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Quantification of human contribution to soil
moisture-based terrestrial aridity

Yaoping Wang 1,2,10, Jiafu Mao 2,10 , Forrest M. Hoffman3,
Céline J. W. Bonfils 4, Hervé Douville 5, Mingzhou Jin 1,6,
Peter E. Thornton 2, Daniel M. Ricciuto 2, Xiaoying Shi2, Haishan Chen 7,
Stan D. Wullschleger2, Shilong Piao 8 & Yongjiu Dai 9

Current knowledge of the spatiotemporal patterns of changes in soilmoisture-
based terrestrial aridity has considerable uncertainty. Using Standardized Soil
Moisture Index (SSI) calculated from multi-source merged data sets, we find
widespread drying in the global midlatitudes, and wetting in the northern
subtropics and in spring between 45°N–65°N, during 1971–2016. Formal
detection and attribution analysis shows that human forcings, especially
greenhouse gases, contribute significantly to the changes in 0–10 cm SSI
during August–November, and0–100 cmduring September–April.We further
develop and apply an emergent constraint method on the future SSI’s signal-
to-noise (S/N) ratios and trends under the Shared Socioeconomic Pathway
5-8.5. The results show continued significant presence of human forcings and
more rapid drying in 0–10 cm than 0–100 cm. Our findings highlight the
predominant human contributions to spatiotemporally heterogenous terres-
trial aridification, providing a basis for drought and flood risk management.

Historical drying trends havebeendemonstrated tooccur over the land
surface, mostly in the subtropics and midlatitudes, through diverse
indicators such as aridity and drought indices, the extent of drylands,
and the frequency and severity of drought events1–11. Suchdrying trends
are also widely projected to continue during the twenty-first century,
especially under the high greenhouse gas emission pathways1–6,8,9.
However, the detailed magnitudes, statistical significance, and spatial
patterns of the drying trends depend considerably on the choice of
specific drought or aridity indices9,12,13, and on the sources of historical
data (e.g., site measurements, satellite products, model outputs, or
observational proxydata)14–16.Meteorological drought or aridity indices

based on precipitation and potential evapotranspiration are widely
used2,4,6,8,17, but their long-term trends aredisconnected fromthe trends
in vegetation growth or individual hydrological variables (e.g., leaf area
index [LAI] and runoff)9,12,18. Also, the vast majority of past studies
focused on Earth systemmodel (ESM) simulations1,3,5,6,10, or used one or
a few data sets (e.g., satellite observations, reanalysis, offline model
simulations)2,7–9,11, resulting in high potential biases or uncertainty in
drying or wetting except in a few hot-spot regions (e.g., Southern Eur-
ope, southern/southwestern North America, southern Africa)15,19.

The causes of terrestrial drying can be understood in terms of the
effects of natural internal variability (e.g., teleconnections), natural
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solar variability and volcanic eruptions, and human-induced green-
house gases and aerosol emissions. Previous studies16,17,20 have effec-
tively separated these effects by using formal detection and attribution
(D&A)methods21 on ESM predictions that have different combinations
of these natural and anthropogenic factors turned on and off. How-
ever, these studies focused on either meteorological drought17,20 or
agricultural drought over part of the globe16, and they did not reveal
seasonal variations or vertical differences across soil layers. The D&A
of seasonal multilayer soil moisture changes will add value to existing
understanding of terrestrial drying because of the direct relevance of
soil moisture to terrestrial biophysical and biogeochemical
processes9,22–24 and land-atmosphere feedbacks25.

To date, the analysis of trends and the D&A analysis of soil
moisture have been hampered by the limited availability of continuous,
long-term, broadscale observations (e.g., multilayer soil moisture, soil
moisture before the satellite era) and the low signal-to-noise (S/N) ratio
of most water cycle changes11,26–29. We recently developed a set of long-
term soil moisture data sets that were merged from a comprehensive
list of observations, reanalysis, and offline model simulations and
showed better performance than the source data sets30. These merged
data sets can effectively reduce the potential biases and uncertainty
caused by the limited sampling of source data sets in past studies2,7–9,11.
In this study,we converted themergeddata sets to adrought index (the
3-month Standardized Soil Moisture Index [SSI]; “Methods” and Sup-
plementary Methods Sect. 1) and conducted a formal pattern-based
D&A analysis16,17,21 using, on one hand, the average value of the merged
SSI as pseudo-observation and, on the other hand, the SSI of the latest
CoupledModel Intercomparison Project Phase 6 (CMIP6) historical and
single-forcing experiments31,32. We further developed a generalized
additive model (GAM)-based emergent constraint method11,33 to con-
strain the future S/N ratios of theD&Aanalysis16,17,21 and the trends in the
SSI under a high-emission scenario (Shared Socioeconomic Pathway
[SSP] 5-8.5). In the D&A analysis, we followed the practice of previous
D&A studies on hydrological variables17,20,34–36 to enhance the S/N ratio
by aggregating the pseudo-observed and simulated SSI to zonal
averages. The zonal averaging reduces the influences from natural
internal variability, which increases in importance at smaller spatial
scales37, and the less-understood local-scale forcings such as land use
and land cover change38, but retains the influences from large-scale
circulations (e.g., the expansionof theHadley cell39,40, the shiftingof the
Intertropical Convergence Zone17). We conducted the analysis for each
month andboth the surface (0–10 cm) and root-zone (0–100 cm) layers
to reveal the seasonal and vertical patterns of possible anthropogenic
influences on the SSI changes.

