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Abstract
Much research has examined the sensitivity of tropical terrestrial ecosystems to various environmental
drivers. The predictability of tropical vegetation greenness based on sea surface temperatures (SSTs),
however, has not beenwell explored. This study employed fine spatial resolution remotely-sensed
EnhancedVegetation Index (EVI) and SST indices from tropical ocean basins to investigate the
predictability of tropical vegetation greenness in response to SSTs and established empiricalmodels
with optimal parameters for hindcast predictions. Three evaluationmetrics were used to assess the
model performance, i.e., correlations between historical observed and predicted values, percentage of
correctly predicted signs of EVI anomalies, and percentage of correct signs for extreme EVI anomalies.
Ourfindings reveal that the pan-tropical EVIwas tightly connected to the SSTs over tropical ocean
basins. The strongest impacts of SSTs on EVIwere identifiedmainly over the arid or semi-arid tropical
regions. The spatially-averaged correlation between historical observed and predicted EVI time series
was 0.30with itsmaximumvalue reaching up to 0.84. Vegetated areas across SouthAmerica (25.76%),
Africa (33.13%), and Southeast Asia (39.94%)were diagnosed to be associatedwith significant SST-
EVI correlations (p<0.01). In general, statisticalmodels correctly predicted the sign of EVI
anomalies, with their predictability increasing from∼60% to nearly 100%when EVIwas abnormal
(anomalies exceeding one standard deviation). These results provide a basis for the prediction of
changes in greenness of tropical terrestrial ecosystems at seasonal to intra-seasonal scales.Moreover,
the statistics-based observational relationships have the potential to facilitate the benchmarking of
Earth SystemModels regarding their ability to capture the responses of tropical vegetation growth to
long-term signals of oceanic forcings.
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1. Introduction

Tropical vegetation, a key component of the Earth terrestrial ecosystem, plays a pronounced role in land surface
budgets of energy, water, andmass, regulating regional and global environmental changes (e.g. Dickinson and
Henderson‐Sellers 1988, Cramer et al 2004). Functioning as themost productive biome onEarth and large
carbon reservoirs, tropical forests also providemany ecosystem services ranging from improving air quality to
sustaining local cultures (Lawrence et al 2005,Delgado-Aguilar et al 2017). Given the vital role of tropical
ecosystems in the Earth system, improving the diagnostic and prediction skills of the dynamic variations in
tropical vegetation is critical, both scientifically and societally.

Prediction studies have long been applied to numerical weather forecasting (Kukkonen et al 2012). Only
until recently, such efforts have begun to emerge in ecosystemdynamics, including the predictions of phenology
(Cook et al 2005,Dannenberg et al 2018), crop yield (Hsieh et al 1999, Gonsamo et al 2016), and burned area
(Chen et al 2016). However, there have been few studies focused on assessing the predictability and conducting
the prediction of tropical vegetation growth.

The drivingmechanisms of tropical biotic and abiotic processes are not clearly understood yet, especially on
seasonal to longer time scales (Dong et al 2012, Greve et al 2011). Growing attention has focused on identifying
the association and causation between climatic variables and tropical vegetation growth. For example, statistical
and complexmachine learning techniques have been comprehensively utilized to assess the sensitivity of
tropical vegetation properties to regional and remote atmospheric conditions (e.g. Zhao et al 2018,Dannenberg
et al 2018, Papagiannopoulou et al 2017). These studies, however, have not addressed the predictability of
tropical vegetation growth, especially when using sea surface temperatures (SSTs).

SSTs trigger changes in atmosphericmodes and determine spatiotemporal patterns of climatic factors such
as precipitation, which in turnmodulate the variations of tropical terrestrial ecosystems (Wallace and
Gutzler 1981). For example, the tropical SST anomalies-inducedwarmphase of the El-Niño Southern
Oscillation (ENSO), also known as ElNiño, causes reductions in precipitation over easternAmazonia by altering
theWalker Circulation (Ropelewski andHalpert 1989). The strength of such ElNiño events has also been closely
related to the inter-annual occurrence of tropical droughts (Dai et al 1997, Lyon 2004, Lyon andBarnston 2005,
Gu andAdler 2011). Consequently, these ocean-induced changes have long been recognized to affect tropical
ecosystemdynamics inmanyways, such as carbon balance (Prentice and Lloyd 1998, Tian et al 1998), water use
efficiency (Yang et al 2016), treemortality (McDowell et al 2018), and occurrence of wildfires (Nepstad et al 1999,
Alencar et al 2006, Page et al 2008).

