
Land Model Testbed: Accelerating Development,
Benchmarking and Analysis of Land Surface

Models
Sarat Sreepathi∗, Min Xu†, Nathan Collier†, Jitendra Kumar‡, Jiafu Mao‡, and

Forrest M. Hoffman†
∗Computer Science and Mathematics Division,

Oak Ridge National Laboratory, Oak Ridge, TN USA
Email: sarat@ornl.gov

†Computational Sciences and Engineering Division
Oak Ridge National Laboratory, Oak Ridge, TN USA

Email: xum1@ornl.gov, collierno@ornl.gov, forrest@climatemodeling.org
‡Environmental Sciences Division

Oak Ridge National Laboratory, Oak Ridge, TN USA
Email: jkumar@climatemodeling.org, maoj@ornl.gov

Abstract—A Land Model Testbed (LMT), designed to provide
a computational framework for systematically assessing model
fidelity and supporting rapid development of complex multiscale
models, offers a general-purpose workflow for conducting large
ensemble simulations of multiple land surface models, post-
processing large volumes of model output, and evaluating model
results. It leverages existing tools for launching model simulations
and the International Land Model Benchmarking (ILAMB)
package for assessing model fidelity through comparison with
best-available observational datasets. Increased complexity and
proliferation of uncertain parameters in process representations
in land surface models has driven the need for frequent and
intensive testing and evaluating of models to quantify uncertain-
ties and optimize parameters such that results are consistent
with observations. The LMT described here meets these needs
by providing tools to run thousands of ensemble simulations
simultaneously and post-process their output files, by automating
execution of an enhanced version of ILAMB with site-specific
benchmarks and multivariate functional relationships, and by
offering ensemble diagnostics and a customizable dashboard for
displaying model performance metrics and associated graphics.
We envision the LMT capabilities will serve as a foundational
computational resource for a proposed user facility focused on
terrestrial multiscale model–data integration.

Index Terms—land surface models, model benchmarking, IL-
AMB, model testbed, machine learning

I. INTRODUCTION

The Land Model Testbed (LMT)1 was developed to provide
a computational framework for systematically assessing model
fidelity and supporting rapid development of complex multi-
scale models. Leveraging existing tools for launching model
simulations and a well-established framework for model–data
comparison, the LMT offers a general-purpose workflow for
conducting large ensemble simulations of multiple land sur-
face models (LSMs), post-processing large volumes of model

1Presented at Gateways 2020, Online, USA, October 12–23, 2020.
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output, and evaluating model results to support model bench-
marking, uncertainty quantification, parameter estimation and
analysis. The LMT computational infrastructure and workflow
tools were designed and optimized for high performance
computing (HPC) and cloud resources, and they provide an
extensible and easy-to-use platform for rapid development and
assessment of complex multiscale LSMs.

Process-based LSMs simulate the exchange of energy, water
and carbon between the land surface and the atmosphere,
and they incorporate biogeochemical and ecological processes
as well as interactions with human systems. The complexity
of LSMs has increased significantly since the first of such
models, which had very simple representations of energy, mass
and momentum transfer between the atmosphere and land [1].
LSMs have evolved to represent a large array of mechanistic
processes, including soil moisture dynamics, photosynthesis,
vegetation dynamics, carbon and nutrient cycling, fire, crops,
land cover management and urban environments. While incre-
mental addition of these processes over generations of LSMs
has improved the accuracy of individual terrestrial process
representations, it has also led to increased complexity and
potentially to increased uncertainties [2]. Model uncertainty
continues to be one of the biggest challenges in Earth system
science, and it is not clear that increased model complexity
reduces that uncertainty [3]. Increased complexity and the
proliferation of uncertain parameters in process representations
has driven the need for frequent and intensive testing and
evaluating of models to quantify uncertainties and optimize
parameters such that results are consistent with observations.
To conduct the factorial simulations required, an efficient and
scalable framework for executing simulations with perturbed
parameters in parallel on HPC platforms is needed. In addition,
to systematically evaluate and benchmark model results of
ensemble simulations, the International Land Model Bench-
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marking (ILAMB) package provides, as a starting point, a
set of internationally accepted metrics and observation-based
data sets [4], [5]. The LMT outlined below was designed
to meet these needs by providing tools to run thousands of
ensemble simulations simultaneously and post-process their
output files, by automating execution of an enhanced version
of ILAMB with site-specific benchmarks and multivariate
functional relationships, and by offering ensemble diagnostics
and a customizable dashboard for displaying model perfor-
mance metrics and associated graphics.