Results
SSI trends in the pseudo-observation and CMIP6 simulations
The global average 3-month SSI time series showed consistent drying
signals from 1971 to 2016 in the pseudo-observation and the CMIP6
ALL simulations (forced by all anthropogenic and natural forcing
agents) during April–September and October–March, for the surface
and root-zone soil layers (Fig. 1a, b, e, f). The differences in SSI
between the average values of the brightening decades (1987–2016)
and the end of the dimming decades (1971–1986)41 (Δ) ranged
between −3.57 × 10−2 and −1.54 × 10−2, with larger Δ occurring in the
surface soil layer than in the root-zone layer during April–September
in both the pseudo-observation and the ALL simulations (Fig. 1a, b, e,
f). In the ALL simulations, the global historical drying trends con-
tinued into the future and were greater in the surface soil layer than
in the root zone (Fig. 1a, b, e, f).

Zonal patterns showed that the global average drying were
mainly driven by the Northern Hemisphere between 20°N and 40°N
and the SouthernHemisphere, where the pseudo-observation and the
ALL simulations showed consistent drying trends in both the surface
and the root-zone layers (Fig. 1c, d, g, h). The pseudo-observation

showedmore wetting and less drying than the ALL simulations above
40°N, but these differences were mostly within the uncertainty
caused by natural internal variability and structural differences across
the CMIP6 ESMs (i.e., within the 95% confidence interval [CI] of the
ALL simulations; Fig. 1c, d, g, h). The major differences (i.e., pseudo-
observation outside the 95% CI of the ALL simulations) around 60°N
in the Northern Hemisphere spring were caused by differences in
eastern Canada and western Europe (Supplementary Fig. 2), which
were likely related to the overestimation of the increasing trends in air
temperature42 and potential evapotranspiration in the ALL simula-
tions (Supplementary Fig. 3). The pseudo-observation also had major
differences from the ALL simulations in a few months near 30°N, and
in February–July in 0°N–20°N (Fig. 1c, d, g, h). The former difference
may be caused by the underestimated rate of the expansion of the
Hadley cell by the ALL simulations39,40 or model biases in the
Monsoon-related precipitation in northern India (Supplementary
Fig. 3; Singh et al.43). The latter may be caused by biases in themerged
soilmoisture data sets for the pseudo-observation in the Sahel region.
The merged soil moisture data sets partially depended on the
CERA20C, ERA20C, ERA-Interim, and ERA5 reanalyses30, whose pre-
cipitation drivers all display negative biases in the temporal trends
over the Sahel region compared to gridded rain gauge observations44

(Supplementary Fig. 4).

D&A analysis of the zonally averaged 3-month SSI
In this study, we used a pattern-based D&A method to investigate the
influence of external forcings on the pseudo-observed SSI changes. In
the first step, for each soil layer and each month of the year, we cal-
culated the ALL fingerprint, which represents the mode-based spatial
signature of SSI changes in response to the combination of anthro-
pogenic and natural forcings (“Methods” and SupplementaryMethods
Sect. 2). The ALL fingerprint was defined as the leading empirical
orthogonal function (EOF) of the multi-model average zonal-mean SSI
anomalies over the 1971–2100 period, derived from the concatenated
CMIP6 historical and future climate simulations forced by changes in
all the anthropogenic and natural forcings (Supplementary Table 2).
The combined month-latitude fingerprint patterns (Fig. 2a, e) resem-
ble, for both soil layers, the month-latitude patterns of the ALL trends
(Fig. 1d, h), indicating that the fingerprints captured the main spatio-
temporal characteristics of the zonally averaged 3-month SSI changes.
The greatest drying responses in the ALL fingerprints occurred in the
summer season (i.e., June–August in the Northern Hemisphere and
December–February in the Southern Hemisphere) (Fig. 2a, e), which
were slightly shifted comparedwith themonthswith greatest drying in
theALL trends (Fig. 1d, h). To verify the seasonal shifts were not caused
by difference in time periods employed to calculate the fingerprints,
we calculated the fingerprints over 1971–2020 (ALL-2 fingerprints;
Fig. 2b, f) instead of 1971–2100 and found similar seasonal shifts. In
comparison with the ALL fingerprints (derived from 84 concatenated
simulations), the GHG fingerprints (derived from 30 historical simu-
lations forced by anthropogenic greenhouse gases only) showedmore
widespread drying trends, and the AER fingerprints (derived from 28
historical simulations forced by anthropogenic aerosols only) showed
more wetting trends (Fig. 2c, g, d, h; Supplementary Table 2). These
differences suggest that both theGHG andAER forcings influenced the
ALL fingerprints. We note that during January–June, the AER finger-
prints were quite different from the AER trends and displayed dis-
continuity compared to July–December (Fig. 2d, h; Supplementary
Fig. 5). These were caused by the lack of clear directional changes in
the AER-forced changes in SSI, as indicated by the mostly insignificant
trends in the principal components associated with the AER finger-
prints in these months (Supplementary Fig. 6).

