and GRACE observations were fairly consistent in all the trop
ical climate zones, three of the arid climate zones (BWk, BSh and BSk), 
three out of six temperate climate zones (Csb, Cfa, Cfb), and two out of 
eight cold climate zones (Dwa, Dwb) (Fig. 2b). It’s noteworthy that ELM 
v1 simulations tended to exhibit more positive trends in colder climate 
zones, while GRACE observations revealed more negative trends 
(Fig. 2b). Overall, the aggregation of data at biome and climate zone 
levels helped mitigate model errors in the tropical and temperate re
gions. However, model errors were still large in the crop-dominated and 
boreal regions, supporting the missing human water withdrawals and 
missing glaciers/simple snow processes explanations (Section 4.1). 

The Pearson correlations between the detrended biome-average and 
climate zone-average TWS anomalies of ELM simulations and GRACE 

Fig. 1. Spatial distribution of linear trends in annual average TWS during 2003–2012 (mm/year). (a–c) Gridded distribution of ELM-simulated linear trends under 
the S6 forcing. (d–f) Gridded distribution of GRACE observed linear trends. (g–i) Latitudinal average trends of the ELM simulations and GRACE observations. In (a–f), 
inset plots show the probability density distribution of the displayed gridded values over the globe, with vertical red line indicating the median. In (a, d), the trends 
were calculated on the simple arithmetic average (“mean”) of the ELM (CN-GSWP3, CN-CRUNCEP, CN-PRINCETON, CNP-GSWP3, CNP-CRUNCEP, CNP- 
PRINCETON) or GRACE ensemble members (CSR RL06 v2, JPL RL06.1 v3 CRI, GSFC RL06 v2), and stippling means where the trends were significant at p ≤
0.05. In (b, c, e, f), the trends were calculated on the individual ELM or GRACE members, and the minimum (“min”) or maximum (“max”) displayed, alone with 
whether the minimum or maximum values were statistically significant at p ≤ 0.05. 
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observations and reconstructions were mostly statistically significant 
and >0.6 (Figs. S5 and S7). The low correlations in the Deserts biome 
probably reflect the low correlations in the Sahara region (Fig. S4). The 
correlations between ELM and Li-REC were systematically lower than 
the other evaluation datasets, notable examples of which include the 
Temperate forests and Temperate grasslands & grasslands biomes 
(Fig. S5) and the BSk (Arid, steppe, cold) climate zone (Fig. S7). Glob
ally, the Pearson correlations between ELM and Li-REC were ≥0.4 
(≥0.6) in only ~40 % (<20 %) of the grids, compared to ≥68 % (>40 %) 
for the other evaluation datasets (Fig. S4a–e). The problem may be 
caused by low interannual variability in the Li-REC dataset, which is 
lower by about 2–5 mm than GRACE, ELM, or GRACE-REC across all 
biomes and climate zones (Fig. S9). The root mean squared errors be
tween the ELM-simulated detrended TWS anomalies and the various 
observed or reconstruction datasets including GRACE, Li-REC and 
GRACE-REC were smaller than the interannual variability of ELM over 
most of the biome regions and climate zones, while were greater in 
South American tropical forests and Deserts (except for Li-REC) and arid 
climate zone BWk (Figs. S6 and S8). 

3.2. Regional relative contributions to TWS trends by different forcings 

Given the results of trend- and Pearson correlation-evaluation of 

ELM at biomes and climate zone levels, we deemed the performance of 
ELM satisfactory if the trends agree in sign, the Pearson correlations 
were always higher than 0.3, and the root mean squared error was al
ways approximately equal to or smaller than ELM’s standard deviation. 
We chose a low value for the Pearson correlation criterion mainly to 
accommodate the evaluation results of Li-REC (see last paragraph 
above). Based on this criterion, ELM performance was satisfactory in 
four of the biomes (Temperate forests, Temperate grasslands & shrub
lands, Tropical savannahs & grasslands, and Wetlands) and seven 
climate zones (Aw, BSh, Csa, Csb, Cfa, Dwa, Dwb). We still performed 
the decomposition analysis for all the biomes and climate zones to reveal 
the global pattern but used shading to denote where ELM performed less 
well, i.e., the results were less reliable. ELM may be satisfactory for the 
purpose of the study in slightly more regions than the evaluation results 
suggest, since some of the discrepancies on trend would be caused by 
human land–water management practices, which this study is not 
investigating. Good ability to reproduce the detrended anomalies per se 
lends confidence to ELM’s precipitation-evapotranspiration-runoff pro
cesses, which are the same for the detrended anomalies and the climate- 
driven long-term trends, i.e., the S2–S1 component (Table 1). We also 
note the TWS in this section means end-of-year TWS from the ELM 
simulations, for reasons given in the Methods Section 2.1. 

