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Abstract. Soil moisture (SM) datasets are critical to understanding the global water, energy, and biogeo-
chemical cycles and benefit extensive societal applications. However, individual sources of SM data (e.g.,
in situ and satellite observations, reanalysis, offline land surface model simulations, Earth system model –
ESM – simulations) have source-specific limitations and biases related to the spatiotemporal continuity, reso-
lutions, and modeling and retrieval assumptions. Here, we developed seven global, gap-free, long-term (1970–
2016), multilayer (0–10, 10–30, 30–50, and 50–100 cm) SM products at monthly 0.5◦ resolution (available at
https://doi.org/10.6084/m9.figshare.13661312.v1; Wang and Mao, 2021) by synthesizing a wide range of SM
datasets using three statistical methods (unweighted averaging, optimal linear combination, and emergent con-
straint). The merged products outperformed their source datasets when evaluated with in situ observations (mean
bias from −0.044 to 0.033 m3 m−3, root mean square errors from 0.076 to 0.104 m3 m−3, Pearson correlations
from 0.35 to 0.67) and multiple gridded datasets that did not enter merging because of insufficient spatial, tem-
poral, or soil layer coverage. Three of the new SM products, which were produced by applying any of the three
merging methods to the source datasets excluding the ESMs, had lower bias and root mean square errors and
higher correlations than the ESM-dependent merged products. The ESM-independent products also showed a
better ability to capture historical large-scale drought events than the ESM-dependent products. The merged
products generally showed reasonable temporal homogeneity and physically plausible global sensitivities to
observed meteorological factors, except that the ESM-dependent products underestimated the low-frequency
temporal variability in SM and overestimated the high-frequency variability for the 50–100 cm depth. Based
on these evaluation results, the three ESM-independent products were finally recommended for future applica-
tions because of their better performances than the ESM-dependent ones. Despite uncertainties in the raw SM
datasets and fusion methods, these hybrid products create added value over existing SM datasets because of the
performance improvement and harmonized spatial, temporal, and vertical coverages, and they provide a new
foundation for scientific investigation and resource management.
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1 Introduction

High-quality global soil moisture (SM) datasets benefit many
applications, such as understanding drought changes and
ecosystem dynamics (Green et al., 2019; Kumar et al., 2019),
studying land–atmosphere feedbacks (Li et al., 2020a),
benchmarking model capabilities (Loew et al., 2013), and
initializing weather and climate forecast systems (Sospedra-
Alfonso and Merryfield, 2018). The majority of SM prod-
ucts fall into five categories: in situ measurements, satellite
observations, offline land surface model (LSM) simulations,
reanalysis, and Earth system model (ESM) simulations. In
situ measurements provide the most direct SM observations
at the point scale but are too sparse to be interpolated to the
global level (spatial autocorrelation dies ∼ 300 km; Gruber
et al., 2016). Satellite-derived SM records only penetrate the
top few centimeters of soil and contain errors and spatial gaps
typically caused by factors such as a change in path, dense
vegetation, frozen soil, water bodies, and radio frequency
interference (Llamas et al., 2020; Wang et al., 2012). Al-
though a long-term (1979–present) concatenated SM dataset
was developed by merging data from multiple satellites, the
merged product did not fill the spatial gaps that existed in the
source satellite datasets (Dorigo et al., 2012; EODC, 2021).
The SM in LSM simulations usually spans multiple soil lay-
ers and has no spatial or temporal gaps, which is convenient
for regional and global analysis (Gu et al., 2019); however,
LSM simulations may contain considerable errors because
of inadequacies in the model physics, parameterization, and
drivers (Andresen et al., 2020). Reanalysis datasets assimi-
late observations into LSMs or coupled forecast systems that
have LSMs as a component and are gap-free. Direct assim-
ilation of remote sensing SM, which has been the practice
for some recent reanalysis – such as the ECMWF Reanal-
ysis 5 (ERA5) (de Rosnay et al., 2013) and Global Land
Evaporation Amsterdam Model (GLEAM) (Martens et al.,
2017) – is likely to improve the performance relative to free-
running LSMs. Still, many reanalyses do not directly assim-
ilate the observational SM, such as the Japanese 55-Year Re-
analysis (JRA55) (Kobayashi et al., 2015) and Modern-Era
Retrospective Analysis for Research and Applications Ver-
sion 2 (MERRA2) (McCarty et al., 2016). Also, the mete-
orological variables, especially precipitation, simulated by
the atmosphere model of the coupled reanalysis system may
be biased, leading to inaccurate SM estimates by the intrin-
sic LSM component (Balsamo et al., 2015). Fully coupled
ESMs, such as those for the Coupled Model Intercompar-
ison Project phases 5 and 6 (CMIP5 and CMIP6) (Eyring
et al., 2016; Taylor et al., 2012), provide SM simulations
for both historical and future periods. ESMs, however, share
the same uncertainty sources for the SM estimates as the
LSMs; moreover, the SM in ESM simulations has internal
variability-related uncertainties induced by unrealistic ini-
tialization from the preindustrial conditions rather than the
real world (Eyring et al., 2016; Taylor et al., 2012).

There is active development toward generating more ac-
curate, gap-free SM datasets. Methods for filling the spatial
gaps in satellite observations have been under investigation,
but the resulting estimates either cover short time periods or
target only parts of the globe (Llamas et al., 2020; Wang et
al., 2012). One global multilayer SM product was generated
by upscaling in situ observations using machine learning and
selected SM predictors; however, it only focused on 2000–
2019 (O and Orth, 2021). Unlike current global reanalyses
that directly assimilate satellite SM (Martens et al., 2017;
de Rosnay et al., 2013), some studies merged in situ obser-
vations, or both in situ and satellite observations, with of-
fline LSMs to improve accuracy while retaining complete
spatiotemporal coverage. Nevertheless, these efforts were
mainly conducted on the regional scale using limited sets
of LSMs (Wu et al., 2018; Zeng et al., 2016; Gruber et al.,
2016).

Therefore, there is a need to develop global merged
SM products that comprehensively combine the informa-
tion from the latest in situ and satellite observations, of-
fline LSMs, reanalysis, and ESMs using advanced fusion
methods. Because of the incorporation of various quality-
controlled observations in the merging process, the merged
products would likely perform better than the SM in the
original LSMs or ESMs, while keeping the benefits of be-
ing gap-free in space and having long temporal and multi-
soil-layer coverage. The fusion of multiple LSMs, reanaly-
sis, and ESMs also involves ensemble averaging, which may
reduce the SM uncertainties from individual models by can-
celing the model-specific errors (Giorgi and Mearns, 2002).
This study presents a group of SM products derived using
three merging methods: unweighted averaging (Mean), op-
timal linear combination (OLC), and emergent constraint
(EC). Unweighted averaging assigns equal weight to all the
source datasets and does not use in situ information (see
Sect. 2.1 for explanation for the exclusion). The OLC is an
ensemble weighting and rescaling algorithm that is optimal
in the sense that the weighted average minimizes the mean
squared difference with respect to the site-level observations
(Bishop and Abramowitz, 2013). The OLC method was pre-
viously found to lead to improved performance in the merged
product relative to the source datasets in terms of the global
evapotranspiration and runoff (Hobeichi et al., 2018, 2019).
The EC method is common for reducing uncertainty in fu-
ture ESM simulations (Mystakidis et al., 2016; Padrón et al.,
2019). This method first uses data from multiple ESMs to
establish physically meaningful and statistically significant
relationships between the constraint variables that have ob-
servations and a target variable that has no observations, and
it then uses the relationship and actual observations to de-
rive a constrained target variable (Mystakidis et al., 2016;
Padrón et al., 2019). Given the clear physical relationships
between the SM and meteorological variables, we hypoth-
esized in this study that the EC method can be applied to
reduce forcing-related biases in offline LSMs and reanaly-
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Figure 1. Procedure of creating the merged SM products using dif-
ferent methods and source products.

sis and to align the natural internal variability in ESMs with
the real world. Seven new monthly multilayer SM datasets at
0.5◦× 0.5◦ resolution for 1971–2016 were produced by ap-
plying these merging algorithms to different combinations of
the mentioned raw SM estimates. The merged products with
different setups were then systematically evaluated against
in situ measurements that were reserved for validation, semi-
independent gridded SM datasets, drought indices, and me-
teorological variables.