II. LMT COMPUTATIONAL INFRASTRUCTURE

The computational infrastructure of the LMT, summarized
in Figure 1, shows that multiple land models can be executed
by the workflow, which enables the design and conduct
of simulation experiments on HPC platforms like Summit
[6], the fastest supercomputer in the world. The LMT is
presently deployed to facilitate execution of site-level, regional
and global simulations, as well as large ensemble runs for
rapid model benchmarking, uncertainty analysis, and model
parameter optimization on the Summit supercomputer. Due to
cybersecurity constraints with respect to web services and two-
factor authentication requiring user intervention on Summit,
the parameter generation, subsequent post-processing, analysis
and model benchmarking are conducted on an institutional
cloud server that can be scaled up as needed. Presently, our
cloud instance is comprised of 40 compute cores (Intel Xeon
CPU E5-4620 2.60 GHz), 248 GB of RAM and 1,240 GB
of flash-based storage to successfully handle (see Section IV)
large ensemble generation and big data processing workloads.

Fig. 1. The Land Model Testbed (LMT) provides a computational framework
and workflow for executing complex multiscale models and assessing their
fidelity to support uncertainty analysis, parameter optimization, and rapid
model development.

A JupyterHub instance was configured and deployed on the
LMT server to facilitate model output data processing, analysis
and visualization. For example, as shown in Figure 2, through
a Jupyter notebook and the ILAMB library, we can quickly
define a model ensemble based on a regular expression pattern
in the filenames, and then extract a time series of the gross
primary productivity (GPP) for visualization (Figure 3), which

lmt = ModelResult('path/to/output',name='LMT')
lmt.findFiles(group_regex='.*clm2_(.*)\.h0\..*')
gpps,mean_gpp = lmt.getVariable("GPP",mean=True)
fig,ax = plt.subplots(figsize=(18,3))
mean_gpp.convert("g m-2 d-1")
mean_gpp.plot(ax)

Fig. 2. This Python code was run in a Juypter notebook with the ILAMB
library to post-process ensemble output for gross primary productivity.

Fig. 3. The ILAMB library enables easy and interactive visualization and
analysis of ensemble time series of gross primary productivity.

includes an ensemble mean (solid line) and the standard de-
viation (grey shading). This interface allows for an interactive
exploration of the model ensemble locally in a web browser,
while the computation and data remains on the server.

III. CAPABILITIES

A. LMT Workflow

We established a reliable and effective workflow to imple-
ment the LMT capabilitis. It leverages the Offline Land Model
Testbed (OLMT) [7] to launch model simulations, ILAMB [8]
for comprehensive model–data comparison and benchmarking,
and the Earth System Grid Federation (ESGF) and other data
centers for archiving output. We built a containerized variant
of the LMT software stack using Docker to encapsulate the
workflow and the land models for easy deployment on HPC
and cloud environments.

The LMT includes an interactive variable mapping web
interface, a post-processing toolkit, a Python-based parallel
lightweight CMOR-ization tool (to rewrite of model output in
compliance with climate community standards), and a unified
dashboard [9]. The variable mapping tool enables users to
collaboratively add, modify, and update mapping relationships
between model and CMOR variables requested by different
Model Intercomparison Projects (MIPs) using a web browser.
Users can save the mapping information as a JavaScript Object
Notation (JSON) file locally or archive it in a repository
for version control. The post-processing toolkit converts raw
model output, including time serialization (aggregation of
output to single variable files from all time records) and
grid remapping, as necessary. Two options are provided for
grid remapping: ncremap from the NCO toolkit [10] and
an in-house remapping tool. Our remapping tool, designed
with a performance-first objective utilizes SciPy sparse matrix
methods and Numba Just-in-Time compilation capabilities for



better numerical performance, as well as parallel NetCDF
for enhanced I/O performance The lightweight CMOR-ization
tool uses the variable mapping information in the JSON file
to rewrite the outputs in parallel after time serialization and
grid remapping, following the MIP standard. The CMOR-
ized outputs can be used by ILAMB directly for model
intercomparison and be published to the ESGF and other data
centers.