During 1948–2012, the total effects of all the forcings was an 

Fig. 2. Comparison of ELM-simulated and GRACE observed trends in biome- and climate zone-level annual average TWS over 2003–2012. The ELM simulations were 
under the S6 forcing. The trends were calculated on the simple arithmetically averaged TWS time series over different subsets of ELM ensemble members (CNP-met, 
CN-met, elm-CRUNCEP, elm-PRINCETON, elm-GSWP3, Avg; see Section 2.3 for their definitions) or over all three GRACE members (CSR RL06 v2, JPL RL06.1 v3 
CRI, GSFC RL06 v2). Solid bars for ELM and purple circles for GRACE indicate statistically significant trends at p ≤ 0.05. Error bars show the minimum and maximum 
range over the ELM or GRACE ensemble members. Spatial patterns of the biomes and climate zones are in Figs. S1 and S2. 
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increase in TWS in all the biomes and climate zones except the African 
tropical forests (Fig. 3, Fig. S11). In the Temperate forests, the total 
forcings induced increase in TWS from 1948 to the 1980s, and then 
induced decrease (Fig. 3), but the overall effect was still to increase 
(Fig. S10e). Nonlinear trends existed in many biomes (Fig. 3dfghij) and 
climate zones (Fig. S11defghjopt), with the breakpoints generally 
occurring between 1960 and 1990, and the trends being more positive 

before the breakpoints than afterwards. Fig. S12 further illustrates those 
nonlinear trends via global maps of TWS trends calculated over multiple 
periods that were selected based on the breakpoints in Fig. 3 and 
Fig. S11. Hotspots of nonlinear trends can be seen over (1) the western- 
southeastern U.S. and the croplands of South America, where the trends 
turned from slightly positive during 1948–2012 to strongly negative in 
1993–2012, (2) eastern Australia and the croplands-grasslands in east 

Fig. 3. Trends (unit: mm/year) in biome-average TWS contributed by various forcings. Vertical dashed lines in each subplot divide up different ways of averaging the 
ELM simulations (CNP-met, CN-met, elm-CRUNCEP, elm-PRINCETON, elm-GSWP3, Avg). If a breakpoint was detected in the trends of a biome according to one way 
of averaging, the year of the breakpoint is indicated by two digits “XX” (meaning the year 19XX) above the bars, and trends are displayed for both 1948–breakpoint 
(the left two bars) and breakpoint–2012 (the right two bars). If breakpoint was not detected, the displayed trends are for 1948–2012. Note the y-scales are different 
between the subplots. Filled bars indicate that the trends were statistically significant (p ≤ 0.05), and hollow bars indicate that the trends were insignificant. 
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Asia, where the trends became more negative over time, (3) the sa
vannahs of Africa and the boreal forests in Siberia, where the trends 
turned from slightly negative during 1948–2012 to strongly positive in 
1993–2012. Those hotspots no doubt drove the biome and climate-zone 
level changes seen in Fig. 3 and Fig. S11. 

Among the individual environmental forcings, climate change 
(S2–S1) had the largest effects on the TWS trends in all the biomes and 
climate zones except perhaps the Asian tropical forests and a few smaller 
climate zones (Csb, Cwb, Dsc, and Dwc) (Fig. 3, Fig. S11; see Fig. S2 for 
the full name and locations of the climate zones). The climate change 
effects generally had the same signs as the total effects of all the forcings. 
LULCC (S3–S2) was the second most influential factor for TWS trends in 
eight out of eleven biomes (excluding South American tropical forest, 
Boreal forests, and Tundra) and sixteen out of twenty-one climate zones 
(excluding Dsc, Dwc, Dfa, Dfc and Polar Tundra [ET]), and the induced 
trends were generally positive. Those positive contributions coincided 
with a general trend of croplands replacing trees across over 1948–2012 
(Fig. S13). In the three exception biomes, the land cover changes were 
either a replacement of trees by grass or negligible (Fig. S13a). In the 
five exception climate zones, the land cover changes were negligible, a 
replacement of croplands by trees, grasses, or shrub, or a replacement of 
mainly grasses by crops (Fig. S13b). The physiological and phenological 
effect of CO2 (S4–S3) tended to induce non-negligible trends in TWS in 
the more humid biomes and climate zones at all latitudes. Those trends 
were positive in the Asian tropical forests, Temperate forests, Boreal 
forests, Wetlands biomes (Fig. 3), and the Aw, Cwb, Cfb, Dsc, Dwc, Dfb, 
and Dfc climate zones (Fig. S11), and were negative in the African 
tropical forests biome (Fig. 3), and the Am and BSk climate zones 
(Fig. S11). Moreover, atmospheric CO2 concentration was the second 
most influential factor for TWS trends over these regions. Nitrogen 
deposition (S5–S4) and aerosol deposition (S6–S5) generally had small 
and negative impacts across the biomes and climate zones and their 
relative contributions were regional dependent as well. However, ni
trogen deposition still had non-negligible impacts in four out of eleven 
biomes: African tropical forests, Asian tropical forests, Temperate 
grasslands & shrublands (Fig. 3) and four out of twenty-one climate 
regions (Aw, BSk, Cwb and Dwc, Fig. S11). Aerosol deposition has the 
smallest negative impacts across the biomes and climate zones. The 
aerosol deposition factor effects on simulated TWS driven by meteoro
logical and other environmental are mainly due to its influences on the 
snow albedos, which we can see it has more impacts on the cold climate 
zones than other regions (Fig. S11, BSk, BWk and Polar Tundra [ET]). 