2 Methods and source datasets

2.1 Overview

Figure 1 shows the schematic of the merging procedure to
create the seven SM products. The unweighted averaging and
OLC (Hobeichi et al., 2018, 2019) methods were applied to
the observational or observation-forced datasets (i.e., offline
LSMs, reanalysis, satellite – ORS). The unweighted averag-
ing did not use any in situ observations because the in situ
observations were sparse (∼ 1400 stations compared with
∼ 60 000 grids in a 0.5◦ gap-free dataset over the global land
surface; Sect. 2.2). In unweighted averaging, the in situ ob-
servations can only influence the merged values in the time
steps and grids that coincide with the observations. There-
fore, the inclusion of in situ observations would have lit-
tle influence on the results of unweighted averaging. Also,
to validate a merged time step and grid, an un-merged ob-
servation must be available at the same time step and grid,
which would be difficult to achieve in data-sparse situa-
tions. The OLC method used in situ observations to constrain
the ORS datasets. The EC method (Mystakidis et al., 2016)
was applied to the ORS, CMIP5, CMIP6, combination of
CMIP5 and CMIP6 (CMIP5+6), and combination of ORS,

CMIP5, and CMIP6 (ALL) datasets (Eyring et al., 2016;
Taylor et al., 2012) using gridded global meteorological ob-
servations as constraints. The use of ESM simulations with
the EC method, but not with the unweighted averaging or
OLC methods, was because the latter two methods resulted
in very inadequate performances when applied to the ESM
simulations in a preliminary analysis (results not shown). Be-
cause the ORS datasets do not have uniform temporal cover-
age (Tables S1–S3), the unweighted averaging only used the
ORS datasets that cover 1970–2016. For the OLC method,
the ORS datasets were grouped based on three time ranges
(1970–2010, 1981–2010, and 1981–2016) that were selected
to maximize the available ORS datasets in each time range.
For each time range, the ORS datasets that fully cover the
time range were merged with the OLC method; if an ORS
dataset fully covers two or three time ranges, it was used in
all the covered time ranges (see the “time period used” in
Tables S1–S3). Then, the merged results for all three time
ranges were concatenated into a consistent dataset covering
the whole target period following a previous method for con-
catenating the remote sensing SM (Dorigo et al., 2017; Liu et
al., 2011, 2012) (Sect. 2.9). The CMIP5 and CMIP6 datasets
always cover 1970–2016; when they were used jointly with
the ORS datasets to produce the EC ALL (i.e., including all
the source datasets) product, they were subset to the same
time ranges as the ORS datasets, separately processed, and
concatenated (bottom of Fig. 1). All the synthesized monthly
SM datasets are at 0.5◦ resolution, cover 1970–2016, and
contain four depths (0–10, 10–30, 30–50, and 50–100 cm).
The following sections provide more details on the datasets,
merging methods, and processing procedures.

2.2 In situ SM observations

In situ SM observations were obtained from the International
Soil Moisture Network (ISMN) (Dorigo et al., 2011, 2013).
Only the observations associated with the ISMN quality flags
“G” (good) or “M” (parameter value missing) were retained.
The resulting dataset contains ∼ 1400 stations worldwide
and spans 1964 to the present. Because only a few stations
were available at the beginning of the time period, only the
observations in 1970 or later were used. To facilitate process-
ing by the OLC method, the ISMN observations were aggre-
gated to monthly 0.5◦ resolution and regular depths (0–10,
10–30, 30–50, and 50–100 cm). The aggregation to monthly
resolution was simply averaging over all the available ob-
servations in each month at each station. Although it is de-
sirable to apply a stricter criterion in the monthly averag-
ing, such as treating a month as missing if observations are
for fewer than 15 d in the month, applying such a criterion
would exclude most of the stations in northern and eastern
Asia, which only have one to three observations per month.
Multiple methods were tested for the aggregation to 0.5◦ res-
olution: (1) simply averaging all the stations in each grid;
(2) weighted-averaging the stations based on the percentage
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of grid area that the land cover of each station represents
using the Moderate Resolution Imaging Spectroradiometer
(MODIS) MCD12C1 product (Friedl and Sulla-Menashe,
2015); and (3) the same as (2) except that if the total area
of all the land cover types that the stations represent does not
account for a sufficient percentage of the grid area (40 %),
the grid was set to missing. Because all three methods re-
sulted in similar performance in the merged products (results
not shown), only the second method was adopted for the fi-
nal products. The aggregation to regular depths was simply to
average over all the available observations in each depth in-
terval. When an observation was taken on the interface of two
depth intervals (e.g., exactly at 10 cm), the observation was
assigned to the shallower depth interval (e.g., 0–10 cm). Fig-
ure S1 shows the aggregated ISMN observations at the 0.5◦

grid scale and the number of observations that falls into each
land cover type. The observations are overrepresented in the
developed part of the world; the most overrepresented land
cover types include deciduous broadleaf forests, grasslands,
and croplands, whereas the most underrepresented land cover
types are evergreen broadleaf forests, mixed forests, closed
shrublands, and permanent wetlands. The number of avail-
able monthly observations did not decrease with deeper soil
layers (global totals are 19 317 station months for the 0–
10 cm layer, 25 307 for the 10–30 cm layer, 25,011 for the
30–50 cm layer, and 20 660 for the 50–100 cm layer), al-
though no observations were available for the closed shrub-
lands and permanent wetlands across the deeper soil layers
(10–30, 30–50, and 50–100 cm). After the ISMN observa-
tions were aggregated to monthly 0.5◦ resolutions, 60 % of
the month grids were used as the observed SM values in the
OLC method (the otj variable; see Sect. 2.7), and the remain-
der were reserved for evaluating all the merged products. The
training month grids were uniformly randomly selected with-
out distinguishing between space and time.

2.3 ORS, CMIP5, and CMIP6 SM products

Tables S1–S4 list the monthly gridded ORS, CMIP5, and
CMIP6 results that were used as the SM source datasets for
the merged products, as well as the depths (0–10, 10–30, 30–
50, or 50–100 cm) and time ranges (1970–2016, 1970–2010,
1981–2010, or 1981–2016) for which the datasets were used.
The name of the used SM variable was “mrlsl” in the CMIP5
collection and “mrsol” in the CMIP6 collection. Prior to
merging, all the ORS, CMIP5, and CMIP6 datasets were bi-
linearly interpolated to 0.5◦ resolution, linearly interpolated
to the target soil depths (0–10, 10–30, 30–50, or 50–100 cm),
and masked with a common land mask using the National
Center for Atmospheric Research (NCAR) Command Lan-
guage 6.6.2 (UCAR/NCAR/CISL/TDD, 2019). Linear inter-
polation to all four soil depths could not be achieved for all
the source datasets because the soil layers in some models
are too shallow or too coarse. For example, the bottom depths
of the Joint UK Land Environment Simulator (JULES) LSM

are 10 cm, 35 cm, 1 m, and 3 m (Sebastian Lienert, personal
communication, 2019). Therefore, the 10–30 and 50–100 cm
depths are contained within single layers in the JULES model
and could not be directly interpolated. The four target soil
depths here were selected to maximize the number of source
datasets that could be interpolated to each depth. Although
the Community Land Model version 4 (CLM4) simulates
SM as deep as 421 cm, the model was only used for 0–10
and 10–30 cm (Table S3). This was because the SM values at
levels deeper than 38 cm were very low (< 0.0005 m3 m−3 on
global average) and even lower than the SM values at levels
shallower than 38 cm in the same model (> 0.0025 m3 m−3

on global average). The common land mask was created by
intersecting the grid points that satisfy two criteria: (1) all the
datasets except the European Space Agency Climate Change
Initiative (ESA CCI) v4.5, after being interpolated to 0.5◦,
have valid values; and (2) at least 50 % of the land cover is
not water bodies or permanent snow and ice in the MODIS
MCD12C1 product (Friedl and Sulla-Menashe, 2015). Be-
cause of many spatial gaps, the ESA CCI v4.5 dataset was
not used to create the common land mask and received spe-
cial handling. In addition to being masked with the common
land mask, the ESA CCI v4.5 dataset was masked using its
accompanying quality flags, meaning the time steps and grids
that have snow coverage or temperature below zero (flag 1),
dense vegetation (flag 2), no valid SM estimates (flag 4), SM
values above the physical boundary (flag 8), or only unre-
liable SM values (flag 16). The ESA CCI v4.5 dataset was
excluded from merging at the time steps and grids in which
there are missing values.