B. Perturbed Parameter Ensembles

The LMT infrastructure can rapidly launch thousands of
ensemble simulations simultaneously while perturbing the
parameter spaces of land models. Such perturbed parameter
ensembles can be used to optimize model parameters and
quantify model variability and uncertainties by comparing
with in-situ measurements and observational datasets [11] and
build artificial intelligence models using machine learning
methods [12]. The parameters for ensemble simulations are
generated using the Monte Carlo method, i.e., parameter se-
lection through random sampling from a uniform distribution.

C. Ensemble analysis

We leveraged our collective experience in model bench-
marking algorithms [5] to create an analysis framework for
benchmarking model ensembles, which present several chal-
lenges. Due to the extensive computational and data require-
ments of the model, model ensemble simulations are often fo-
cused at select locations, where detailed observational records
are available for forcing and benchmarking simulations. In
addition, the simulation results from large ensemble members
represent a large volume of high dimensional data, making
their interpretation and analysis difficult with traditional meth-
ods. The benchmarking methodology and metrics in ILAMB
were originally envisioned for comparison of long time series
of global gridded models with observational records. We
adapted and extended ILAMB protocols for site-level simu-
lations of LSMs, focusing our analysis of simulation results
on measures of bias and Root Mean Square Error (RMSE).
For each model ensemble, we also compute and report the
distributions of the bias, RMSE, bias score, RMSE score, and
overall score (Figure 4). These metrics quantify the effects of
perturbed parameters (in this case flnr, slatop, and leafcn)
on benchmarking scores.

The ILAMB ensemble analysis leverages the Plotly [13]
library, using the Javascript interface to embed interactive plots
into a webpage (Figure 4). Individual ensemble members can
be selected by a mouseover on the datapoints in any plot,
which triggers an update of the text information in the middle
panel, as well as updating the annual cycle plot in the bottom
middle panel to highlight the ensemble member to which it
corresponds.

D. Unified dashboard

An unified dashboard was designed to summarize key
model benchmarking results and facilitate further interactive
exploration of data. The dashboard provides a responsive web

application, using HTML5, Cascading Style Sheets (CSS)
and JavaScript (JS) front-end technologies. It extensively uses
the jQuery and Tabulator JS libraries to implement various
interactive features, including moving, hiding/showing table
columns, expanding/collapsing nested benchmarking metrics,
sorting and highlighting results, and tool tips.

The benchmarking results are typically multi-dimensional
variables and could be treated as a function of region, metric,
model and statistical score. The dashboard enables users to
select and filter results in different dimensions by manipulating
the JS object that is loaded from the JSON files generated by
benchmarking software packages.

E. Machine learning analysis

To enhance the diagnostics capability of the LMT, we
developed machine learning (ML)-based benchmarking work-
flow, mechanistically evaluating the LSM’s performance in
capturing the nonlinear and complex interactions between
multivariate model variables. As a use case, we designed new
relationship metrics employing major ML methods to bench-
mark the LMT-generated ensemble simulations against site
measurements of key ecosystem variables (e.g., gross primary
productivity, evapotranspiration, and sensible heat fluxes).
Specifically, the lead-lag interactions among interested carbon,
water and energy fluxes, and the responses of these fluxes to
selected environmental drivers (e.g., temperature, precipitation
and CO2 mole fraction) were systematically assessed by
applying five ML algorithm variants including the random
forests, support vector machines, artificial neural networks,
least absolute shrinkage and selection operators, and gradient
boosting machines, onto the flux observations and simulations.
Each ensemble member was then evaluated in terms of the
best-ML-based importance score, a semi-qualitative metric of
relative importance of individual affecting factors derived from
the ML techniques. Mechanistic agreement was then measured
by the Spearman’s rank correlations of the importance scores
between observations and ensemble members. Finally, the
overall performance of each ensemble simulation was defined
by the square-root-average of the mechanistic rank R2 and
regular R2 based on monthly model versus observed outputs.
This ML-based evaluation framework can be further adapted to
leverage current ILAMB to reinforce process-based quantifica-
tion of model biases for high-dimensional large simulations.