We examined the uncertainty in model configurations and meteo
rological forcings by performing the decomposition separately on the 
average ELM simulations over all the meteorological forcings for each 
configuration (CNP-met, CN-met), the average ELM simulations over the 
two configurations for each meteorological forcing (elm-CRUNCEP, elm- 
PRINCETON, elm-GSWP3), and the overall average ELM simulations 
(Avg). The two model configurations generated trends with the same 
signs and similar magnitudes except in the tundra region (the Tundra 
biome and the Polar Tundra [ET] climate zone) (Fig. 3, Fig. S11), where 
plant growth is slightly more limited by phosphorus than nitrogen (Yang 
et al., 2023). The uncertainty in meteorological forcings were larger. 
The CRUNCEP and PRINCETON forcings resulted in insignificant trends 
in Asian tropical forests and South American tropical forests, respec
tively (Fig. 3bc), and the GSWP3 forcing resulted in insignificant or 
negative trends in the Tropical savannahs & grasslands, Temperate 
grasslands & shrublands, and Deserts biomes (Fig. 3fgi), as opposed to 
positive trends by other forcings. Similarly, large differences across the 
meteorological forcings were seen in one tropical forest (Am), two arid 
desert (BWh, Bwk), two small temperate (Cwa, Cwb), and one cold and 
dry (Dsc) climate zones (Fig. S11). These results indicate meteorological 
forcing uncertainties were greater in the tropical and dry climates. 

3.3. Regional relative contributions to TWS trends by different 
meteorological drivers 

We used the end-of-year TWS to decompose the trends into contri
butions from climatological imbalance between P, E, Q during the study 
period, the linear trends in P, E, and Q, and accumulated random 
anomalies following Eq. (4) in Methods Section 2.3. In displaying the 
decomposition results, we focused on the climatological imbalance term 
P − E − Q, the trend imbalance term βP − βE − βQ

2 , and the accumulated 

random anomalies term, 
∑T

t=1

( ∑t
i=1

εi

)
(t− T+1

2 )∑T
t=1(t− T+1

2 )
2 , rather than the individual P- 

, E-, and Q-related terms in Eq. (4) for a few reasons. The P-related terms 
generally contributed to TWS trends in the opposite direction to the E- 
and Q-related individual terms, and an imbalance term between the 
three were generally a few magnitudes smaller than the individual 
terms. As such, it is impossible to tell whether the effect of P or the ef
fects of E or Q were dominant from a plot showing only the individual 
terms. On the other hand, displaying only the imbalance term did not 
result in much loss of information. In the term P − E − Q, it is clear that P 
could only contribute positively, and E and Q negatively, so that a 
positive imbalance means P was the dominant factor, and a negative 
imbalance E and Q. In the term βP − βE − βQ

2 , we found βP, βE, and βQ to be 
generally statistically insignificant across the biomes and climate zones 
(not shown), and the trend imbalance itself generally unimportant 
compared to the climatological imbalance or accumulated random 

anomalies (Fig. 4, Fig. S14). For the term 
∑T

t=1

( ∑t
i=1

εi

)
(t− T+1

2 )∑T
t=1(t− T+1

2 )
2 , we simply 

interpret it as resulting from factors not accounted by climatology or 
linear trends, which may include not only random noise but also 
teleconnection-induced low frequency variabilities. The mechanisms 
behind the individual contributions from P, E, and Q to the accumulated 
random anomalies term cannot be distinguished without further anal
ysis beyond the scope of this study. 

The contributions from the climatological imbalance term were 
positive in most biomes, meaning the water inputs via P were greater 
than water losses via E and Q During the entire time period of 
1948–2012. The contributions were small or uncertain in the South 
American tropical forests, meaning P, ET, and Q approximately balance 
out each other. The contributions were negative in the Temperate forests 
and Temperate grasslands & shrublands biomes during the post- 
breakpoint periods, and negative in the Wetlands biome, meaning 
water losses via E and Q were greater (Fig. 4). The signs of the contri
butions from the climatological imbalance term were consistent with the 
signs of TWS trends over the same biome and time period except in the 
African tropical forests, South American tropical forests, and Wetlands 
(Fig. 4).. It is notable that the nonlinearity in TWS trends were matched 
by changing signs or magnitudes of the P − E − Q term (Fig. 4d–j). To 
further understand the changes in P − E − Q, we compared the ratios (E +

Q)/P, E/P, and Q/P between the post-breakpoint periods (1965–2012, 
1974–2012, 1983–2012, 1993–2012) and the whole-period average 
(1948–2012) (Fig. S15). Among the hotspots of nonlinear changes (see 
the description in section 3.2 and Fig. S12), the western-southeastern U. 
S., croplands of South America, eastern Australia, and croplands- 
grasslands in east Asia all saw increasing (E + Q)/P, and the savan
nahs of Africa and the boreal forests of Siberia saw decreasing (E +

Q)/P. The two components E/P and Q/P evolved in opposite directions 
globally (Fig. S15). As such, the increasing (E+Q)/P in the western U.S., 
eastern Australia, and the croplands-grasslands in east Asia were driven 
by increasing E/P. The increasing (E+Q)/P in the southeastern U.S. and 
the croplands of South America were driven by increasing Q/P. The 
decreasing (E+Q)/P in the savannahs of Africa were driven by 
decreasing Q/P, and in the boreal forests of Siberia by decreasing E/P. 