2.4 Observed, CMIP5, and CMIP6 temperature and
precipitation

The EC method, as implemented in this study (Sect. 2.8),
requires the air temperature and precipitation forcings that
correspond to each SM dataset and observed air temperature
and precipitation as inputs. The temperature and precipita-
tion forcings that correspond to the ORS SM datasets are
listed in Table S5. Because the ESA CCI v4.5 dataset is ob-
servational and GLEAM v3.3a directly assimilates the ESA
CCI dataset (Dorigo et al., 2017), these two datasets were as-
sumed to correspond to the observed temperature and precip-
itation in the Climate Research Unit (CRU) TS v4.03 dataset
(Harris et al., 2014). The temperature and precipitation forc-
ings for the various reanalysis datasets were obtained from
the same reanalysis. The temperature and precipitation forc-
ings for the Multi-scale Synthesis and Terrestrial Model In-
tercomparison Project (MsTMIP) collection of LSMs were
from the CRU NCEP v4 dataset, which, at monthly level, is
equal to the CRU TS v3.20 dataset (Huntzinger et al., 2018).
The temperature and precipitation forcings for the Trends
and Drivers of the Regional Scale Sources and Sinks of Car-
bon Dioxide version 7 (TRENDY v7) collection of LSMs
were from the CRU TS v3.26 dataset (Stephen Sitch and
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Pierre Friedlingstein, personal communication, 2019). The
temperature and precipitation datasets that correspond to the
CMIP5 and CMIP6 SM were from the same ESMs and en-
semble members (Table S4). For observed air temperature
and precipitation, the CRU TS v4.03 dataset (Harris et al.,
2014) was used. All the temperature datasets were bilinearly
interpolated, and the precipitation datasets conservatively in-
terpolated, to 0.5◦ resolution using the NCAR Command
Language 6.6.2 (UCAR/NCAR/CISL/TDD, 2019). All the
temperature and precipitation datasets were limited to the
same common land mask as the SM products.

2.5 In situ and gridded SM datasets for evaluation of the
merged products

A recent discussion on the evaluation of coarse-scale soil
moisture datasets noted that neither in situ observations,
which have limited coverage and a small spatial footprint, nor
satellite and LSMs, which have retrieval or modeling errors,
can be considered fully adequate for evaluation at the global
scale; as such, a sound evaluation practice would require
combining multiple sources of data (Gruber et al. 2020).
Following this recommendation, the merged SM products
were evaluated against the reserved 40 % in situ observa-
tions (Sect. 2.2), as well as a few gridded reanalysis, satel-
lite, and machine-learning upscaled SM datasets. Although
the merging process aimed to use as many existing SM
datasets as possible, the gridded datasets in Table 1 were not
used in the merging because of incompatible vertical reso-
lution, non-global spatial coverage, or short temporal cover-
age (Table 1). Such evaluation against multisource gridded
datasets complements the evaluation against in situ obser-
vations by providing sanity checks on the behavior of the
merged products at large scales. All the evaluation datasets
were bilinearly interpolated to 0.5◦× 0.5◦ and aggregated to
a monthly level using the NCAR Command Language 6.6.2
(UCAR/NCAR/CISL/TDD, 2019). For the Soil Moisture and
Ocean Salinity (SMOS) L3 dataset, which was available as
monthly aggregates (https://www.catds.fr/sipad/, last access:
30 July 2021), only the data points with retrieval error (i.e.,
the “DQX” field) < 0.07 m3 m−3 were used, and the ascend-
ing (MIR_CLM4RA) and descending (MIR_CLM4RD) or-
bits were averaged. For the SMOS L4 dataset, which was
only available at daily resolution, the days with a quality in-
dex of 1 (highest quality) were used, and the monthly averag-
ing was restricted to the months with fewer than 13 missing
days to be consistent with the downloaded monthly SMOS
L3 dataset. The other evaluation datasets do not have gaps,
so the aggregation to monthly level was straightforward.
The SMOS L3 and L4 datasets were independent from the
merged products. The SoMo.ml SM is mainly upscaled from
the ISMN dataset (O and Orth, 2021,) and it is therefore only
semi-independent from the OLC ORS merged product but
independent from the unweighted averaging- or EC-based
merged products. The GLEAM v3.3a 0–100 cm dataset is not

independent from the ORS- or ALL-based merged products,
which use the 0–10 cm part of the GLEAM v3.3a dataset
(Table S2), but is independent from the CMIP5- or CMIP6-
based merged products. The SMERGE v2 dataset uses the
ESA CCI satellite data and is therefore nonindependent from
the ORS- or ALL-based merged products (Table S1), but it
is independent from the CMIP5- or CMIP6-based merged
products.

The merged products were evaluated against the validation
set of in situ observations and the gridded SM datasets using
three common metrics: mean bias (bias), root mean squared
error (RMSE), and Pearson correlation coefficient (Corr). For
evaluation against the in situ observations, the metrics were
calculated for both the whole validation set and for each
land cover type in consideration of the uneven distribution
of ISMN observations across land cover types (Fig. S1). The
observational values used in each calculation were the land-
cover-weighted averages (see Sect. 2.2), and the merged val-
ues were from the grids and time steps that have the obser-
vational values. For evaluation against the SMOS L3 gridded
dataset, the 0–10 cm layers of the merged products and the
source datasets (ORS, CMIP5, and CMIP6) were used. For
evaluation against the other evaluation datasets, the merged
and source datasets were linearly interpolated to the depths
of the evaluation datasets. The annual climatology, mean sea-
sonal anomalies (i.e., the climatology of individual months
minus the annual climatology), least-squares linear trends,
and anomalies (i.e., the original values minus the mean sea-
sonal cycle and trends) were calculated for each common
grid cell and over the common time period between each pair
of evaluated and evaluation datasets. Then, for each charac-
teristic (climatology, seasonal cycle, linear trends, or anoma-
lies), the bias, RMSE, and Corr were calculated using the
values of the characteristic pooled over all the common grid
cells. When calculating the bias, RMSE, and Corr for the
trends, the insignificant trends at p = 0.1 were set to zero
to prevent small random variability from influencing the re-
sults.

2.6 Drought and meteorological datasets for evaluation
of the merged products

In situ observations are sparse and represent much smaller
spatial scales than the 0.5◦ grid of the merged products. Other
global and regional SM datasets have short temporal cover-
age and spatial gaps in the evaluation datasets, as well as non-
independence between the merged products and evaluation
datasets. Given these limitations and to further ascertain the
quality of the merged products, the new SM products were
evaluated using process-based observational metrics, includ-
ing the responses to prominent historical drought events and
historical climate change (e.g., precipitation, temperature,
downwelling shortwave radiation). The selected historical
drought events were the United States drought of 1985–1992
and the Australian millennium drought of 2002–2009 be-
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Table 1. Global and regional datasets that were compared against the merged SM products.

Dataset Type Period Depth
(cm)

Resolution Coverage Reference

SMOS L3 RE04
MIR_CLF3MA,
MIR_CLF3MD

Satellite 2010–2020 Surface
(0–5)

∼ 25 km Global with miss-
ing values

Al Bitar et al. (2017)

SMOS L4 SCIE
MIR_CLM4RD

Reanalysis 2010–2020 0–100 ∼ 25 km Global with miss-
ing values

Al Bitar et al. (2013)

GLEAM v3.3a Reanalysis 1980–2018 0–100 0.25◦ Global Martens et al. (2017)

SMERGE v2 Reanalysis 1979–2019 0–40 0.125◦ Contiguous
United States

Tobin et al. (2017)

SoMo.ml Machine learning
upscaled from in
situ observations

2000–2019 0–10,
10–30,
30–50

0.25◦ Global O and Orth (2021)

cause of their macro-regional spatial scale and high sever-
ity; many other drought events would also fit these criteria
(Spinoni et al., 2019), but conducting a comprehensive as-
sessment of drought events is beyond the scope of this study.
A self-calibrated Palmer Drought Severity Index (scPDSI)
dataset (Dai et al., 2004) was used as the benchmark, and the
spatial patterns of SM anomalies and scPDSI were compared
year by year during these two drought events. The precip-
itation, temperature, and downwelling shortwave radiation
datasets were from the Global Soil Wetness Project (GWSP)
version 3 reanalysis (Dirmeyer et al., 2006), which provides
some independence from the CRU TS v4.03 temperature and
precipitation used in the EC method (Sect. 2.4). The SM cli-
matic sensitivities were derived using the partial correlations
with each meteorological variable calculated as conditional
on the other two variables.

2.7 OLC method

Let xtjk stand for the SM value of the source dataset k (k =
1,2, . . .,K) at time step t (t = 1,2, . . .,T ) and grid j (j =
1,2, . . .,S), and let otj be the observed SM values at time step
t and grid j , where (tj ) ∈ V and V is the subset of grids and
time steps that have observed SM. OLC calculates the final
estimated SM (µtje ) as a weighted average, with wk denoting
the weight of source dataset k, using Eq. (1).