The SSTs also provide relatively longermemory than atmospheric teleconnections and associated changes of
specific climatic variables. These are inducedmainly by a combination of causes including thermal inertia of the
upper ocean, large-scale atmospheric-ocean interactions, andmemory of downstream soilmoisture (Mei and
Wang 2011). Lags in the response of the terrestrial ecosystem to oceanic (namely SST) variations thusmake it
possible to forecast vegetation changes severalmonths in advance.

Given the substantial indirect influence of SSTs on tropical vegetation growth and their leading role in
ocean-atmosphere-biosphere interactions, it is the aimof this study to explore the possibility of predicting
tropical vegetation greenness based on SST indices.Wewill investigate towhat degree themonthly changes of
tropical vegetation greenness, as characterized by theModerate Resolution Imaging Spectroradiometer
(MODIS)EnhancedVegetation Index (EVI), can be predicted by SST indices from tropical ocean basins using
advanced statisticalmodels.

2.Data andmethodology

2.1.Data and data processing
The globalmonthly time series ofMODISCollection 5 EVI data at 0.05° spatial resolution fromFebruary 2000
toDecember 2013was derived fromSeddon et al (2016). The tropical area between 20 °S and 20 °Nwas
extracted for this study. Land grids withmissing values over the entire time series were taken as non-vegetated
area andmasked out in this analysis. For vegetated grids, we focused only on thosewith less than 10%missing
values (figure S1 is available online at stacks.iop.org/ERC/1/031003/mmedia) andfilled these gaps using
climatologicalmeans to ensure each grid has the same sample size.We de-seasonalized the EVI data, i.e.,
removed the climatological seasonal cycle at each pixel to produce itsmonthly anomaly. Linear trends were then
removed from the time series to eliminate possible impacts fromother factors that are not considered in this
study, for example, the CO2 fertilization effect. The detrending treatment also increases the confidence in the
correlation analysis by eliminating spurious relationships (e.g. Zhu et al 2017, Gonsamo et al 2016).

We obtained the yearly land use classificationmap from theMODISMCD12C1 product at 0.05° spatial
resolution from2001 to 2012, inwhich land surfaces are classified into 17 categories including natural and
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human-managed land use types. Fourteen biome classes are present in the tropics, with only 9 of them covering
at least 0.5%of the tropical vegetated land surfaces (figure S2). These 9 classes, evergreen broadleaf forest (EBF),
open shrub (OSh), woody savanna (WSvn), savanna (Svn), grassland (Gra), wetland (Wet), cropland (Crp),
cropland and natural vegetationmosaic (CrpNat), and barren or sparsely vegetated (SV), were thus retained in
the subsequent analysis. Since the evolution of biome types from2001 to 2012was relatively less pronounced, we
assumed that biome classifications have not changed through our study period and themap from2001was
adopted to aggregate the statistics in this study.

To account for oceanic status, we picked 14 SST indices over 3 tropical ocean basins, namelyNiño1+2 (far
eastern equatorial), Niño3.4 (central equatorial), Niño3 (eastern equatorial), Niño4 (west-central equatorial),
andTrans-Niño Index (TNI) from the PacificOcean, tropical NorthAtlantic (TNA), tropical southAtlantic
(TSA), NorthAtlantic tropical (NAT), SouthAtlantic Tropical (SAT), and tropical Atlantic SST Index (TASI,
north-south equatorial SST gradient) from theAtlanticOcean, andDipoleMode Index (DMI, west-east
equatorial SST gradient), Southeastern Tropical IndianOcean (SETIO), SouthWestern IndianOcean (SWIO),
andWesternTropical IndianOcean (WTIO) from the IndianOcean (figure S3). These indices aremonthly SST
anomalies calculated relative to the base period of 1982–2005 and averaged over various ocean regions or
gradients of two other SST indices. Time series of SST indices were downloaded from theNationalOceanic and
Atmospheric Administration (NOAA) at http://stateoftheocean.osmc.noaa.gov/all/ and detrended the same
way aswas EVI.