The accumulated random anomalies term had opposite contributions 
to that of the climatological imbalance, i.e., negative contributions to 
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TWS trends, in most of the forest biomes, Temperate grasslands & 
shrublands, Tundra, and the Deserts with some uncertainty (Fig. 4). 
Among those biomes, only African tropical forests saw negative TWS 
trends. Therefore, the climatological imbalance was the dominant driver 
of TWS trends in most biomes except African tropical forests. In the 
South American tropical forests and Wetlands, the accumulated random 

anomalies term was the dominant driver of TWS trends. In the Tropical 
savannahs & grasslands and Croplands biomes, contributions from the 
accumulated random anomalies were in the same direction as the 
climatological imbalance and positive, and both terms contributed 
similar magnitudes. 

For the climate zone-average TWS trends, the accumulated random 

Fig. 4. Decomposition of biome-average TWS trends driven by all forcings (“S6–S1 TWS trend”) into contributions by the climatological imbalance between P, E, and 
Q (P − E − Q), the trends in P, E, and Q (βP − βE − βQ), and accumulated random anomalies (PA − EA − QA). Vertical dashed lines in each subplot divide up different 
ways of averaging the ELM simulations (CNP-met, CN-met, elm-CRUNCEP, elm-PRINCETON, elm-GSWP3, Avg). If a breakpoint was detected in the TWS trends of a 
biome according to one way of averaging, the year of the breakpoint is indicated by two digits “XX” (meaning the year 19XX) above the bars, and trends are displayed 
for both 1948–breakpoint (the left two bars) and breakpoint–2012 (the right two bars). If breakpoint was not detected, the displayed trends are for 1948–2012. Note 
the y-scales are different between the subplots. 
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anomalies term was the dominant driver of positive TWS trends in the 
three tropical climate zones (Af, Am, Aw) (Fig. S14, Fig. S3). In the non- 
tropical climate zones, the climatological imbalance almost always 
contributed positively to TWS trends, and among those climate zones, 
the accumulated random anomalies term mostly contributed in the 
opposite direction (BWh, Bwk, Csb, Cwb, Cfa, Cfb, Dsc, Dwc, Dfc, and 
Polar Tundra [ET]) (Fig. S14). In the cold arid steppe (BSk) and a cold 
humid climate zone (Dfb), the accumulated random anomalies term had 
synergistic but smaller contribution than the climatological imbalance 
(Fig. S14gs). In the remaining climate zones (BSh, Csa, Cwa, Dwa, Dwb, 
Dfa), the accumulated random anomalies had synergistic and similar or 
greater magnitudes of contributions to the climatological imbalance 
(Fig. S14). Overall, the dominant and primarily positive contributions 
from P − E − Q and the changing contributions before and after break
points at the climate zone level were consistent with the biome-level 
results. 

The large contributions from the accumulated random anomalies in 
both biome and climate zone level results may be partially due to 
chance, since unit root processes can exhibit unpredictable large trends 
(Dickey and Fuller, 1979), and partially due to persistent imbalances 
between P, E, and Q at the decadal to multidecadal scale caused by 
teleconnections. 

4. Discussion 

4.1. ELM performance on TWS trends and variabilities 

The agreement between ELM simulated and GRACE observed trends 
in TWS were low in the northern high latitudes, a few arid or heavily 
irrigated mid-latitude regions, and a small region in central Africa 
(Fig. 1). To better understand the causes of these differences, we 
compared the trends in a few major components of TWS (soil moisture, 
snow water equivalent, the sum of soil moisture and groundwater) be
tween ELM and reanalysis sources (Section 2.2). In the northern high 
latitudes (Alaska, western Canada, and eastern Siberia), both positive 
and negative trends existed in the reanalysis soil moisture and snow 
water equivalent, and there was no definite evidence that ELM was 
biased (Fig. S16 and 17). However, ELM predicted snow water equiva
lent had very small contributions to TWS trends (Fig. S17), which may 
be caused there is no active ice-sheet, and its snowpack depth was 
limited to one meter snow-water-equivalent in ELM v1. Schneider et al. 
(2022) reported that ELM v1 was exaggerated by too quick runoff of 
surface melt due to the absence of pore-space for meltwater storage in 
the shallow snowpack, and by unrealistic snow-darkening. In central 
Asia and southeastern Russia, the reanalysis soil moisture trends were 
more strongly negative than ELM trends (Fig. S16). Therefore, inaccu
rate soil moisture simulations may have contributed to ELM biases in 
TWS in these regions (Fig. 1). In Syria-Iraq-Iran, northern India, the 
North China Plain, and the center of Africa, ELM simulated trends were 
only clearly different from the reanalysis in the sum of soil moisture and 
groundwater (Fig. S18), and not in soil moisture (Fig. S16). In the first 
three regions, ELM biases (Fig. 1) were likely caused by a lack of rep
resentation of dams and reservoirs operations and human withdrawal of 
groundwater, especially for irrigation (Fig. S3; FAO, 2013; Voss et al., 
2013). A new irrigation scheme simulates irrigation water demand and 
applies irrigation water in E3SM Land Model version 2 (ELM v2), which 
is coupled to a river routing model and a water management model 
(MOSART-WM) that simulate streamflow, reservoir operations, and 
irrigation water supply. With this new two-way coupling, surface water 
irrigation is constrained by the available runoff, streamflow, and 
reservoir storage, ELM is more realistically accounting for the in
teractions between human water use and the terrestrial water cycle in 
E3SM (Zhou et al., 2020). Addressing the lack of the representation of 
water withdrawal and dam construction in the ELM model requires a 
multi-faceted approach involving data integration, model coupling, 