µ
tj
e =

K∑
k=1

wkx
tj
k (1)

The optimal vector of weights for the source datasets, w =
[w1,w2, . . ., wK ]T , which minimizes the mean squared error
subject to

∑K
k=1wk = 1, is a function of the error covariance

matrix of the source datasets (A) following Eq. (2).

w =
A−11

1TA−11
(2)

The OLC procedure without a constant term requires the
source datasets to be unbiased (Bishop and Abramowitz,
2013), but the ORS datasets are biased relative to the in situ
observations. Therefore, to prevent the biases from influenc-
ing the weights, the error covariance matrix A was the co-
variance matrix of locally centered errors (etjk ), which were
calculated following Eq. (3):

e
tj
k =

(
x
tj
k − x

.j
k

)
−

(
otj − o.j

)
(t, j ) ∈ V, (3)

where x.jk is the time-averaged SM value of the source dataset
k at grid j , and o.j is the time-averaged observed SM value at
grid j . The time averaging was over the time steps in which
observed SM values exist in each grid j . The grids and time
steps for which the centered errors exist were pooled together
to create a single vector of errors for each source dataset.
This vector of errors etjk was then used to calculate the er-
ror covariance matrix A. Therefore, the derived weights were
optimal with regard to the locally centered errors, not the un-
centered errors

(
x
tj
k − o

tj
)

. However, this limitation had to
be accepted because the ISMN observations were too sparse
to enable estimating the biases at every grid in space, and a
constant bias could not be assumed over the large spatial do-
main of the study, which spans very dry to very wet climate
zones.

The OLC procedure was implemented in Python 3.6.3 un-
der a CentOS Linux environment. Different functions for cal-
culating the error covariance matrix in Python were com-
pared to eliminate potential numerical instability in ma-
trix inversion. The results were found to be similar, but
the ShrunkCovariance function in Scikit-learn v0.21.3 (Pe-
dregosa et al., 2011) generated slightly better validation per-
formance for the estimated SM than the other tested func-
tions. Therefore, ShrunkCovariance was selected for calcu-
lating A.

Earth Syst. Sci. Data, 13, 4385–4405, 2021 https://doi.org/10.5194/essd-13-4385-2021



Y. Wang et al.: Development of observation-based global multilayer SM products (1970–2016) 4391

In addition to estimating SM, the OLC procedure also cal-
culates the associated uncertainty in the form of standard de-
viation (σ tje ) based on adjusted weights (w̃k), adjusted source
SM datasets (x̃tjk ), and the estimated SM (µtje ) following
Eq. (4).

σ
tj
e =

√√√√ K∑
k=1

w̃k

(
x̃
tj
k −µ

tj
e

)2
(4)

The adjusted weights are a function of the original weights
(wk) and a parameter α to have w̃k ≥ 0 and maintain∑K
k=1w̃k = 1, following Eqs. (5) and (6).

w̃k =
wk + (α− 1) 1

K

α
(5)

α =

{
1 if all wk are nonnegative
1−Kmin(wk) if the minimum wk is negative

(6)

The adjusted source SM datasets (x̃tjk ) are linear functions
of the source SM datasets (xtjk ) and the estimated SM (µtje )
through parameters α and β, where the parameter β is a func-
tion of the discrepancy between the observations and the es-
timated SM (s2

e ), following Eqs. (7)–(9).

x̃
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k = µ
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e +β

(
x
.j
k +α

(
x
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−µ
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)
(7)

β =

√√√√√ s2
e

1
N

∑
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(
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−µ
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e
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s2
e =

∑
j,t∈V

(
µ
tj
e − o

tj
)2

N − 1
(9)

Here, V is the subset of grid and time step combinations that
have observed SM, and N is the total number of grid time
steps that have observed SM (i.e., N = |V |).

2.8 EC method

For establishing the EC relationship, temperature and precip-
itation were selected to be the constraint variables because of
their significant roles in controlling evapotranspiration from
and recharge to the soil water. SM was the target variable. For
each target year, month, grid, and soil depth, a linear regres-
sion relationship was fitted using SM anomalies as the pre-
dictand and temperature and precipitation anomalies as the
predictors. The SM, temperature, and precipitation anoma-
lies of each source dataset (i.e., the datasets in the ORS,
CMIP5, CMIP6, CMIP5+6, or ALL group; Fig. 1) were cal-
culated by removing the monthly climatology of 1981–2010.
The vectors of SM, temperature, and precipitation anomalies
in each regression relationship consisted of the anomalies for

the target year, month, and soil depth over the nine nearest
grids to the target grid and over all the source datasets. If
the fitted regression slopes of both temperature and precip-
itation anomalies were significant at p = 0.05, the fitted re-
gression was used as the EC relationship. If either slope was
insignificant, the regression was refitted using only precipita-
tion or temperature anomalies as the predictor. If the refitted
slope of precipitation (temperature) anomalies was signifi-
cant at p = 0.05 and had a lower p value than the refitted
slope of temperature (precipitation) anomalies, the refitted
regression with precipitation (temperature) anomalies was
used as the EC relationship. If neither of the refitted slopes
was significant at p = 0.05, the EC relationship was deemed
insignificant for this year, month, grid, and soil depth. After
the significant EC relationships were obtained, the observed
temperature and precipitation were converted to anomalies
relative to the monthly climatology of 1981–2010 and fed
into the EC relationships to generate constrained SM anoma-
lies. Finally, the constrained SM anomalies were added to
the mean monthly climatology over all the source datasets
to generate constrained SM values. For the combinations of
year, month, grid, and soil depth that did not have significant
EC relationships, the mean monthly climatology over all the
source datasets was used as the constrained SM values. Un-
certainties in the EC-constrained SM values were estimated
using the standard deviation of the prediction of the linear
regressions, calculated by the “wls_prediction_std” function
of the Python package statsmodels (Seabold and Perktold,
2010). Uncertainties in which there were no significant EC
relationships were estimated using the standard deviation of
the source datasets.

The fitted EC relationships are summarized in Figs. S3
and S4 using the average values of the significant regression
coefficients and the percentage of significant regression co-
efficients for temperature and precipitation, respectively. The
regression coefficients for temperature were mostly negative
and for precipitation mostly positive, which can be explained
by the fact that higher temperature causes higher evaporative
loss of water from soil, and higher precipitation causes more
recharge of water into soil. In the Sahara region, the aver-
age regression coefficients were mostly positive for temper-
ature (Fig. S3), which might be related to interannual corre-
lation between precipitation and temperature caused by the
West African monsoon (Zhang and Cook, 2014). For the
ORS datasets at 30–50 and 50–100 cm, the regression coef-
ficients were also mostly positive for temperature (Fig. S3).
The ORS datasets at these depths only represent three sets
of meteorological forcings (GLDAS NOAH025_M2.0, CRU
TS v3.20 for MsTMIP, and CRU TS v3.26 for TRENDY v7;
Tables S1–S3 and S5). Therefore, the EC relationships for
the ORS datasets at these depths likely have high uncertainty.
Because only small percentages of EC relationships were sig-
nificant at these depths (Figs. S3 and S4), the counterintuitive
regression coefficients were unlikely to have a large impact
on the merged product. In general, the percentages of signif-
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icant EC relationships were higher for the CMIP5, CMIP6,
CMIP5+6, and ALL datasets than for the ORS datasets, sug-
gesting that more diverse source datasets lead to stronger EC
relationships (Figs. S3 and S4). In the preliminary analysis,
additional setups for the regression were tested, including
whether the regression should use the actual values of SM,
temperature, and precipitation or the anomalies and whether
the regression should use only the target grid or the nine near-
est grids. The setup with anomalies and the nine nearest grids
was found to result in more significant regression coefficients
and better performance (results not shown).