2.2. Statisticalmodels and evaluationmetrics
The coupling strength between oceanic conditions and vegetation growthwasfirst evaluated using linear
correlations between the SST indices and EVI anomalies, with the former leading the latter by a number of
months ranging from0 to 11. Pearson correlationswere calculated for each combination of SST indices and
number of leadingmonths at a grid basis. Themaximumabsolute correlation coefficient from all combinations
was taken as ameasure of the impacts of SSTs on vegetation growth. A Student’s-t test with a null-hypothesis of
zero correlationwas used.We restricted our subsequent analysis to those pixels associatedwith significant
(p<0.01) correlations. The SST index and its corresponding number of leadingmonths associatedwith the
largest absolute correlation coefficient were chosen as the controlling SST index and number of leadingmonths
of a certain grid cell.

Given the controlling SST index and its associated number of leadingmonths for a certain grid, we built
three predictivemodels of EVI based on SSTs, namely a univariate linearmodel (denoted as SST1, y=ax+b), a
polynomialmodel (denoted as SST1p, y=ax2+bx+c), and amultivariate linearmodel (denoted as SST2,
y=ax1+bx2+c)with the two predictors (SST indices) from two different ocean basins to avoid feature
redundancy. In SST1 and SST1p, the controlling SST index as described abovewas used to construct themodels.
SST2was built based on SST1, with the second SST index chosen as the one thatminimizes the residual error by
adding this index to the SST1model.Model coefficients (a, b, and c)were obtained from linear least squares
fitting.

We used three types of evaluationmetrics. Thefirst is anomaly predictability, defined as the correlation
between predicted and historical observed EVI anomalies, giving a value ranging from−1 to 1with higher
positive values indicating higher accuracy of themodel. It generallymeasures the similarity of predicted and true
values. The aforementioned Student’s-t test was also applied to the anomaly predictability. Direction
predictability, defined as the proportion of correctly predicted signs of EVI anomalies with values ranging from
0∼100%, assessedwhether the positive/negative sign of EVI anomalies could be correctly predicted. Finally,
we further relaxed our requirements by evaluatingwhether the positive/negative sign of EVI anomalies can be
correctly predicted in extreme conditions (referred to as direction predictability in extreme conditions).
Extreme value refers to the EVI anomalies at a pixel exceeding one standard deviation. Those pronounced
variations of plant growth are especially important for ecological and socioeconomic studies. It is thus important
for the statisticalmodels to at least correctly detect the response direction of ecosystem in those extreme
conditions.

Each of the threemodels was run 100 timeswith unique randomdivisions of the time series into training
(70%) and test (30%) sets for fair evaluation, with the former used to train themodel and the latter to evaluate its
performance.Models were evaluated based on the evaluationmetrics described above, and themedian value of
the 100 evaluationmetrics was calculated over the test set at each grid cell and reported as themodel
performance in the results. These aforementioned statistics were also aggregated for each biome type to
demonstrate the dependence of ocean influences andmodel performance on individual vegetation types.
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3. Results

3.1. Controlling SST index
Of the tropical vegetated grid cells, 92.53%, 95.46%, and 94.69%of SouthAmerica, Africa, and Southeast Asia,
respectively, showed significant (p<0.01) correlations between a predictor SST index and subsequent EVI
anomalies (figures 1(a) and (e)).More specifically,most tropical forest regionswere associatedwith significant
correlations, with the area percentages of 88.55% for the Amazon, 88.15% for theCongo, and 90.92% for
Southeast Asia. High absolute correlation coefficients were seenmainly over northeastern Brazil, eastern
tropical Africa, and northernAustralia. These evident connections indicate the potential for SST indices to be
successfully applied in the prediction of the dynamics of tropical vegetation growth.

Vegetation growth over tropical SouthAmerica was influencedmainly by SST from theAtlanticOcean basin
(especially TSA), followed by those from the Indian and PacificOcean basins (figures 1(b) and (f), S4).
Northeastern Brazil, the region associatedwith strongest responses of vegetation growth to SST variations, was
almost entirely controlled by a unique index, the TSA, with a lead time ranging roughly from3 to 5months
(figures 1(c) and (g), S5). The positive correlations indicate that an abnormally high temperatures in the tropical
SouthAtlantic favors vegetation growth.Over tropical Africa, DMI from the IndianOcean andTSA from the
AtlanticOcean exerted notable controls over vegetation growth. For eastern tropical Africa, Niño4 dominated
the vegetation growth. Influences fromDMI andNiño4were positive and short in lead time (0–2months and
3–5months, respectively). TSAwas negatively correlatedwith EVI over the northeasternHorn of Africa, with
TSA leading EVI responses by about 9–11months. Tropical Pacific SSTs, specifically Niño4 representing the
ENSOmode, played a primary role over tropical Southeast Asia andAustralia. Over northernAustralia, where
SSTs pronouncedly influenced vegetation dynamics, tropical Pacific indices (e.g., Niño3.4, Niño3, andNiño4)
were negatively correlatedwith vegetation growth. Tropical Atlantic SSTs (TSA andTNA) also positively
controlled some portion of northernAustralia.While the responses of vegetation to ENSO indices were short
(0–2months in advance), the optimal forecasting time for TSA/TNAwas 9–11months in advance, probably due
to the long distance from theAtlanticOcean. Actually, it has been shown that the TSA/TNA is partly driven by
and thus lags the PacificNino index by 3–6months (Alexander et al 2002), which is consistent with our findings.
The longer response time of TSA (9∼11months) than that ofNiño4 (3∼5months) over eastern tropical
Africa could also be caused by this relationship between ENSO indices and tropical Atlantic SST indices.