scenario analysis, and interdisciplinary collaboration. Future studies 
should aim to improve the accuracy of TWS trend simulations by 
considering these factors and their interactions with climate and land 
surface processes. In central Africa, there were few dams and reservoirs 
or irrigated area (Fig. S3). Therefore, the errors may be caused by similar 
reasons to previous findings in the Amazon rainforests, such as, the lack 
of deep roots, inaccurate soil texture and pedotransfer function, inac
curate meteorological forcing, inaccurate groundwater dynamics (Tang 
et al., 2015). 

The disagreement in detrended TWS anomalies between ELM and the 
GRACE observations or various GRACE-based reconstructions occurred 
mainly in the South American tropical forests and a large area spanning 
the Sahara and central Africa (Fig. S4). One general source of error in 
ELM may be excessive response to large wetting events that is caused by 
inaccurate soil depth; spatially varying soil depth has not been intro
duced into ELMv1.0 (Swenson and Lawrence, 2015). Additionally, in the 
arid Sahara and semi-arid Sahel regions, the low Pearson correlations 
between ELM simulations and the observations/reconstructions may be 
because the uncertainty in meteorological drivers is high (Swenson and 
Lawrence, 2015; Wang et al., 2022), and low signal-to-noise ratios (Long 
et al., 2015). This argument is supported by the fact that ELM compared 
the best against GSWP3 forced GRACE-REC, which shared meteorolog
ical forcing with some of the ELM v1 simulations (Section 2.1). Another 
reason may be ELM behaves like its predecessor CLM version 4.5 which 
exhibits biases in evapotranspiration and total water storage. These 
biases are consistent with excessive soil evaporation when canopy is 
sparse or absent, which reduced moisture inputs into the ground 
(Swenson and Lawrence, 2014). They improved the model simulated 
soil evaporation by replacing CLM’s existing empirical soil resistance 
parameterization with a more mechanistically based formulation in 
which soil evaporation is controlled by the rate of diffusion of water 
vapor through a dry surface layer. This improvement hasn’t been 
implemented to the ELM v1. In the African and South American tropical 
forests, the errors may be caused by similar reasons to the errors in trend 
(see the end of above paragraph) (Tang et al., 2015). In addition, ELM v1 
uses soil moisture stress (SMS) parameterization to determine the 
regulation of stomatal conductance in response to soil water dynamic 
which may overestimate dry season water stress in tropical forests and 
contribute to the bad performance of these regions (Kennedy et al., 
2019). A more mechanistic plant hydraulics (PHS) representation of 
stress and vegetation water use dynamic scheme has been implemented 
into the ELM v2, and the dry season water stress issue has been improved 
(Fang and Leung, 2022). 

It is also clear from Fig. 1, Fig. S4, and Fig. S16–S18 that observa
tional, reconstruction, and reanalysis data still contained considerable 
uncertainty in TWS and its components. The sources of uncertainty in 
GRACE observations included lower signal-to-noise ratios in the drier 
regions, leakage errors alone coastlines, parameterization errors, and 
large spatial footprints (Hasan and Tarhule, 2021; Long et al., 2015; 
Wiese et al., 2016). A previous assessment of uncertainty in GRACE/ 
GRACE-FO TWS trends were as high as >14 mm/year along the Gulf 
of Alaska, and 4–10 mm/year in the Middle East and northern India 
regions (Hasan and Tarhule, 2021), suggesting that observational un
certainty may have contributed partially to bad ELM performances in 
those regions (Fig. 1). The sources of uncertainty in GRACE/GRACE-FO 
based TWS reconstruction include lack of explicit handling of glacier 
melting effects and human land–water management impacts, which are 
similar to the drawbacks of models, and potential underestimation of 
interannual variabilities (Humphrey and Gudmundsson, 2019; Li et al., 
2021). Since reanalysis data involve the use of land surface models, they 
may be affected by similar process deficiencies and uncertainties in the 
input data as ELM (Gelaro et al., 2017; Rui and Beaudoing, 2020). 