The second step of the D&Amethod determines whether the ALL
fingerprints were statistically detectable in the pseudo-observed SSI
changes (“Methods” and Supplementary Methods Sect. 2). To achieve
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this goal, for each soil layer and eachmonth, we projected the pseudo-
observed zonal SSI during 1971 to 2016 onto the ALL fingerprint,
resulting in a 46-year time-series that reflected the spatial agreement
between the ALL fingerprint and the pseudo-observed SSI through
time. The trend in this time series constituted the 46-year pseudo-
observed signal. We also projected the zonal SSI of the concatenated
control runs simulations, which were only influenced by natural
internal variability, onto the ALL fingerprints. Note that the SSI pat-
terns from the control simulations should not resemble the ALL fin-
gerprint, except by chance. Using all theoverlapping chunks of 46-year
segments in the projected control time series, we calculated a prob-
ability distribution of unforced 46-year trends. We considered a
pseudo-observed signal to be detectable at a 95% confidence level
when the signal lay outside the two-sided 95% CI of the unforced
trends, which indicates that the signal is very unlikely to result from
internal variability alone. In the last step of the D&A, for each soil layer
and each month, we projected the SSI from historical simulations

under 6 different sets of forcing agents onto the ALL fingerprint. We
then calculated the 1971 to 2016 trends and obtained the 6 probability
distributions of simulated forced signals. We considered a detected
signal to be attributable to a specific set of forcing agents if the
pseudo-observed signal lay within the 95% CI of the distribution of the
correspondingly forced simulated signals. The 6 sets of forcing agents
we considered were: ALL, GHG, AER, ANT (anthropogenic forcings
only), GHGAER (anthropogenic greenhouse gases and aerosols only),
and NAT (natural solar and volcanic forcings only) (Supplementary
Table 2).

We describe here the results of this investigation. For the surface
soil layer, the 1971–2016 pseudo-observed signals were detectable
fromAugust toNovember.During thosemonths, thepseudo-observed
signals were within the 95% CIs of the distributions of the ALL, ANT,
GHGAER, andGHG-forced signals and thus attributable to those sets of
forcings (Fig. 3h–k). Those detected pseudo-observed signals were
also often in better agreement with (i.e., closer to themean of) the ALL

Fig. 1 | Historical and future evolution of the 3-month Standardized Soil
Moisture Index (SSI) in the0–10 cmand0–100 cmsoil layers. a,b,e, fTheglobal
mean time series of the October–March (ONDJFM) and April–September (AMJJAS)
average SSI. Black lines represent the pseudo-observation (Mean NonCMIP). Blue
lines and blue shading represent the average and 95% confidence intervals of the
ALL simulations (forced by all anthropogenic and natural forcing agents). Δ
represents the difference between the mean SSI of 1987–2016 and 1971–1986.
c, g The month-by-latitude SSI trends over 1971–2016 of the pseudo-observation.
Vertical hatching indicates where the trends had the same signs as the average
trends of the ALL simulations. Horizontal hatching indicates where the trends had

the opposite signs to the average and were outside the 95% confidence intervals of
the trendsof the ALL simulations. Themonth abbreviations are, from left to right (J,
F, M, A, J, J, A, S, O, N, D), in the order of January–December. Gray shading indicates
where the trends were significantly different from zero at 95% confidence level.
d, h The month-by-latitude SSI trends over 1971–2016 of the ALL simulations,
averaged over all the models. Vertical hatching indicates at least 90% of the ALL
simulations agreed on the signs of the trends, and horizontal hatching 80%. Gray
shading indicates where more than 50% of the ALL trends were significantly dif-
ferent from zero at 95% confidence level. Themonth abbreviations are, from left to
right (J, F, M, A, J, J, A, S, O, N, D), in the order of January–December.
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and ANT distributions than with the GHGAER and GHG distributions
(Fig. 3i–k). The surface pseudo-observed signals could not be attrib-
uted to the NAT or AER forcings (Fig. 3a–k). For the root-zone soil
layer, the pseudo-observed signals were detectable and attributable to
the ALL, ANT, GHGAER, and GHG forcings in September–April
(Fig. 3m–p, u–x). The pseudo-observed signals could not be attributed
to the NAT forcings during those months, nor to the AER forcings in
October–December and March–April (Fig. 3m–p, u–x). In September,
January, and February, the pseudo-observed signal was located within
the 95%CI of the distribution of the AER-forced signals, but its position
near the upper tail of the distribution did not warrant formal attribu-
tion. In a nutshell, the soil moisture signals were detectable and attri-
butable to the ALL forcing (but also to the ANT, GHGAER, and GHG
forcings) for a 4-month period (from August to November) for the
surface layer, and a longer 8-monthperiod (September toApril) for the
root-zone layer.