2.9 Temporal concatenation and homogeneity test
against in situ and gridded SM datasets

Because some ORS datasets were not available for the en-
tire 1970–2016 period, separate OLC ORS, EC ORS, and
EC ALL datasets were produced for three different periods
(1970–2010, 1981–2016, and 1981–2010) and were concate-
nated into a continuous 1970–2016 product using a previ-
ous intercalibration approach (Fig. 1) (Dorigo et al., 2017;
Liu et al., 2011, 2012). To perform the concatenation on the
estimated SM values, the merged product for each of the
three periods was decomposed into monthly climatology and
monthly anomalies, with the monthly climatology being cal-
culated for the overlapping period (1981–2010). Then, the
anomalies of the 1970–2010 and 1981–2010 product were
rescaled to have the same cumulative distribution function
(CDF) as the anomalies of the 1981–2016 product during
their overlapping period (1981–2010) using the piecewise
linear CDF matching technique (Liu et al., 2011). In the first
step of the CDF matching technique, the 0th, 5th, 10th, 20th,
30th, 40th, 50th, 60th, 70th, 80th, 90th, 95th, and 100th per-
centiles of the anomalies of each product during the overlap-
ping period were identified on their CDF curves. In the sec-
ond step, the percentiles of the 1970–2010 and 1981–2010
products were plotted against the percentiles of the 1981–
2016 product. A linear line was drawn between each two ad-
jacent percentiles (e.g., the 5th and 10th percentiles), result-
ing in 12 linear segments. In the last step, the anomalies of
the 1970–2010 and 1981–2010 datasets that fell into each in-
terval of percentiles (e.g., 5th–10th) were rescaled using the
equations of the linear segments. Values outside the range of
the monthly anomalies during the overlapping period were
rescaled using the equation of the closest linear segment.
A graphic illustration of the CDF matching technique can
be found in Fig. 3 of Liu et al. (2011). The CDF matching
was conducted for all the months as a whole, rather than for
each month separately, because the latter setup would result
in too few data points (36 data points during 1981–2016) to
robustly determine the percentiles. The rescaled anomalies
were added back to the monthly climatology of each product.
Finally, the three added-back products were concatenated
by using the 1970–2010 product for 1970–1980, the 1981–
2010 product for 1981–2010, and the 1981–2016 product for

2010–2016. To concatenate the estimated SM uncertainty of
the OLC method (σ tje ; see Sect. 2.7) and the EC method (see
Sect. 2.8), the uncertainty values of 1970–2010 and 1981–
2010 were directly rescaled to the 1981–2016 values using
CDF matching without prior conversion to monthly anoma-
lies, and the rescaled uncertainty values were concatenated
like the mean values.

Despite the intercalibration procedure, temporal discon-
tinuity may still exist in the OLC ORS, EC ORS, and EC
ALL products because their source datasets were different
in the 1970–1980, 1981–2010, and 1981–2016 periods. To
test this possibility, a previously demonstrated homogene-
ity test procedure (Su et al., 2016) was applied to determine
whether statistically significant discontinuities in mean or
variance exist between the 1970–1980 and 1981–2010 peri-
ods or between the 1981–2010 and 1981–2016 periods. The
procedure involves calculating Q values between the time
series of interest, Y , and one or multiple reference time se-
ries, Xi (i = 1,2, . . .,K), that are in the same grid as Y using
Eq. (10):

Q= Y −

∑K
i=1Vi (βiXi − ci)∑K

i=1Vi
, (10)

where βi and ci are the linear regression coefficients between
Xi and Y, and the weighting coefficient, Vi , is equal to the
square of βi if βi is positive and zero if βi is negative. Then,
the procedure uses the Wilcoxon rank-sum test to determine
if the mean values of Q are significantly different between
two time periods and the Fligner–Killeen test to determine
if the variances of Q are significantly different between two
time periods. Like in the original study (Su et al., 2016), a
time series Xi was only selected for comparison if the Pear-
son correlation between Xi and Y was greater than 0.8 and
significant at a p value of 0.01 or smaller and if at least three
Q values could be calculated in each of the two compared
time periods. In this study, the Y time series were the time
series in each grid in a merged product. Two types of time se-
ries Xi were used. One was the time series of original ISMN
observations (i.e., not interpolated to 0–10, 10–30, 30–50, or
50–100 cm, aggregated to grid level, or split into validation
or training sets) that were located in the same grid (Sect. 2.2).
The other type was the time series of the gridded SM datasets
for evaluation (Sect. 2.5) in the same grid. For the latter type,
the merged products were linearly interpolated to the same
depths as the gridded SM datasets.

3 Results

3.1 Evaluation against the validation set of ISMN SM
observations

When evaluated for the whole validation set, the bias of the
merged products ranged from −0.044 to 0.033, the RMSE
ranged from 0.076 to 0.104 m3 m−3, and the Corr ranged
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Figure 2. Performance of the original ORS, CMIP5, and CMIP6 datasets (box plots) and the merged products (scatter plots) for the validation
set of observations. The box plots show (from top to bottom) maximum, 75th percentile, median, 25th percentile, and minimum. The ORS
box plot includes all the ORS datasets evaluated for their available years.

from 0.35 to 0.67 across the four soil depths (Fig. 2). The
merged products generally showed a smaller magnitude of
bias, smaller RMSE, and higher Corr than the source datasets
from which the products were merged (Fig. 2). The bias of
both the source and merged datasets shifted from mostly pos-
itive to mostly negative from the shallowest to the deepest
soil layer, indicating a tendency toward the overestimation of
the vertical SM gradient; the shallower soil layers also tended
to have lower RMSE and higher Corr than the deeper lay-
ers (Fig. 2). The bias values of individual merged products
were similar; the RMSE and Corr values of the ORS-based
merged products (Mean ORS, OLC ORS, EC ORS) were
better than the EC ALL product, and the RMSE and Corr
values of the EC ALL product were better than the CMIP5-
or CMIP6-based merged products (EC CMIP5, EC CMIP6,
EC CMIP5+6) (Fig. 2).

The merged products showed a lower magnitude of bias,
lower RMSE, and higher Corr than the source datasets across
most of the land cover types (Fig. S5). The exceptions were
the shallower (0–10 and 10–30 cm) soil layers over the water
bodies, evergreen needleleaf forests, and evergreen broadleaf

forests, for which the merged products produced RMSE sim-
ilar to the bulk of the source datasets (Fig. S5e–h), and the
deeper (30–50 and/or 50–100 cm) soil layers over the open
shrublands, urban and built-up lands, cropland–natural vege-
tation mosaics, and barren lands, for which the merged prod-
ucts showed similar or even lower Corr and RMSE similar
to the bulk of the source datasets (Fig. S5e–i). Although the
merged datasets considerably overestimated the SM in the
water bodies and evergreen needleleaf forests (bias = 0.016
to 0.146 m3 m−3; Fig. S5a–d), the high Corr for these two
land cover types (0.30 to 0.72 for the ORS-based merged
products, −0.27 to 0.55 for the other merged products;
Fig. S5i–l) indicated good ability to track the spatiotempo-
ral variability. The hybrid products underestimated the SM in
the 0–10 cm layer of the evergreen broadleaf forests (bias=
−0.174 to−0.095 m3 m−3), the deciduous needleleaf forests
(bias=−0.162 to −0.055 m3 m−3), and the deeper soil lay-
ers of many other land cover types (Fig. S5a–d). The Corr
values of the merged products were also very low in the ever-
green broadleaf forests (−0.81 to 0.05; Fig. S5i–l). Similar to
the global level, the ORS-based merged SM tended to outper-

https://doi.org/10.5194/essd-13-4385-2021 Earth Syst. Sci. Data, 13, 4385–4405, 2021



4394 Y. Wang et al.: Development of observation-based global multilayer SM products (1970–2016)

Figure 3. The normalized bias, RMSE, and Corr among the annual climatology, seasonal cycle, linear trends, and anomalies of the individual
merged products (Mean ORS through EC ALL) and source datasets (ORS, CMIP5, CMIP6), as well as the global and regional datasets for
evaluation (SMOS L3, SoMo, SMERGE v2, SMOS L4, GLEAMv 3.3a). The normalization involves dividing each value by the column-wise
maximum in each panel and multiplying by 100 %, and it was performed to prevent all the values in each column from showing the same
color. The blue number at the top of each column is the column-wise maximum to the precision of two decimal points. The asterisk (*)
indicates that the magnitude of the bias, RMSE, or Corr of the merged product is better than the product’s source datasets in the same column
(for EC CMIP5+6, the comparison was made against the average of CMIP5 and CMIP6; for ALL, against the average of ORS, CMIP5, and
CMIP6). The displayed evaluation metrics of the ORS, CMIP5, and CMIP6 are the average value over the individual source datasets in each
group.

form the EC ALL and the CMIP5- and CMIP6-based merged
products (Fig. S5). The three merging methods performed
similarly over most land cover types, but the OLC method
(OLC ORS product) had lower RMSE and higher Corr than
the other two methods (Mean ORS and EC ORS products)
over the urban and built-up lands, crop–natural vegetation
mosaic, and barren land cover types (Fig. S5).