4.2. Contributions to TWS trends by forcings and meteorological drivers 

Factorial simulations (Table 1) indicated that the climate forcing was 
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the most dominant contributor to the TWS trends in all the biomes and 
climate zones except for the Asian tropical forests and a few smaller 
climate zones (Fig. 4 and Fig. S11). In regions with intense human water 
withdrawal or dam constructions, the human land–water management 
practices may be a more important factor than the climate forcing, but 
comparison between that and the environmental forcings (climate, CO2, 
LULCC, nitrogen deposition, aerosol deposition) are beyond the scope of 
this study. Although the TWS trends were mainly positive over the entire 
study period of 1948–2012, there were tendencies towards less positive 
or even negative trends during the second half of the study period (post- 
1960s to post-1980s), which may be related to declining TWS under 
climate change (Pokhrel et al., 2021). 

We also decomposed contributions to TWS trends by each meteo
rological driver as the sum of its mean value over the time period of 
interest, a linear trend, and remainder anomalies (Eq. (4)). Interestingly, 
climatological imbalance between P, E, Q and accumulated random 
anomalies contributed more to the long-term trends in TWS than the 
linear trends in P, E, and Q (Fig. 4 and Fig. S14). The failure of the trends 
in P and atmospheric evaporative demands to explain the trends in TWS 
is further supported by previous studies (Chang et al., 2020; Rodell et al., 
2018). This finding is easily understood from the fact that P, E, and Q are 
fluxes, and TWS is a storage term that reflects the cumulative effects of 
these fluxes. For example, when there is a negative trend in P-E-Q, the 
regional TWS can still increase if the P-E-Q at the beginning of the time 
period is a large positive value, and the negative trend has not caused the 
P-E-Q to become negative by the end of the time period. Over the study 
period, the ratios of (E+Q)/P mainly increased, explaining the mainly 
negative turns in TWS trends, but the increases were not uniformly 
driven by E or Q across the globe (Fig. S15). Those heterogenous changes 
in E/P and Q/P may be mainly related to transpiration changes, followed 
by surface water, ground water, and soil moisture (Xiong et al., 2022b). 

In the eight biomes where LULCC is the second largest contributor to 
TWS trends after the climate forcing, trees, grasses, and shrubs have 
been replaced by crops during our study period. These regions corre
spond well to regions that experienced LULCC during the late 20th-early 
21st century (Winkler et al., 2021). Deforestation, conversion to crop
lands, and urbanization can directly affect the canopy component of 
TWS and alter the soil moisture and groundwater components of TWS by 
changing evapotranspiration. Interestingly, the net contributions of 
LULCC to TWS trends are generally positive (Fig. 3 and Fig. S11), 
perhaps due to a reduction in E and an increase in storage when deep- 
rooted forests are converted to shallow-rooted crops. However, if the 
anthropogenic water withdrawals that typically accompany these 
LULCC were to be represented in ELM, the effect of LULCC is likely to 
become more negative. In the biomes and climate zones where LULCC 
were not the second largest contributor, the land cover changes were 
either a replacement of crops by natural vegetation, replacement be
tween vegetation of equal heights (grasses and crops), or negligible 
(Fig. S13). 

The physiological and phenological effect of CO2 (S4-S3) tended to 
induce non-negligible trends in TWS in the more humid biomes and 
climate zones at all latitudes and contributed to positive TWS trends in 
the most regions, except for African tropical forests and the Deserts bi
omes (Fig. 3), and the Am and BSk climate zones (Fig. S11). There are 
multiple opposing mechanisms through which increasing atmospheric 
CO2 concentration can affect TWS. The physiological effects of elevated 
CO2 concentrations induce the stomatal closure which reduces E per leaf 
area. However, the excess water may be drained as runoff instead of 
being retained as TWS. Conversely, CO2 fertilization (phenological ef
fect) generally increase E by increasing leaf area index (Gentine et al., 
2019; Shi et al., 2013; Yang et al., 2021; Zhu et al., 2021). In most of the 
high- and mid-latitude regions, increasing CO2 concentration generally 
increases evapotranspiration and decreases runoff. In the tropical re
gions, increasing CO2 concentration generally decreases evapotranspi
ration and increases runoff. However, the effect of atmospheric CO2 
concentration on TWS ultimately depends on the local relative changes 

(Gentine et al., 2019; Yang et al., 2021). 
Nitrogen deposition can benefit the growth of vegetation in nitrogen 

limited ecosystems, thereby increasing evapotranspiration and 
decreasing TWS (Mao et al., 2015; Zhu et al., 2021). This can help 
explain the general negative contribution of nitrogen deposition to TWS 
trends (Fig. 3, Fig. S11). However, tropical forests are more nitrogen- 
abundant than mid- and high-latitude ecosystems, and anthropogenic 
nitrogen deposition is less intense in the high-latitudes than the mid- 
latitudes (Ackerman et al., 2019; LeBauer and Treseder, 2008; 
Schulte-Uebbing and de Vries, 2018.). In addition, Mao et al. (2015) 
reported that nitrogen deposition induced higher LAI, leading to a rise in 
canopy evaporation within tropical evergreen broadleaf forest. This 
increase in canopy evaporation effectively counterbalanced the reduc
tion in soil evaporation resulting from the shading effects brought about 
by the higher LAI and even countered the nitrogen-induced increment in 
total E. These may explain the relatively stronger contribution of ni
trogen deposition to TWS trends in temperate grasslands and shrublands 
and tropical savannahs, tropical forest and tropical Savanah climate 
zone (Aw) and three mid-latitude climate zones (Fig. 3, Fig. S11). 