To quantify the relative strengths of the detected pseudo-
observed signals in each month, we summarized the temporal evolu-
tion of the pseudo-observed signals using the concept of detection
time45 (“Methods”). The earliestdetection timeoccurred inOctober for
the surface layer and inDecember for the root-zone layer (Table 1). The
latest detection time occurred in August for the surface layer and in
January and March for the root-zone layer (Table 1). These results
suggested that the detected anthropogenic influences had the

strongest presence in the pseudo-observation in autumn, and weaker
presence in summer and spring.

Using the ALL fingerprint, we further conducted systematic sen-
sitivity analysis on the D&A by altering the timescale, distributional fit,
and soil moisture data sets used in calculating the SSI, and the set of
model ensemble members for calculating the fingerprints, signals,
and unforced trends (Supplementary Methods Sect. 3). Although the
months in which the pseudo-observed signals were detected, and the
detection times of those signals varied slightly, the results generally
support our conclusions (Fig. 3, Table 1) (Supplementary Tables 4–7).

Evolution of the anthropogenic signals in the twenty-first
century
Following the D&A on historical signals, we investigated the future
presence of anthropogenic forcings using the future S/N ratios of the
ALL simulations under the Shared Socioeconomic Pathway 5-8.5 (SSP5-
8.5). In those S/N ratios, the signals (S) refer to the simulated ALL-
forced signals, obtained as trends in 46-year moving windows in the
ALL simulations during 1971–2100. The noise (N) refers to the standard
deviation of all the 46-year unforced trends obtained from the pro-
jected control run time series. We considered the future S/N ratios to
mean significant presence of anthropogenic forcings when the abso-
lute values of those S/N ratios were 1.96 or greater, which was con-
sistent with the detection criterion for the pseudo-observed signal, if

Fig. 2 | Month-by-latitude fingerprints of the CMIP6 simulations under differ-
ent forcings for the 3-month Standardized Soil Moisture Index (SSI) in the
0–10 cm and 0–100 cm soil layers. a–h The forcings abbreviations are: ALL and
ALL-2—forced by all anthropogenic and natural forcing agents, GHG—forced by
anthropogenic greenhouse gases only, AER—forced by anthropogenic aerosols

only. The ALL fingerprints were calculated on zonally averaged 3-month SSI over
the 1971–2100 period, and the ALL-2, GHG, AER fingerprints over the 1971–2020
period. Themonth abbreviations are, from left to right (J, F,M, A, J, J, A, S,O,N,D), in
the order of January–December.
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Table 1 | Detection times at which the pseudo-observed signals on the ALL fingerprints became significant at the 95%
confidence level

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

0–10 cm — — — — — — — 2015 2002 1995 2005 —

0–100 cm 2013 2014 2013 2009 — — — — 2012 1997 2000 1994

Em dashes (—) indicate no significant signals.

Fig. 3 | Monthly detection and attribution of the pseudo-observed signals over
1971–2016 in the 0–10 cm and 0–100 cm soil layers. a–x Vertical black lines
represent the pseudo-observed signals. Gray shaded vertical regions represent the
95% confidence intervals of the unforced trends. Bell-shaped lines represent the
fitted Gaussian distributions on the simulated signals of the various forced
CMIP6 simulations: ALL (black solid, forced by all anthropogenic and natural for-
cing agents),ANT (browndashed, forcedby anthropogenic forcingsonly),GHGAER

(purple dashed, forced by anthropogenic greenhouse gases and aerosols only),
GHG (magenta solid, forced by anthropogenic greenhouse gases only), AER (blue
solid, forcedbyanthropogenic aerosols only),NAT (greendotted, forcedbynatural
solar and volcanic forcings only). Shading beneath the bell-shaped lines represent
the two-sided 95% confidence intervals of the distributions. All the signals and
unforced trendswere on the ALL fingerprints andwere for the samewindow length
(46 years).
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one assumes that the unforced trends followed Gaussian distribution
(Supplementary Methods Sect. 2.5–2.6).

The raw future ALL-forced S/N ratios were likely too high, con-
sidering that the average historical ALL-forced signals were often too
high compared with the pseudo-observed signals (Fig. 3), and that the
ESMs-based estimated noises and the ALL-forced signals have a com-
mon source of error, i.e., the same model physics. To avoid drawing
too strong conclusions about the future presence of anthropogenic
forcings, we constrained the raw future S/N ratios using a GAM-based
emergent constraint method (“Methods”). Emergent constraint is a
well-accepted approach to reduce the uncertainty in future climate
projections by bringing in information from historical observations
while making use of the modeled historical-future relationships11,46,47.
Here, the historical observations were the pseudo-observed S/N ratios,
and the modeled historical-future relationships were between the
historical and future S/N ratios of the ALL simulations. The detailed
formula and physical justifications of the specific implementation of
emergent constraint here are in the “Methods” and Supplementary
Methods Sect. 4.

