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[1] Remote sensing of vegetation phenology is an
important method with which to monitor terrestrial
responses to climate change, but most approaches include
signals from multiple forcings, such as mixed phenological
signals from multiple biomes, urbanization, political
changes, shifts in agricultural practices, and disturbances.
Consequently, it is difficult to extract a clear signal from the
usually assumed forcing: climate change. Here, using global
8 km 1982 to 1999 Normalized Difference Vegetation Index
(NDVI) data and an eight-element monthly climatology, we
identified pixels whose wavelet power spectrum was
consistently dominated by annual cycles and then created
phenologically and climatically self-similar clusters, which
we term phenoregions. We then ranked and screened each
phenoregion as a function of landcover homogeneity and
consistency, evidence of human impacts, and political
diversity. Remaining phenoregions represented areas with
a minimized probability of non-climatic forcings and form
elemental units for long-term phenological monitoring.
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1. Introduction

[2] Vegetation phenology, the study of the timing of
recurring vegetation cycles such as canopy emergence and
senescence, is an emerging field of climate change science.
Yet many ground-based and modeling studies are biased
towards biomes (deciduous broadleaf forest) and regions
(western Europe) that, from a global perspective, are nearly
irrelevant. Additionally, in remote sensing studies focusing
on global patterns, observed trends are subject to multiple
and often unknown non-climatic forcings and technical
problems.
[3] In spite of these difficulties, there is a clear need for

continued phenological monitoring. Observational [Menzel
et al., 2001], modeling [Schwartz and Reiter, 2000], and
remote sensing evidence [Bogaert et al., 2002; Myneni et
al., 1997; Slayback et al., 2003; Zhou et al., 2001] suggests
that vegetation phenology is changing in response to warm-

ing climates, principally through an earlier start of season
(SOS) and later end of season (EOS). Through these types
of studies, vegetation phenology can be used as a sensitive
barometer of terrestrial responses to short- and long-term
climate variability.
[4] Climate change usually is assumed to be the primary

forcing of trends or turning points in SOS and/or EOS
timeseries; while this may be true in many cases, especially
when analyzed over large regions [Zhou et al., 2003], a
variety of factors may influence observed trends. Non-
climatic forcings of observed shifts in vegetation phenology
include urbanization [White et al., 2002; Zhang et al.,
2004], the collapse of political systems [de Beurs and
Henebry, 2004a], and disturbances. Further, while indepen-
dent lines of evidence tend to show similar overall trends,
geographically coincident data are often weakly correlated
[Badeck et al., 2004; Schwartz et al., 2002], complicating
attempts to extract a clear vegetative signal from potentially
confounding factors (variation in soil wetness, trends in
snow cover, degradation of remote sensing platforms,
variable within-pixel phenological trends).
[5] In response to the need for a monitoring strategy that

targets climate change impacts and provides geographical
units for trend attribution and fine resolution remote sensing
studies, we propose the use of a limited number of pheno-
logically and climatically self-similar clusters. There are
four central features of our proposed strategy: (1) identifi-
cation of pixels with a strong annual cycle; (2) creation of
clusters with similar vegetation phenology and climate;
(3) removal of clusters dominated by human-related land-
cover; (4) selection of remaining clusters with homoge-
neous landcover, low evidence of human impacts, and low
diversity of political units. This approach, which identifies
clusters of pixels with an easily identifiable seasonal signal,
is designed to maximize the potential for detecting climate
forcings while minimizing the influence of landcover,
human, and political influences. As such, these identified
phenoregions can form the basis for a global phenological
monitoring network.

2. Definition of Elemental Clusters

[6] We obtained the 1982–1999 (1994 not used because
of sensor failure) 10-day composite 8-km Pathfinder
Advanced Very High Resolution Radiometer Land (PAL)
Normalized Difference Vegetation Index (NDVI) dataset.
The PAL dataset contains extensive artifacts related to
within- and among-sensor calibration, volcanic eruptions,
and water vapor. Post-corrected datasets exist [Nemani et
al., 2003], but by intentionally selecting the PAL dataset, we
implemented an extremely conservative approach: only
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those pixels whose annual cycle is stronger than the inherent
PAL noise passed our initial filter (next section). Use of
PAL data is most problematic when assessing trends [de
Beurs and Henebry, 2004b], which we do not present here.
[7] Next, we conducted a continuous wavelet transforma-

tion [Torrence and Compo, 1998] of the 612-element NDVI
timeseries for each pixel. We calculated annual time-
averaged local wavelet spectra and identified pixels in which
the annual time scale was dominant in at least 15 of 17
possible years. This step identified the 1,012,866 pixels for
which the annual scale was consistently strong and therefore
tractable for coarse resolution phenology monitoring. Nearly
all arid shrublands, deserts, and moist tropical forests were
eliminated (Figure 1; please see online supporting material
for discussion on the use of PAL data1).
[8] We then used an iterative k-means clustering