IV. PERFORMANCE

A. Background: Large Ensemble Simulations

During the first phase of this effort, we evaluated the
capability of OLMT to setup, build, and submit large ensemble
simulations; however, the OLMT did not scale efficiently for
the large ensemble simulations, including perturbed parameter
ensembles (see Section III-B). The OLMT launches ensemble
simulations by cloning a base case and subsequently changing
model parameters for each case, making it sub-optimal for
generating even hundreds of ensembles.

The OLMT builds the model only for the base case and
links the executable file to other cases to save model build



Fig. 4. Sample ensemble analysis output for a 84 member ensemble depicting the effect of varying the leaf nitrogen ratio (flnr), top specific leaf area (slatop)
and the leaf carbon-nitrogen ration (leafcn) on the gross primary productivity (gpp) at the US-UMB Ameriflux flux tower.

time. Nevertheless, it takes a significant amount of time in
the experiment setup and file copy stages. It bypasses the
model’s default framework that controls parallelism and job
submission, relying instead on externally maintained scripts.
Finally, the simulation results are spread across numerous
directories, which makes post-processing cumbersome. Due
to the aforementioned design and implementation choices, the
execution of large ensembles using the OLMT is fragile, error-
prone and computationally inefficient.

To overcome these limitations, we redesigned and im-
plemented the perturbed parameter ensembles in the LMT
infrastructure by directly using the multi-instance function-
ality within the core framework. The same common-core
framework is employed by two large climate modeling efforts
namely, the Energy Exascale Earth System Model and the
Community Earth System Model and their respective land
component models are used in the testbed. In this framework,
the multi-instance functionality can enable execution of mul-
tiple simulations simultaneously in a single job; however, the
framework is still unsuitable for large ensemble simulations
because it generates thousands of model component and I/O
namelists, and data stream description files in simulation
experiment setup, build and submission steps. For example,
if we run a 1000-instance simulation, it will generate more
than 54 thousand files in the experiment directories during the
setup, build and run phases. This is highly inefficient, taking
more than 12 hours on Summit in the above scenario to finish
generating the requisite files.

B. Workflow Optimization

To alleviate this bottleneck, we optimized the framework to
rapidly launch several thousands of ensemble simulations by
(1) eliminating the file generation during the experiment setup
phase; (2) consolidating the numerous data stream description

files by reusing a single file for the whole ensemble; (3)
optimizing code associated with the multi-instance loops by
refactoring loop invariant and lifting instance-irrelevant (un-
related to a specific ensemble instance) out of the loops; (4)
multi-threading capability to generate requisite files in parallel;
(5) mitigating file copies from the build and experiment
directories to the run directory through direct generation of
files in the run directory; and (6) eliminating file generation
in the experiment submission step.

These optimizations resulted in a 72× improvement in the
overall workflow performance, bringing the overall ensemble
generation time from 12 hours to 10 minutes on a single
node of Summit. Using the multi-instance capability, the
LMT exhibits good weak-scaling characteristics on leadership
computing systems like Summit as each ensemble instance is
“embarrassingly parallel” and communicates only within its
local group of processes.

V. SUMMARY

The LMT was developed to provide computational infras-
tructure and workflow tools for execution and systematic
assessment of complex multiscale models. The LMT enables
performance of large ensemble simulations, post-processes
large volumes of model output, and evaluates model results
to study model parameter sensitivity and quantify model
uncertainties. By integrating workflow tools with an enhanced
model benchmarking package (based on ILAMB) and an
interactive analysis and visualization platform, the LMT seeks
to accelerate the model development cycle through rigorous
assessment of model fidelity and analysis of simulation results.
We envision the LMT capabilities will serve as a foundational
computational resource for a proposed user facility focused on
terrestrial multiscale model–data integration.
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