The constrained simulated S/N ratios of the surface soil layer did
not become significant at the 95% confidence level (i.e., did not exceed
±1.96) in December–July until the 2000s or later, but were generally

significant in August–November (Fig. 4). The constrained S/N ratios of
the root-zone layer were mostly significant in September–May but
were not significant in June–August until 2020 or later (Fig. 4). These
seasonality patterns were consistent with the historical seasonality in
the detection times of the pseudo-observed signals (Table 1). The
constrained S/N ratios of the surface soil layer increased over the
future period in all the months, suggesting increased aridity, whereas
the constrained S/N ratio of the root-zone soil layer only showed
increases in May–August, and showed fluctuations in the other
months (Fig. 4).

We further analyzed the implications of constraining the future S/
N ratios on the zonal trends in SSI using mathematical relationships
between the S/N ratios and the trends (Supplementary Methods
Sect. 5). For the surface soil layer, the adjusted future SSI trends based
on the constrained S/N ratios had smaller drying magnitudes, espe-
cially during January–June, than the un-adjusted average SSI trends of
the ESMs (compare the last row to the first row of Supplementary
Fig. 10). However, even after emergent constraint, the surface 3-month
SSI showed accelerating drying trends over the course of the twenty-
first century for nearly all the latitudes andmonths of the year (last row
of Supplementary Fig. 10). For the root-zone SSI, the adjusted future
SSI trends based on the constrained S/N ratios had smaller drying

Fig. 4 | Evolution of the raw and constrained signal-to-noise (S/N) ratios over
the future periods 1971–2016, 1972–2017,…, 2055–2100. a–lThe x-axis indicates
the starting years of the future periods. Dark blue (purple) solid lines represent the
constrained S/N ratios of 0–10 cm (0–100 cm). Shaded area bound by dark blue
(purple) solid lines represent the two-sided 95% confidence intervals of the con-
strained S/N ratios of 0–10 cm (0–100 cm), which were calculated using regression
results, not the Gaussian assumption. Light blue (orange) dashed lines represent
the average of the raw S/N ratios of 0–10 cm (0–100 cm). Shaded area bound by

light blue (orange) dashed lines represent the two-sided95%confidence intervals of
the raw S/N ratios of 0–10 cm (0–100 cm). Horizontal solid lines indicate the 1.96
threshold, above which the S/N ratios mean significant presence of anthropogenic
forcings at 95% confidence level. The signals in the S/N ratios were ALL-forced (i.e.,
forced by all anthropogenic and natural forcing agents), on the ALL fingerprints,
and for 46-year window lengths. The noises in the S/N ratios were defined as the
standard deviation of the unforced trends on the ALL fingerprints for the 46-year
window length.
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trends than the un-adjusted mean SSI trends in general and had
reversal from drying to wetting trends in June–July in the Southern
Hemisphere (compare the last row to the first row of Supplementary
Fig. 11). The accelerating wetting around 50°N during January–March
and accelerating drying during October–April in the northern high
latitudes and southern mid-latitudes in the root-zone SSI were con-
sistent between the adjusted and un-adjusted future SSI trends (Sup-
plementary Fig. 11).

Discussion
Using multi-source merged soil moisture data sets48 and the
CMIP6 simulations31,32, we verified the previously reported historical
and future drying of the global land surface1–8,13–15,49,50 and further
demonstrated clear vertical, zonal, and seasonal patterns. The
changes in the SSI in the two soil layers were less widespread than
previously reported changes in potential evapotranspiration51, which
is consistent with past findings about the overestimation of drought
by potential evapotranspiration changes12,13. The surface SSI dried
more rapidly than the root-zone SSI, as can be seen in the historical
differences between the brightening and dimming decades during
April–September (theΔ values in Fig. 1a, b, e, f), the future time series
under the SSP5-8.5 scenario (Fig. 1a, b, e, f), the future evolutions of S/
N ratios (Fig. 4), and the future zonal trends especially around 50°N in
the Northern Hemisphere spring (Supplementary Figs. 10–11). One
potential cause of these vertical divergences is that the surface soil
responds faster than the root-zone to meteorological conditions
because of the concentration of plant roots in the surface soil and the
slow speed of capillary rise27,52. In the Northern Hemisphere spring,
the impacts of the increasing atmospheric evaporative demand can
be exacerbated on the surface SSI by the decreasing snow cover but
mitigated on the root-zone SSI by the relatively low spring vegetation
activity. This contrasting effect of snow cover was supported by the
fact that the correlations between snowwater equivalent and SSI had
opposite signs between the surface and the root-zone soil layers in
the Northern Hemisphere spring (Supplementary Fig. 12). Also,
reduced stomatal conductance in response to drought and the future
increase in atmospheric carbondioxide concentration53mitigates the
impact of rising temperatures on transpiration, which affects both
the surface and root-zone soilmoisture; but no suchmitigation effect
exists for soil evaporation, which mainly affects the surface layer.
This mechanism is supported by the higher correlations between air
temperature and the surface SSI than the root-zone SSI (Supple-
mentary Fig. 12). Under severe drought, vegetation die-off may also
exacerbate the drying of the surface SSI due to less shading.