Aerosol forcing mainly affects the hydrological cycle in coupled 
Earth system model simulations by affecting radiative forcing and cloud 
properties (Liu et al., 2018). However, in the land-only simulations in 
this study, the climate forcing already encompasses these effects. In 
land-only simulations using ELM model, the aerosol deposition has been 
shown to induce a reduction in snow albedo, resulting in an increase in 
surface energy absorption. This leads to increased snow surface tem
perature, subsequently leading to increased rates of snowmelt, which 
may enhance the evaporation and runoff. Those effects may have im
pacts on TWS, particularly in regions characterized by extensive snow 
cover, such as Tibetan Plateau areas (Hao et al., 2023). These findings 
may explain the stronger aerosol deposition impacts over several climate 
zones (BWk, BSk and Polar Tundra [ET]), which include the Tibetan 
Plateau. However, it’s important to note that the specific impacts of 
aerosol deposition on the snowpack and the surrounding environment 
can be influenced by various factors, including the type and concen
tration of aerosols, the size and shape of snow grains, and the local 
climate conditions. The effects can vary in different regions and under 
different circumstances (Dang et al., 2019; Hao et al., 2023, 2021). 
Overall, the aerosols contributed smallest to TWS trends compared to 
other factors as shown in Fig. 3, Fig. S11. 

We found that long-term imbalance between P, E, and Q and time- 
varying E/P and Q/P ratios lead to long-term nonlinear trends in TWS 
(Fig. 4, Fig. S14-S15).Previous analyses of the effects of climate forcings 
on TWS trends have not extensively addressed those facts, although 
cumulative fluxes and lagged responses were sometimes considered 
(Rodell et al., 2018; Chang et al., 2020; Zhang et al., 2019b). In future 
studies, there is a need to better characterize and understand the 
mechanisms of long-term imbalance in P, E, and Q. For example, global 
warming or teleconnections-driven P changes are typically accompanied 
by changes in atmospheric evaporative demand, and can drive vegeta
tion changes (Brandt et al., 2017). Snowmelt-supplied Q may increase at 
the early stages of warming, and then decrease as the snowpack is 
depleted. Anthropogenic factors like the CO2 fertilization effects on 
vegetation growth and urbanization also affect the partitioning of P 
(Kumar et al., 2018; Yang et al., 2021). In the tropical regions, the 
greater influences from the anomalies term than elsewhere in the globe 
(Fig. 4, Fig. S14) may be because the influences from teleconnections 
were more prominent in those otherwise relatively stable ecosystems 
(Rifai et al., 2018). 

There are several sources of uncertainty in the ELM-simulated TWS 
trends. The uncertainty in meteorological forcings is found to be 
important for TWS in this study (Fig. 3, Fig. 4, Fig. S12, Fig. S14). The 
signs of TWS trends varied between the three forcings datasets across 
some of biomes and climate zones. The large uncertainties occurred over 
Asian tropical forests, South American tropical forests, Tropical savan
nahs & grasslands, Temperate grasslands & shrublands, and Deserts 
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biomes (Fig. 3bcfgi). Moreover, large differences were also seen in one 
tropical forest (Am), two arid desert (BWh, Bwk), two small temperate 
(Cwa, Cwb), and one cold and dry (Dsc) climate zones (Fig. S12). These 
results indicate meteorological forcing uncertainties were greater in the 
less well-observed regions. The temperature variable in the CRUNCEP, 
PRINCETON, and GSWP3 forcings were all calibrated against the CRU 
meteorological dataset (Harris et al., 2014), but precipitation was cali
brated against the CRU (Harris et al., 2014), the CRU and TRMM 
(Huffman et al., 2007), and the GPCC and GPCP (Huffman et al., 2009; 
Schamm et al., 2014) datasets, respectively (Kim et al., 2014; Viovy, 
2009). The use of TRMM by the PRINCETON dataset may have made it 
more accurate than the other two datasets over the mission period of the 
TRMM satellite (1997–2015) (Huffman et al., 2007). The GPCC dataset 
appears to use more rain gauges than the CRU dataset over the African 
and tropical South American regions during 2000–2009 (Deutscher 
Wetterdienst, 2022; Harris et al., 2020). Therefore, despite the better 
agreement between the CRUNCEP and PRINCETON forcings, the trends 
under the GSWP3 forcing might be more accurate. Our two model 
configurations generated TWS trends with the same signs and similar 
magnitudes except in the tundra region, where plant growth is slightly 
more limited by phosphorus than nitrogen (Yang et al., 2023). They also 
reported that ELMv1-CNP had similar performance to ELMv1-CN on 
evapotranspiration, performed better on ecosystem respiration when 
evaluated using the GBAF dataset. ELM v1-CNP improves carbon and 
nutrient cycles, but more work is necessary to improve hydrology, 
especially in tropical systems where P is limiting (Yang et al., 2023). 
Therefore, we may investigate the water cycle using ELM CNP config
uration with PHS scheme over the tropical regions for the future po
tential study. Accounting for human water withdrawals, especially 
surface and groundwater withdrawals for irrigation, will also be a 
valuable future pursuit, considering their importance to TWS (Rodell 
et al., 2018) and their ability to affect evapotranspiration, which is a 
vital variable in land surface modeling. 