approach [Hargrove and Hoffman, 2005] of the PAL NDVI
and an eight-element global 1961 to 1990 100 monthly
climatology [New et al., 2002] reprojected to the 8 km
PAL Goode’s Interrupted Homolosine projection to identify
the groups of pixels forming the elemental monitoring units.
The clustering approach, performed on an Oak Ridge
National Laboratory parallel supercomputer, generated n
initial cluster centroids spaced evenly in the 708-axis
hyperspace (all data were normalized to a mean of zero
and a unit variance, individually by axis). Each pixel was
then assigned to the centroid with the nearest Euclidian
distance. Mean centroid locations were recalculated based
on the assigned pixels and the process was repeated until less
than 0.05% of pixels were reassigned. Although techniques

exist to reduce the dimensionality of clustering inputs, the
inclusion of correlated axes does not strongly affect final
grouping. Given that sets of axes without perfect correlation
(as will occur with landcover changes or disturbances) can
add discriminatory information and that axes used here
represent either a climate descriptor or NDVI at a particular
date, we chose to retain all axes.
[9] We experimented with a range of clusters from 10 to

1000 and found that 500 clusters provided an optimal
separation such that clusters tended to exist on only one
continent and the distribution did not contain a high
frequency of minimally represented clusters. We created
three clusterings: (1) climate alone, (2) NDVI alone; and
(3) climate and NDVI. Climate alone produced large
homogeneous clusters (Figure 1a); NDVI alone produced
large numbers of clusters with only one or a few pixels
(Figure 1b); NDVI and climate provided good representa-
tion of distinctions in landcover and topography without
creation of numerous sparse clusters (Figure 1c). We adop-
ted use of the NDVI and climate clusters (Figure 1d), which
we term phenoregions. The phenoregions capture well-
known vegetation features, such as precipitation gradients
in Sahelian Africa, the mesic periphery of Australia, and
extensive crop-dominated regions of the Midwestern United
States. Use of the PAL data will tend to create phenoregions
with similar satellite contamination, a useful characteristic
for assessing long-term trend attribution between corrected
and uncorrected NDVI datasets.

3. Selection of Clusters

[10] At this stage, the 500 climatically and phenologically
self-similar phenoregions represented groups of pixels
appropriate for the formation of spatially composited time-
series. We then used a four-step process to identify pheno-
regions, by landcover, with characteristics likely to
maximize their utility for climate-response monitoring.
[11] First, to minimize the incidence of sparse clusters

and consequent potential for georegistration/georectification
difficulties, we removed all clusters with fewer than
100 pixels. Second, we removed clusters if the categorical
landcover [DeFries et al., 1998] with the highest percent
cover was crop, barren, or urban, all of which are likely to be
responsive to non-climatic forcings. Third, we implemented
a ranking system designed to represent quantitatively the
suitability of the remaining 211 clusters for climate-
response monitoring. Simply, the abundance of the domi-
nant landcover and consistent information from a vegetation
continuous fields product increased rankings whereas crop-
land, barren, or urban landcovers, evidence of human
impacts, and political diversity reduced rankings. See
Table 1 for details. Fourth, we used elements of the same
ranking system in a filter to eliminate clusters with low
scores in one or more categories.
[12] The remaining 136 phenoregions existed almost

exclusively in mid to high latitudes of North America and
Eurasia (Figure 2). In this final selection, the dominant
biomes were evergreen needleleaf forest and woodlands.
Grasslands, mixed forests, and deciduous needleleaf forests
were well represented whereas evergreen broadleaf forests,
deciduous broadleaf forests, and wooded grasslands were
sparse. The selected evergreen broadleaf forest phenore-

Figure 1. Generation of the 500 phenoregions. Examples
based on: (a) eight-element climate alone; (b) NDVI alone;
and (c) climate + NDVI, which captured overall climate and
vegetation dynamics without creating large numbers of
sparsely represented clusters. In (d) the global climate +
NDVI phenoregion map (colored randomly using a
repeating color table) used in the remainder of the analysis,
areas for which the dominant NDVI time scale is not annual
are shown with light grey shading (deserts, barren, shrub-
lands, and moist tropical forests).