Although the historical and future SSI trends and the fingerprints
of the ALL simulations indicated mostly drying of the two soil layers,
the underlying mechanisms varied by months and latitudes. In the
northern mid- to high latitudes (20°N and above), the seasonal drying
pattern was mainly driven by strong increases in air temperature, and
secondarily by increasing leaf area index in summer and early autumn
and decreasing snow water equivalent in spring (Supplementary
Fig. 13). In the northern subtropics (0°N–20°N), increases in pre-
cipitation was the main contributor to the summer wetting (Supple-
mentary Fig. 13). In the Southern Hemisphere, increases in
temperature was the main contributor to the drying, followed by
increasing leaf area index and decreasing snowwater equivalent below
40°S (Supplementary Fig. 13).

The detection of significant differences of the pseudo-observed
signals from natural internal variability and the attribution of the
detected signals to greenhouse gases-dominated anthropogenic for-
cings (ALL, ANT, GHGAER, and GHG) in the surface 3-month SSI in
August–November and in the root-zone 3-month SSI in
September–April (Fig. 3) expanded the conclusions of previous D&A
research on drought11,16,17,20,28,29. Whereas the previous studies demon-
strated significant anthropogenic impacts on the annual or summer

(either Northern Hemisphere summer or locally defined) average
drying, we demonstrated seasonally varying impacts that were the
greatest in the transition months (August–November) but also
occurred in the root-zone in the boreal winter and spring months
(Fig. 3). These seasonal patterns suggest that the traditional focus on
annual or summer average drying may lead to underestimation of the
drought risks in late summer and autumn, which can still affect eco-
system functions and reservoir operations54,55, and neglection of the
increase in flood risks in the northern high-latitude spring (Fig. 2).
Some previous D&A studies showed that the AER forcing impacted
annual and summer drought before the 1980s16,17. This study could not
reliably attribute the detected signals to the AER forcing because the
pseudo-observed signals were very near the upper edge of the 95% CI
of the AER-forced signals (Fig. 3). This findingmay be becausemuch of
the studied historical period (1971–2016) was post-1980. Considering
the regionally non-uniform changes in aerosol emissions56, the com-
plexity of aerosol effects, and current model inadequacies57, future
studies are needed to better detect, attribute, and understand the
mechanisms of AER-forced soil moisture changes.

In recognitionof the biases in the S/N ratiosof theALL simulations
compared to the pseudo-observation (Fig. 3), we developed a GAM-
based emergent constraint approach to better estimate the simulated
future S/N ratios than the average of the ESMs (“Methods”). We further
quantified the implications of constraining the future S/N ratios on the
future SSI trends using mathematical relationships between the S/N
ratios and the SSI trends (Supplementary Methods Sect. 5). Bias-
correcting the future projection based on historical D&A results is a
common practice in optimal fingerprinting-based D&A58,59, but the
practice cannot be applied to pattern-based D&A16,17,21 because of dif-
ferent mathematical formulas. The developed GAM-based emergent
constraint approach is similar to conventional emergent constraint in
that it estimates linear relationships between modeled historical and
future variables11,46,47. But the traditional linear regression framework
of emergent constraint11,46,47 requires a separate linear regression to be
fitted per future period, while a single GAM can be fitted on all the
future periods and ensures that the constrained future S/N ratios form
a smoothly varying time series (“Methods”). A limitation ofGAM is that
it can only test the overall significance of the fitted term60 and cannot
test whether the linear relationship between historical and future S/N
ratios becomes less significant over time (e.g., reported by Winkler
et al.47 because of nonlinear physical relationships). Therefore, future
studies should explore more advanced statistical testing methods to
find potential temporal changes in the significance of the emergent
relationship. Despite this limitation, theGAM reconciled the difference
between the modeled and the pseudo-observed S/N ratios, was par-
simonious, and achieved nearly always better fit on the future S/N
ratios than fitting a separate linear regression per future period (Sup-
plementary Fig. 8). Therefore, the developed approach provides a
reasonable framework for pattern-based D&A studies to account for
the model biases in future S/N ratios.

Apart from the GAM framework, additional limitations exist in the
current study. We only used the leading fingerprint in the D&A and the
emergent constraint, but some anthropogenic signals may exist in
other fingerprints17. The pseudo-observation contains some bias in the
Sahel region (Supplementary Fig. 4) because of the limitations of the
source data sets. The CMIP6 ESMs do not fully or consistently simulate
interactive atmospheric chemistry31, dynamic vegetation61, and land
use and land cover change62. These limitations should be addressed
with future methodological and data advancements.

In summary, we identified significant human contributions to
global SSI-based drying of the surface soil in August–November and the
root-zone soil in September–April over 1971–2016. The drying mainly
occurred in the northern and southern mid-latitudes, and in the sum-
mer and autumn seasons in the northern high-latitudes; counteracting
wetting occurred in the northern subtropics and in spring in the
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northern high-latitudes. The anthropogenic impacts were mainly con-
tributed by greenhouse gas emissions. Pseudo-observation constrained
future S/N ratios and SSI trends under the SSP5-8.5 scenario suggested
accelerating drying in the surface soil and in the root-zone soil, except
in the spring in the northern high latitudes, where the root-zone SSI
showed accelerating wetting. These heterogeneous SSI changes point
to greater risks of drought and floods in the future, suggesting the need
for latitude- and seasonally dependent mitigation and adaptation
measures. By revealing detailed spatiotemporal patterns of human
forcings’ impacts on long-term SSI changes, this study advanced cur-
rent understanding of the changes and causes of terrestrial aridity, and
generated results and methodological developments that will be of
interest to the scientific community and the broader public.