5. Conclusions 

In summary, this study has comprehensively examined changes in 
TWS from 1948 to 2012. We utilized GRACE, GRACE-based recon
struction datasets, and 36 ensemble land surface model simulations to 
quantify the drivers of TWS changes and explore the influences of un
certainty in in meteorological forcings and model biogeochemistry 
configurations. Our analysis revealed that ELM effectively captured the 
global patterns of GRACE-observed TWS trends. It performed particu
larly well in four biomes – Temperate forests, Temperate grasslands & 
shrublands, Tropical savannahs & grasslands, and Wetlands – as well as 
in seven climate zones (Aw, BSh, Csa, Csb, Cfa, Dwa, Dwb), meeting 
criterions such as trends agreement, Pearson correlations exceeding 0.3 
and root mean squared error within ELM’s standard deviation. The TWS 
generally increased during the whole study period but increased less or 
decreased towards the second half of the study period (after the 
1960–1980s). Hotspots of nonlinear TWS trends included the western- 
southeastern U.S., croplands of South America, eastern Australia, 
croplands-grasslands in east Asia, the savannahs of Africa, and the 
boreal forests of Siberia. Decomposition of the TWS trends by forcings 
showed that climate change had the largest effects on the TWS trends 
across all the biomes and climate zones, with some exceptions like the 
Asian tropical forests and a few smaller climate zones (Csb, Cwb, Dsc, 
and Dwc). LULCC had a significant impact on TWS trends in eight of the 
eleven biomes and sixteen of the 21 climate zones. These effects were 
generally positive and corresponded to a trend of croplands replacing 
trees over the study period. The influence of atmospheric CO2 concen
tration was notable in more humid biomes and climate zones across 
different latitudes. It led to positive trends in Asian tropical forests, 
Temperate forests, Boreal forests, Wetlands biomes, and certain climate 
zones (Aw, Cwb, Cfb, Dsc, Dwc, Dfb, and Dfc), and negative trends in 
African tropical forests biome, and the specific climate regions (Am and 

BSk). Nitrogen deposition and aerosol deposition generally had smaller 
and negative impacts across the biomes and climate regions compared to 
climate change, LULCC and CO2 concentration. However, they were not 
negligible in four of the eleven biomes and four of the twenty-one 
climate regions. Aerosol deposition had the smallest effect primarily 
on cold climate zones (BSk, BWk and Polar Tundra [ET]). we further 
found that the long-term average imbalance between P, E, and Q, along 
with the accumulated de-trended anomalies in P, E, and Q, were major 
contributors to TWS trends in all regions, while the trend-related term 
had a less significant impact. The changing imbalance between P, E, and 
Q were related to heterogeneous changes in E/P and Q/P. These findings 
underscore the need to consider precipitation partitioning and accu
mulated random anomalies, when explaining the effects of climate 
forcing on TWS trends. This study offers a valuable long-term perspec
tive, revealing that TWS trends were less affected by internal climate 
variability than post-2002 GRACE satellite data (Rodell et al., 2018). 
Additionally, by explicitly decomposing the trends according to 
different forcings and the water balance equation, we contribute to a 
deeper understanding of TWS changes and their drivers. 

6. Data availabXXXility 

All the data used in this study are available from open-source 
repositories. 

GRACE satellites TWS data: CSR RL06 v2: https://www2.csr.utexas. 
edu/grace/RL06_mascons.html, JPL RL06.1 v3 CRI: https://podaac.jpl. 
nasa. 
gov/dataset/TELLUS_GRAC-GRFO_MASCON_CRI_GRID_RL06.1_V3#, 
GSFC RL06 v2: https://earth.gsfc.nasa.gov/geo/data/grace-mascons. 

GRACE-REC TWS data: https://doi.org/10.6084/m9.figshar 
e.7670849. 

Li-REC TWS data: https://datadryad.org/stash/dataset/doi:10.5 
061/dryad.z612jm6bt. 

E3SM simulated dataset: CMIP6 repositories such as https://esgf- 
node.llnl.gov/projects/cmip6/, search for ELM simulations under the 
LS3MIP activity. 
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