3.2 Evaluation against global and regional gridded SM
datasets

The evaluating results for the merged SM products against
independent or semi-independent gridded SM datasets were

highly dependent on the evaluation dataset. For example,
as shown above each panel in Fig. 3, the maximum bias,
RMSE, and Corr among the merged and source datasets
in the evaluation of climatology against the SMOS L4 0–
100 cm dataset were 0.12 m3 m−3, 0.16 m3 m−3, and 0.16,
respectively, whereas the same metrics were −0.02 m3 m−3,
0.11 m3 m−3, and 0.81 in the evaluation against the GLEAM
v3.3a 0–100 cm dataset. To emphasize the differences be-
tween the merged and the source datasets rather than across
the evaluation datasets, Fig. 3 displays the evaluation met-
rics in normalized units, with the maximum value across
the merged and source datasets of each matric set to 100 %.
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Within each column of each panel in Fig. 3, the merged prod-
ucts generally had lower RMSE and higher Corr than the
average RMSE and Corr of corresponding source datasets,
and the ORS-based products generally had lower RMSE and
higher Corr than the CMIP5- or CMIP6-based products. The
magnitudes of bias were often similar between the merged
and the source datasets for climatology, trend, and anoma-
lies, but the bias in seasonality of the merged datasets was
generally better than that of the source datasets.

3.3 Homogeneity test against in situ and gridded SM
datasets

Because of the screening criteria (Sect. 2.9), few in situ ob-
servational time series were available for conducting the ho-
mogeneity test. Therefore, homogeneity tests using in situ
SM data were only performed for between 1 and 10 grids
(exact numbers not shown) for the various combinations of
time periods (between 1970–1980 and 1981–2010 or be-
tween 1981–2010 and 1981–2016) and depths (0–10, 10–30,
30–50, and 50–100 cm). None of these test results showed
significant discontinuity, but the scarcity of tested grids ren-
dered the finding inconclusive.

With the gridded SM datasets, the majority of the global
grids satisfied the screening criteria. The left two columns
of Fig. 6 show that for all the merged products, no signif-
icant discontinuity in mean existed between the time peri-
ods 1970–1980 and 1981–2010. The right two columns of
Fig. 6 show that discontinuity in variance existed between
the time periods 1970–1980 and 1981–2010, but the percent-
ages of discontinuous grids were similar between the con-
catenated products (OLC ORS, EC ORS, EC ALL) and the
other products that were based on the same source datasets
throughout 1970–2016 (Mean ORS, EC CMIP5, EC CMIP6,
and EC CMIP5+6). Although the fitting of a separate regres-
sion for each year and month in the EC procedure (Sect. 2.8)
might have introduced inhomogeneities into to the EC-based
products, the unweighted averaging method behind mean
ORS did not have the same concern. However, the Mean
ORS product had the highest percentages of discontinuous
grids among all the merged products. These results indicate
that the identified discontinuities were more likely caused
by systematic differences between the evaluation datasets
(SMERGE v2 and GLEAM v3.3a) and the source datasets
for merging (ORS, CMIP5, and CMIP6) rather than the con-
catenation procedure. The homogeneity test between 1981–
2010 and 2011−2016 had similar results as the test between
1970–1980 and 1981–2010. Virtually no discontinuities in
mean were identified, and similar percentages of discontinu-
ous grids were identified in the concatenated products (OLC
ORS, EC ORS, EC ALL) and the others (Figs. S6–S7).

3.4 Evaluation against selected drought events

Lower values in scPDSI and SM anomalies are indicative
of drier conditions, and higher values indicate wetter condi-
tions. For the United States 1985–1992 drought, the scPDSI,
0–10 cm SM anomalies, and 0–100 cm SM anomalies all
showed gradual expansion of drought from 1985 to 1988
and gradual alleviation from 1989 to 1992, with the most
severe drought occurring in the northern Great Plains in
1988 (Figs. 4 and S9). For the Australia 2002–2009 drought,
the ORS-based 0–10 and 0–100 cm SM anomalies captured
the pan-Australian drought shown by the scPDSI in 2002–
2003, 2005, and 2007–2009, as well as the eastern Aus-
tralian drought in 2004 and 2006 (Figs. S8 and S10). The
CMIP5- and CMIP6-based SM anomalies also mostly cap-
tured the Australian drought patterns but did not capture the
pan-Australian drought in 2007 and 2008 (Figs. S8 and S10).

To better quantify the similarity between the scPDSI
and SM anomalies, Spearman correlations (Hollander et al.,
2013) were calculated and are shown above each panel in
Figs. 4 and S8–S10. The Spearman correlation metric was
deemed suitable for measuring the similarity because the
magnitudes of scPDSI, which is a unitless standardized in-
dex, and of SM anomalies (m3 m−3) are not comparable. The
Spearman correlation is not sensitive to magnitudes because
the metric is calculated using the rank of each x value among
all the x values and the rank of each y value among all the y
values for an x–y pair of time series (Hollander et al., 2013).
The Spearman correlations between scPDSI and the ORS-
based SM anomalies were between 0.698 and 0.890 for the
United States (Figs. 4 and S9) and 0.427 to 0.872 for Aus-
tralia (Figs. S8 and S10). For the purely CMIP5- or CMIP6-
based products, the Spearman correlations were between
−0.147 and 0.850 for the United States (Figs. 4 and S9)
and 0.005 to 0.872 for Australia (Figs. S8 and S10). The
EC ALL product, which combines ORS, CMIP5, and CMIP6
source datasets, had Spearman correlations that tended to be
in the middle of the ORS- and the CMIP5- and CMIP6-based
products. The better performances of the ORS-based than
the CMIP5- and CMIP6-based merged products were con-
sistent with the evaluation results against in situ observations
(Figs. 2 and S5).

3.5 The spatial and temporal characteristics of the
merged SM products

Because all the merging procedures essentially involve av-
eraging over multiple source datasets (see Sect. 2.1, 2.7,
and 2.8), the variability and trends of the merged products
may be damped compared with the source datasets because
of mutual cancellation. To ascertain whether this is the case,
power spectral densities were calculated from regionally av-
eraged time series of the merged products and the source
datasets (i.e., ORS, CMIP5, and CMIP6), and they are com-
pared in Figs. 6 and S10. The regions used were the Inter-
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Figure 4. The p values of the homogeneity test on the discontinuity in the mean (via Wilcoxon rank-sum test) and in the variance (via
Fligner–Killeen test) between the time periods 1970–1980 and 1981–2010 in the merged products. The SoMo datasets could not be used to
evaluate discontinuity between these two time periods because SoMo only spans 2000 to 2019. The red numbers beneath each panel indicate
the percentage of grids that had significant discontinuity (p ≤ 0.05) in the panel. Blank grids exist because the SMERGE v2 or GLEAMv3.3a
0–100 cm data in these grids did not satisfy the screening criteria for the homogeneity test.

governmental Panel on Climate Change (IPCC) Special Re-
port on Managing the Risks of Extreme Events and Disas-
ters to Advance Climate Change Adaptation (SREX) regions
(Field et al., 2012; Fig. S11). The power spectral densities
of the Mean ORS, OLC ORS, and EC ORS products very
rarely exceeded the boundaries of the source datasets (e.g.,
panel c2 of Fig. 6, panel j0 of Fig. S12), showing that at
least at a regional level, these merged products did not un-
derestimate the temporal variability in SM. The variabilities
of the EC CMIP5, EC CMIP6, EC CMIP5+6, and EC ALL
products were generally within the boundaries of the source
datasets at the 0−10, 10–30, and 30–50 cm depths. However,
the variability of these products tended to be too high at the

month-to-month scale (i.e., high-frequency, short-period end
of the spectrum) and too low at the decadal scale (i.e., low-
frequency, long-period end of the spectrum) at the 50–100 cm
depth (Figs. 6 and S12).

The long-term trends in the regionally averaged SM of the
merged products showed ranges that were centered around
similar values as the source datasets and were within the
ranges of the source datasets except for a few cases (EC
ORS 10–30 cm Sahara and West Asia, 30–50 cm Sahara)
(Fig. S13). For both the merged products and the source
datasets, the most negative trends occurred in northeast-
ern Brazil for 0–10, 10–30, and 30–50 cm and in southern
Australia–New Zealand for 50–100 cm, and the most positive
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Figure 5. The annual mean scPDSI anomalies (no unit) and annual mean SM anomalies (m3 m−3) during the US drought in 1985–1992.
The numbers above the plots are the Spearman correlation between the anomalies of the merged product and scPDSI, and the asterisk (*)
indicates that the correlation is significant at p = 0.05. The anomalies were calculated relative to the climatology of 1970–2016. The SM
anomalies are for 0–10 cm.

values occurred in Alaska–northwestern Canada, southeast-
ern South America, and northern Asia (Fig. S13). Therefore,
the merging procedure was unlikely to have caused underes-
timation of the trends of the merged products. The occasional
underestimations by the EC ORS dataset might be caused by
uncertainty in the precipitation and temperature trends in arid
regions. In the Sahara and West Asian regions, the CRU TS
v4.03 dataset, which was used as an observational constraint
in the EC procedure (Sect. 2.4), had either more positive or
more negative trends in precipitation than the drivers of the
source datasets and mostly less positive trends in tempera-
ture. Since temperature was positively correlated with the
10–30 cm and 30–50 cm SM in the EC relationship in the
Sahara and West Asian regions (Fig. S3), the negative bias
in temperature trends would be consistent with the negative
bias in SM trends.