1Auxiliary material is available at ftp://ftp.agu.org/apend/gl/
2004GL021961.
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gions existed in seasonally dry regions; no equatorial moist
tropical forest was selected. No arid shrublands were
selected. Given that much of the NDVI amplitude in
northern forests is related to annual snow cover patterns,
monitoring in these abundant phenoregions should focus on
trend attribution to snow versus vegetation dynamics. This
decoupling of low canopy amplitude in many boreal forests
from a strong snowmelt signal is challenging with AVHRR
records and should be a focus of future ground campaigns
linked to multi-resolution remote sensing.
[13] With the exception of a phenoregion in southeastern

Madagascar (barely visible in Figure 2), Africa was
removed, usually as a result of high political diversity
within the longitudinally extensive phenoregions. Small

dry evergreen broadleaf forest phenoregions existed in
South America but the continent, in general, did not pass
our screening criteria. The single wooded grassland pheno-
region spanned nearly the entirety of northern Australia.
The deciduous broadleaf forest and western European
regions were minimally represented.
[14] Our approach, which is designed only to select

optimal regions, not to represent the possible distribution
of biome/climate combinations, strongly suggests that a
limited region of the globe is suitable for climate response
monitoring with coarse resolution sensors. Other regions,
especially those dominated by precipitation variability, are
also likely to be highly responsive to climate change and are
not included here. For these critical regions in which coarse

Table 1. Ranking and Screening of Phenoregionsa

Variable Ranking Impact Cluster Acceptable If

pixels NA >100
dominant landcoverb NA Not crop, urban, or barren
percent dominant landcoverb + >30%
percent urban + crop + barrenb - <30%
mean percent bare coverc - <30%
mean percent tree coverc + for forests forests >30%

10% > woodland < 60%
10% > wooded grassland < 40%

mean percent herbaceous coverc + for grassland grasslands >40%
woodlands >20%

wooded grasslands >40%
mean human footprintd - <30
political diversitye - <50

aFor ranking, variables were calculated or averaged for the phenoregion and added (+) or subtracted (�). Note that for
woodlands and wooded grasslands, the vegetation continuous fields were not used. All rankings were scaled from 0 to 100.
Clusters were accepted as a valid phenoregions if the listed conditions were met. Acceptability criteria are not absolute;
users are encouraged to develop customized screenings using the archived supporting materials (M. A. White et al.,
Phenoregions for monitoring vegetation responses to climate change, available at http://www.daac.ornl.gov, 2004). All data
existed or were reprojected to the 8 km global Goode’s Homolosine projection.

bCategorical landcover [DeFries et al., 1998] with the highest percent cover.
cFrom vegetation continuous fields product [Hansen et al., 2003].
dBased on population, land transformation, accessibility, and stable electrical light sources [Sanderson et al., 2002].

Dimensionless from 0 (no human footprint) to 100 (highest possible human footprint).
eBased on Center for International Earth Science Information Network (Gridded population of the world (GPW),

version 2, 2000, available at http://sedac.ciesin.columbia.edu/plue/gpw) and Simpson’s diversity index [Simpson, 1949].
Ranges from 0 (phenoregion contains only one country) to 100 (infinite number of countries).

Figure 2. Selection of monitoring phenoregions. Phenoregions with fewer than 100 pixels or dominated by crop, urban or
barren landcover removed. Remaining phenoregions are those passing the screening factors in Table 1 and are shown with
normalized rankings by landcover.
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resolution monitoring is not optimal or in which other
factors are likely to confound results, we advocate the use
of finer resolution sensors and ground observations coupled
with landcover and landuse histories, and the comparison of
protected and non-protected regions.

4. Conclusions

[15] We submit that our strategy is an appropriate method
with which to identify clusters of pixels with self-similar
climate and phenology and to prioritize the collection of
ground-based validation data. Within these phenoregions,
the possible influence of mixed phenological signals, urban-
ization, human infrastructure, shifts in cropping practices,
and variation in politically controlled land management is
minimized. Critically, the strategy provides a quantitative
method with which to focus global phenological studies on a
limited number of regions that are most likely to respond to
the presumed forcing: climate change. If phenological trends
or shifts are detected, the phenoregions are the geographical
unit within which finite resources for finer resolution remote
sensing should be allocated.
[16] We have designed a conservative approach to select

regions with a maximal probability of displaying a climate
response signal. Further stratification could be accomplished
based on climatic zonations. For other applications, selection
of crop- or urban-dominated phenoregions may be desired.
To accommodate these and other needs, users may obtain the
500-phenoregion image (Figure 1), the selected phenoregion
image (Figure 2), and related ancillary information (see data
set by M. A. White et al., Phenoregions for monitoring
vegetation responses to climate change, available at http://
www.daac.ornl.gov, 2004).

[17] Acknowledgment. Support was provided by NASA grant
NAG5-11282 (MAW), the NASA ESE (RRN), and U.S. Forest Service
IAG 1995-5640-A1 (FH and WWH at ORNL).
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