Methods
We used the SSI for the D&A rather than the raw soil moisture because
the magnitudes of soil moisture in ESMs are highly dependent on
model-specific assumptions about soil properties, evapotranspiration,
runoff, and drainage, whereas the temporal variabilities are more
robust63. For the D&A analysis in the main text, we calculated the
surface and root-zone SSI at the timescale of 3 months using a dis-
tributional fit procedure that involved the Gaussian mixture distribu-
tion (Supplementary Methods Sect. 1). The calculated 3-month SSI of
eachmonth reflects the average soilmoisture conditions of the current
month and previous two months (e.g., the 3-month SSI in February
reflected the average soil moisture between previous year’s December
and this year’s January and February). The pseudo-observed SSI,
abbreviated as Mean NonCMIP and spanning 1971–2016, was the
average SSI derived from three merged soil moisture products30 that
are independent of the CMIP5 or CMIP6 ESMs (Supplementary Meth-
ods Sect. 1). We calculated the modeled SSI under the influences of all
the anthropogenic and natural forcings (ALL), anthropogenic
greenhouse gases only (GHG), anthropogenic aerosols only (AER),
combined influences of anthropogenic greenhouse gases and aerosols
(GHGAER), anthropogenic forcings only (ANT), natural solar and vol-
canic forcings only (NAT), and internal natural variability only
(piControl) using all the available appropriate CMIP6 ensemble
members (Supplementary Table 2). For sensitivity analysis on the D&A
results, we also calculated monthly SSI at the 1- and 6-month time-
scales, using alternative pseudo-observations, statistical distribution,
and CMIP6 ensemble members (Supplementary Methods Sect. 3). We
aggregated all the pseudo-observation and modeled SSI to 5° zonal
averages for the D&A.

We conducted the D&A analysis separately for the SSI in each
month of the year and soil layer used a pattern-based
method16,21,35,45,64 (Supplementary Methods Sect. 2). We calculated
the ALL fingerprint as the first empirical orthogonal function (EOF)
of the multi-model average of zonal-mean SSI anomalies derived
from the concatenated CMIP6 historical and SSP5-8.5 simulations.
We then projected the zonal-mean SSI from the pseudo-
observation and from the CMIP6 simulations forced by different
sets of forcing agents (ALL, GHG, AER, GHGAER, ANT, NAT) onto
the ALL fingerprint. We treated the 1971–2016 trend in the pro-
jected pseudo-observed time series as the pseudo-observed signal
(referred to as S). We treated the 1971–2016 trends in the projected
time series under a specific set of forcing agents (ALL, GHG, AER,
GHGAER, ANT, or NAT) as the simulated forced signals. The
probability distribution of those simulated forced signals was fit-
ted on the model ensemble members forced by the same set of
agents (Supplementary Table 2). We also projected the piControl
simulations onto the ALL fingerprint and calculated the unforced
trends of all the overlapping 46-year segments in the projected
time series. We calculated the noise (referred to as N) as the
standard deviation of those unforced trends. When a pseudo-
observed signal was outside the two-tailed 95% confidence interval

(CI) of the fitted probability distribution of the unforced trends,
we considered the pseudo-observed signal detectable at the 95%
confidence level. This corresponded to an absolute value of the
pseudo-observed S/N ratio of 1.96 or greater, under the assump-
tion of Gaussian distribution of the unforced trends. If, in addition,
a detected pseudo-observed signal lay within the 95% CI of the
distributions of the ALL, GHG, AER, GHGAER, ANT, or NAT-forced
signals, we considered detected signal to be attributable to the
indicated set of external forcing agents.

We used the concept of detection time45 to quantify when the
pseudo-observed signal first became detectable. For each month and
soil layer, instead of calculating the pseudo-observed and ALL-forced
signals as trends over a fixed time period (1971–2016), we calculated
time-varying signals, with the starting year of the trends being in 1971,
and the ending year varying between 1981 and 2016. For each time
period, we also calculated the corresponding noise as the standard
deviation of the unforced trends over an equal length of time. That is,
the corresponding noise of the signals over 1971–1981 would be based
on 11-year segments of the projected piControl series, over 1971–1982
based on 12-year segments, …, over 1971–2016 based on 46-year seg-
ments. The detection time was the ending year at which the time-
varying pseudo-observed signal first became and afterward remained
significant at the 95% confidence level45. To ensure that the detected
pseudo-observed signals were attributable to the external forcings
represented by the ALL fingerprint, we also set a consistency condi-
tion: if a detected signal was outside the 95% CI of the distribution of
the ALL-forced signals over the same time period, then the signal was
treated as if insignificant.