The SM climatology showed reasonable spatial patterns in
all the merged products, with the lowest values occurring in
the arid regions of the Sahara, western United States, cen-
tral Asia, and interior Australia and the highest values oc-
curring in the high latitudes and tropical rainforest regions

(Fig. S15). The OLC merging method caused an increase in
absolute SM values, especially in the 0–10 and 10–30 cm soil
layers, relative to unweighted averaging (Fig. S14, first and
second rows). The EC method did not induce a similar in-
crease (Fig. S15, first and third rows), which was expected
because the procedure did not change the 1981–2010 cli-
matology of the source datasets (Sect. 2.8). The Mean ORS,
EC ORS, EC CMIP5+6, and EC ALL products showed little
difference in SM climatology across the soil layers, but the
OLC ORS and EC CMIP6 products showed decreased SM
from the shallower to deeper soil layers (Fig. S15). The EC
CMIP5 had the highest SM values at the 30–50 cm soil layer
(Fig. S15).

The timings of annual maximum SM were mostly consis-
tent across different merged products, with exceptions oc-
curring in northeastern Asia, eastern Canada, and Alaska
(Fig. S16). The maximum SM occurred around February in
the southern subtropics, southern North America, and the
Mediterranean; around September in the monsoonal regions
of Africa and southern and eastern Asia; and around May
in northern North America and most of Eurasia. At deeper
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Figure 6. The power spectral density of the spatially averaged time series of monthly SM over selected IPCC SREX regions (Field et al.,
2012). The power spectral densities of the source datasets (ORS, CMIP5, and CMIP6) were calculated for each individual source dataset,
and the displayed envelopes encompass the minimum to maximum ranges. Abbreviations: W – west, N – north, S – south, E – east.

soil layers (30–50 and 50–100 cm), the CMIP5- and CMIP6-
based merged SM showed an earlier occurrence of the annual
maximum SM (around June) than the other merged datasets
(around September) in eastern Asia.

All the merged products showed increasing SM trends
in the northern high latitudes, central Eurasia, and north-
ern Africa and decreasing trends in eastern South Amer-
ica, southern Africa, and eastern Australia (Fig. S17). The
CMIP5- and CMIP6-based merged datasets showed greater
drying in eastern North America and Europe than the ORS-
based estimates and less drying near the North China Plain
than the ORS-based products. A major difference existed be-

tween the CMIP6-based merged products (EC CMIP6, EC
CMIP5+6, EC ALL) and the other products in northeastern
Asia in the 50–100 cm soil layer; the former displayed strong
drying trends and the latter did not. The estimated uncertainty
intervals of the merged products were slightly larger for the
OLC method than the unweighted standard deviation of the
source datasets, and both were considerably larger than the
EC method (Fig. S18). For all the methods, the uncertainty
intervals were greater in the temperate regions than in the
arid regions, which was consistent with the higher SM abso-
lute values in the temperature regions.
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Figure 7. The variable that has the best explanatory power for the interannual variability in SM in each grid for the different merged
products and depths. The best explanatory power was defined as having the highest absolute partial correlation in the partial correlation
analysis between annual mean SM and the annual mean meteorological variables. Hatching indicates that the partial correlation of the best
explanatory variable was significant at p = 0.05.

3.6 Sensitivity to precipitation, air temperature, and
surface downwelling shortwave radiation

Based on partial correlation, precipitation was the dominant
control of SM variability in the ORS-based products and in
EC ALL over most of the globe (Fig. 7), and it generally
had significant positive partial correlations (Fig. S19). Pre-
cipitation was also the dominant control of SM variability
in the CMIP5- and CMIP6-based products in the 0–10 and
10–30 cm layers, but not in the 30–50 and 50–100 cm lay-
ers (Fig. 7), where the partial correlations between precipi-
tation and SM were insignificant across most of the global
land surface (Fig. S18). In all the merged products, air tem-

perature had significant negative partial correlations with SM
in the southwestern United States, eastern South America,
southern Africa, the Mediterranean, and Australia (Fig. S20).
Some significantly positive correlations between tempera-
ture and SM existed in the Sahara, central Asia, and Ti-
betan Plateau regions (Fig. S20). The primarily negative cor-
relations were consistent with the physical expectation that
higher temperatures induce higher evaporative demand and
thus lower SM. The CMIP5- and CMIP6-based products had
stronger negative correlations between temperature and SM
than the ORS-based products in Europe, which may explain
the former products’ more negative trends in SM in this re-
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gion (Fig. S17). Downwelling shortwave radiation was rarely
a dominant control of SM variability in the ORS-based prod-
ucts (Fig. 7). For the CMIP5- and CMIP6-based products,
downwelling shortwave radiation was only a dominant con-
trol of SM variability in some of the midlatitude to high-
latitude and tropical rainforest regions (Fig. 7), which were
consistent with the distribution of light-limited ecosystems.

4 Discussion

Overall, the merged SM products showed better perfor-
mances than their source datasets (Sect. 3.1 and 3.2), tem-
poral homogeneity (Sect. 3.3), the ability to capture large-
scale drought events (Sect. 3.4), reasonable spatiotemporal
patterns (Sect. 3.5), and reasonable climatic response char-
acteristics (Sect. 3.6) across the globe and multiple soil lay-
ers. The ranges of performance metrics of the new datasets
against in situ data (Figs. 2 and S5) were broadly within
the estimates reported by previous SM evaluations, although
making a strict comparison is difficult because of the widely
different spatiotemporal coverages and resolutions (Beck et
al., 2021; Karthikeyan et al., 2017; Li et al., 2020b; Wang et
al., 2021a; Yuan and Quiring, 2017). These results demon-
strated that the merging procedures (unweighted averaging,
OLC, EC) used were effective in creating relatively accurate
long-term multilayer SM data at the global scale.

Regarding the three merging methods, the OLC method
only showed better performance than unweighted averag-
ing over the urban and built-up lands, crop–natural vegeta-
tion mosaic, and barren land cover types (Fig. S5), which
may be a benefit rendered by the overrepresentation of these
land cover types in the in situ observations (Fig. S1). The
ISMN stations are very sparse (Fig. S1), and a previous
study suggested that denser observations may lead to a better-
performing merged product (Gruber et al., 2018). In the fu-
ture, data sources such as FLUXNET and local SM networks
that are not included in the ISMN may be exploited to im-
prove the OLC ORS product. Future extension of the OLC
method may aim to account for the spatial representative-
ness of individual stations (Molero et al., 2018) and to test
alternative error estimation methods such as extended collo-
cation (Gruber et al., 2016). The EC method showed simi-
lar performance as the unweighted averaging when applied
to the ORS source datasets, which may be because the me-
teorological forcings for these datasets were already realis-
tic (Table S5). However, the effectiveness of the EC method
was clear when applied to the online CMIP5 and CMIP6
simulations. Despite such EC-based improvement, the ORS-
based merged products tended to perform better than the EC
CMIP5, CMIP6, CMIP5+6, and ALL products (Figs. 2 and
S5). The current EC procedure used simple linear regression
and only temperature and precipitation as constraint vari-
ables (Sect. 2.8). In addition to temperature and precipita-
tion, the SM was influenced by other atmospheric and land

conditions (e.g., wind, leaf area and stomata closure, snow
cover and melt, groundwater). Therefore, future studies may
achieve better EC outcomes by incorporating more influenc-
ing factors into the EC procedure and by using nonlinear re-
gression methods such as machine learning. Another draw-
back of the current EC method is the low uncertainty inter-
val (Fig. S18), which is likely an underestimation. Whereas
the OLC method accounts for the difference between in situ
and source datasets in estimating the uncertainty interval
(Sect. 2.7), the EC method does not. Future studies should
also aim to better incorporate this information into the es-
timation of the EC-based uncertainty interval and to better
account for the structural uncertainty introduced by the re-
gression form and limited range of predictors in the EC pro-
cedure.