We constrained the biased future S/N ratios of the CMIP6 ALL
simulations using a generalized additivemodel (GAM)-based emergent
constraint method. The standard emergent constraint method esti-
mates linear regression relationships between modeled historical and
future variables, treating the historical-future pair of each individual
ESM as an x–y pair in the regression11,46,47,65. If the slope of the linear
regression is statistically significant, the observed historical variable is
plugged into the regression equation to generate a constrained future
value, which is presumably better than the average of the ESMs, and an
uncertainty interval for the constrained future value11,46,47,65. In this
study, themodeled historical variable was the historical ALL-forced S/N
ratios over 1971–2016, the modeled future variable was the ALL-forced
S/N ratios over various future time periods (1972–2017, 1973–2018,…,
2055–2100), and the historical observationwas the pseudo-observed S/
N ratio over 1971–2016. The linear regression approach only allows one
future value to be generated with one regression. Therefore, if we used
the linear regression approach, we would perform a separate linear
regression between each pair of future and historical ALL-forced S/N
ratios. Since the regression coefficients of any two adjacent future
periods would be estimated separately, the constrained future S/N
ratios of these two periods could differ considerably. Such dis-
continuity would violate the temporal smoothness of the S/N ratios as
trends, for the trends over two substantially overlapping time periods
(e.g., the 46-year time periods 1972–2017 and 1973–2018 have 45
overlapping years) should only differ slightly, unless the non-
overlapping years were substantial outliers. To ensure smooth transi-
tion between the constrained S/N ratios of adjacent future periods, we
used GAM66, instead of linear regression, to estimate the historical-
future relationships. The GAM takes the form y=β1 + s x, tð Þ+ ε, where
β1 is the intercept, ε is the fitting residual, y is the future modeled S/N
ratio of an ESM, x is the historical modeled S/N ratio of the same ESM, t
is the year, and s �ð Þ is a tensor product smooth over x and t—which,
intuitively, is the sum of products between all the pairs of the marginal
spline basis of x and themarginal spline basis of t60.We set themarginal
spline of x to consist of one intercept term and one linear term of x.
This setup ensured that the relationship between x and y was always
linear, following the convention of past emergent constraint
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studies11,46,47,65. We set the marginal spline of t to have cubic order and
determined the number of splines by minimizing the Akaike Informa-
tion Criteria67, because preliminary analysis showed that the linear
regression coefficients between the historical and future S/N periods
varied nonlinearly over time. We fitted a separate GAM for eachmonth
of the year using the PyGAM package67. We also averaged the ALL-
forced S/N ratios of each ESM within its ensemble members before
putting the values into the regression to prevent the ESMs with more
ensemble members from exerting more influence on the regression.
Supplementary Fig. 7 shows an example of such fitted tensor product
s x, tð Þ. The GAM achieved nearly always better fit on the future ALL-
forcedS/N ratios thanfitting a separate linear regression for each future
period (Supplementary Fig. 8). All the fitted GAMs were significant at
the 95% confidence level. In additional to statistical significance, the
emergent constraint approach requires the modeled historical-future
relationship to be physically justified11,46,47,65. Supplementary Methods
Sect. 4 discusses the physical justification for this emergent constraint
between the historical and future ALL-forced S/N ratios.

To propagate the effect of emergent constraint on the S/N ratios
to ALL-forced zonal trends in SSI, we decomposed the zonal trends
into the sum of two terms (Supplementary Methods Sect. 5). Briefly,
the first term is proportional to the future S/N ratio, and the second
term is interpreted as a remainder term that is dependent on the non-
leading empirical orthogonal functions that were obtained as part of
the D&A process. To adjust the SSI, we replaced the future S/N ratio in
thefirst termwith the constrained S/N ratio andkept the other terms in
the equation the same.

Throughout this paper, all mentions of average values, the per-
centages of models that agreed in sign with the average value, and
the percentages of models that were significant at the 95% con-
fidence level should be understood as weighted. That is, the values
were first averaged over the ensemble members of each ESM and
then averaged over the ESMs, to prevent the ESMs with more
ensemblemembers fromdominating the results. Because agreement
in sign and significance at 95% confidence level were Boolean values,
“true” was treated as 1, and “false” as 0, in the weighted averaging.
Standard deviations were not weighted and were calculated directly
on the ensemble members of all the ESMs. Unless specified other-
wise, all the 95% CI in this paper were calculated using the Gaussian
assumption, i.e., equal to the weighted average ± 1.96 × standard
deviation. Also, unless specified otherwise, all the trends in this paper
were calculated using linear least squares.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The merged soil moisture data sets used to derive the pseudo-
observed SSI in this paper are available at https://doi.org/10.6084/m9.
figshare.13661312.v1. The soil moisture and soil moisture-drivers data
of the CMIP6 ESMs under various external forcings were downloaded
from https://esgf-node.llnl.gov/.

Code availability
The source codes for this study are available at https://bitbucket.org/
ywang11/soil_moisture_da/src/master/.
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