The high performance variability of merged products
across space (Fig. S5) is consistent with previous studies
(Beck et al., 2021; Karthikeyan et al., 2017; Li et al., 2020b;
Wang et al., 2021a; Yuan and Quiring, 2017). The high RM-
SEs of the merged products in the shallower soil layers across
the water bodies and evergreen needleleaf forests (Fig. S5e–
h) were likely caused by the high positive bias in these land
cover types (Fig. S5a–d) since the corresponding Corr val-
ues were relatively high (Fig. S5i–l). The positive bias over
water bodies may be caused by inaccurate land–water clas-
sification at the resolution of the source datasets (Tables S1–
S4). The positive and negative bias over the forested land
cover types in high-latitude and tropical regions (e.g., ever-
green needleleaf forests, evergreen broadleaf forests, and de-
ciduous needleleaf forests; Fig. S2) may be due to biases in
evapotranspiration and leaf area index in the source LSMs,
reanalysis, and ESMs (Tables S2–S4), and it may be further
related to processes such as rooting depth and hydraulic re-
distribution (Pan et al., 2020; Wang et al., 2021b). Low Corr
occurred over some land cover types in high latitudes, semi-
arid to arid regions, and urban areas (e.g., open shrublands,
urban and built-up lands, cropland–natural vegetation mo-
saics, and barren lands; Fig. S2). In the high latitudes, the
low Corr may be associated with inadequate frozen soil pro-
cesses in the source LSMs, reanalysis, and ESMs (Andresen
et al., 2020). In the semi-arid to arid regions, the low Corr
may be due to random errors in SM observations and simu-
lated values, which would be comparatively large for low SM
values. In urban areas, the low performance may be caused
by the radio frequency interference of satellite observations
(Wang et al., 2012) and inadequacies in the representation of
urban areas at the resolution of the source model products
(Tables S2–S4).

When evaluated against the global and regional gridded
datasets that were not used in the merging, the merged prod-
ucts showed the highest RMSE in climatology and lowest
Corr in spatial trends (Fig. 3; see the blue numbers above
each panel). Such results were likely because the climatol-
ogy SM values had higher magnitudes than the seasonal and
interannual anomalies or trends, and the historical SM trends

Earth Syst. Sci. Data, 13, 4385–4405, 2021 https://doi.org/10.5194/essd-13-4385-2021



Y. Wang et al.: Development of observation-based global multilayer SM products (1970–2016) 4401

were highly uncertain. The low similarity between the SMOS
L3–L4 and the synthesized SM products may be caused by
the short overlapping period (2010–2016, Table 1). A pre-
vious study also found systematic differences between the
climatology of satellite-observed and simulated SM (Piles
et al., 2019). The high similarity between the SoMo.ml and
GLEAM v3.3a root zone SM datasets and the merged prod-
ucts may be because the former depend on the same ISMN
stations, from which the OLC ORS product was derived
(Sect. 2.2), and the latter were from the same reanalysis as
the GLEAM v3.3a surface dataset used in the merging (Ta-
ble S2). In general, because these evaluation datasets are not
ground truths like in situ observations, the identified differ-
ences in evaluation metrics should not be viewed as an abso-
lute indicator of unreliability in the merged products. Simi-
larly, the benchmarking against scPDSI (Sect. 3.3) only pro-
vided qualitative rather than quantitative indicators of perfor-
mance for the merged products because scPDSI is essentially
a different variable from SM.

The vertical gradient in bias (Figs. 2, S5), the high uncer-
tainty in the vertical gradient in the climatology of merged
SM (Fig. S15), and the divergent trends in the 50–100 cm SM
in northeastern Asia across the merged products (Fig. S17)
point to the need to reduce uncertainties in the vertical dis-
tribution and dynamics of SM in the merged products. The
high SM values for the HadGEM2-CC and HadGEM-ES
datasets may be the reason why the highest SM occurred
in the 30–50 cm layer in the EC CMIP5 product (Fig. S22).
All the source datasets for the EC CMIP6 SM showed nega-
tive trends in northeastern Asia in the 50–100 cm soil layer,
but this feature does not exist in the original ORS or CMIP5
datasets (results not shown). All the source datasets do not
have consistent SM vertical gradients, with the maximum
value falling at either the surface, deepest, or intermediate
soil layers (Fig. S22). Such vertical inconsistencies may be
related to inconsistencies in the vertical discretization of the
soil column (Tables S2–S4), soil properties in each layer,
modeling of lateral flow and drainage, or other factors (e.g.,
Balsamo et al., 2009; Best et al., 2011; Melton et al., 2019).
Previous regional or global SM evaluations (e.g., Beck et al.,
2021; Karthikeyan et al., 2017; Li et al., 2020b; Wang et al.,
2021a; Yuan and Quiring, 2017) rarely focused on the perfor-
mance on vertical gradient, and such a limitation should be
better addressed in future analyses and dataset development.

The temporal homogeneity test showed that discontinuity
in variance existed in all the merged products, which may
arise from several sources. The reference datasets, SMERGE
v2 and GLEAM v3.3a 0–100 cm, were not perfectly homoge-
neous because both datasets assimilate satellite observations
made by different instruments over time (Tobin et al., 2019;
Martens et al., 2017). The observation systems assimilated
by the reanalysis datasets of the ORS (Table S2) also change
over time, thereby leading to potential discontinuities in the
ORS-based products. Such limitations cannot be eliminated
considering the paucity of records before the satellite era and

the continuous evolution of observational and reanalysis sys-
tems. Discontinuity in a statistical sense can also be caused
by changes in land use and other types of disturbances be-
tween two time periods, but such apparent discontinuity re-
flects real-world situations.

The SM seasonality in the merged products (Fig. S16) was
broadly consistent with previously reported timing of annual
maximum precipitation (Knoben et al., 2019). Differences at
the deeper soil layers between the CMIP5- and CMIP6-based
merged products and the ORS-based products may be par-
tially caused by the lack of consideration of lagged SM re-
sponse to meteorological drivers, especially at the deeper lay-
ers, in the EC method (Sect. 2.8). Uncertainty at the deeper
layers would also be high because fewer source datasets were
available than for the shallower layers (Tables S1–S4). The
SM trends (Fig. S17) were broadly consistent with previous
reports on historical changes in agricultural droughts (Dai
and Zhao, 2017; Liu et al., 2019; Lu et al., 2019).

The primarily positive partial correlations between the SM
and precipitation, and the primarily negative partial correla-
tions between the SM and air temperature or shortwave radi-
ation, were consistent with expectations from physical pro-
cesses. The existence of significant positive partial correla-
tions between air temperature and SM might be caused by
less precipitation falling as snow at higher temperatures in
the cold Tibetan Plateau and might be caused by stronger
land–atmosphere feedbacks at higher temperatures in the Sa-
hara and central Asia. The weaker relationships between pre-
cipitation and SM in the CMIP5- and CMIP6-based merged
products than those in the ORS-based products (Fig. S15)
may be because the EC method did not fully explain the
temporal mismatch between the source datasets and the real
world because the relationships were insignificant in various
grids and time steps (Fig. S4). The stronger relationships be-
tween air temperature and SM of the CMIP5- and CMIP6-
based merged products than those of the ORS-based products
(Fig. S16) may be partially caused by compensation for the
weaker relationships between shortwave radiation and SM
(Fig. S17). Because the temperature and shortwave radiation
tend to be highly correlated, shortwave radiation was not con-
sidered a predictor for the EC method in the present research.

5 Data availability

The seven SM products, including the estimated SM
values and uncertainty intervals, are available from
https://doi.org/10.6084/m9.figshare.13661312.v1 (Wang and
Mao, 2021). The files are in NetCDF4 format.

6 Code availability

The source codes that were used to create all the SM
datasets are available at https://bitbucket.org/ywang11/soil_
moisture_merge/src/master/ (Wang, 2020).
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7 Conclusions

This study achieved the goal of creating long-term, gap-free,
multilayer SM products (1970–2016, 0.5◦, monthly, 0–10,
10–30, 30–50, and 50–100 cm) that displayed realistic tem-
poral evolutions and spatial patterns and outperformed the
source SM datasets in the systematic evaluations against in-
dependent in situ measurements and semi-independent grid-
ded SM estimates. Three new SM products (Mean ORS,
OLC ORS, and EC ORS) developed from the satellite ob-
servations, reanalysis, and offline LSMs were shown to per-
form better than those based on the ESMs. Therefore, they
are recommended for future applications, such as the detec-
tion and attribution of historical changes of SM and associ-
ated extreme events, providing the initial and boundary con-
ditions for atmospheric models, benchmarking various types
of models, and managing drought and flood risks. By com-
paring three different merging methods (unweighted averag-
ing, OLC, and EC), this study further denoted that the OLC
method may require more in situ observations to exceed the
unweighted averaging, and that linear regression-based EC
with a limited range of un-lagged predictors was inadequate
in correcting all the ESM errors. Future SM developments
may aim to assemble more in situ SM datasets and to imple-
ment other advanced fusion algorithms (e.g., extended collo-
cation, machine learning).
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