Figure 1. Spatial distributions of (a) themaximumabsolute correlation coefficients between EVI and the controlling SST index,
(b) the controlling SST index, (c) the number ofmonthswith the controlling SST leading EVI responses, and (d) the anomaly
predictability with p<0.05.Only those grid cells with significant correlations between SST index and EVIwith p<0.01 are shown.
Grid cells withmore than 10%of their EVI time seriesmissing aremasked. The rainforest regions are highlighted by polygons in each
map. The right column shows the density distributions of (e) correlation coefficients for each region, (f) the same, but for each SST,
(g) the number of leadingmonths for all three tropical continents, and (h) anomaly predictability. The line colors denote different
continents as indicated in (g). The vertical black lines in (e) and (h) indicate the thresholds beyondwhich values are significant with
p<0.01 (solid line), 0.05 (dashed line), and 0.1 (dotted line).
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Figure 2.The statistics of (a) themaximumcorrelation, (b) percentage of area controlled by each SST index, (c) the number of leading
months, (d) anomaly predictability, i.e., the correlation coefficient between predicted and historical EVI anomalies, (e)direction
predictability (i.e., the percentage of correct predictions in the signs of EVI anomalies), and (f) direction predictability in extreme
events (i.e., correctly predicted signs of EVI anomalies when the anomalies exceeding the standard deviation) over different biomes.
Abbreviations of biome types are given inMethods. For each biome classification, statistics for each SST index are shown,with the
colors representing the ocean basin that a specific SST index belongs to. In (a), (c), (d), (e), and (f), the dotted curve represents the
mean value, and the shading area indicates themean value±standard deviation. The broken lines in (a) and (d) denote the threshold
in the correlation coefficient beyondwhich the value is significant with p<0.01.
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The three specified regionswith a strong influence fromSSTs on vegetation dynamics are coveredmainly by
open shrub, woody savanna, savanna, and sparse vegetation (figure S2). The controlling oceanmodes varied
with biome types but theNiño4, TSA, andDMIwere identified as the dominant controlling SST indices
(figure 2). No clear controlling indices that overwhelm the rest were seen for other biome types, especially for the
cropland, which is a human-managed land use type and thus relatively less responsive to climate conditions.We
also did not see a clear dominant controlling oceanmode over the evergreen broadleaf forests either. Such
differences in the EVI response to oceanic drivers imply that vegetation adaptation strategies and controlling
mechanismof climates varywith biome types.

3.2.Howwell can vegetation dynamics be predicted?
Due to the best performance of SST2 among all three statisticalmodels (figures S6, S7, and table S1), we use its
results in this section to assess the statisticalmodel’s ability to predict vegetation changes. Over the pan tropics,
EVI anomalies can be partially predicted by SST (figure 1(d)). Not surprisingly, the highest predictability was
determined over the three regionswith highest correlationswith SSTs as shown infigure 1(a), namely
northeastern Brazil, eastern tropical Africa, and northernAustralia. Themean anomaly predictability was 0.30
when averaged across the entire tropical vegetated area, with itsmaximumvalue reaching up to 0.84. The
anomaly predictability is the correlation between historical observed and predicted EVI anomalies, and thus
high values, i.e., close to 1, indicate high accuracy of themodel. 25.76%, 33.13%, and 39.94%of vegetated areas
across SouthAmerica, Africa, and Southeast Asia, respectively, were associatedwith significant predictability
with p<0.01.When considering only tropical rainforests, this area proportion dropped substantially to
14.03% for the Amazon, 11.83% for theCongo, and 20.23% for Southeast Asia. The proportion of correctly
predicted signs of EVI anomalies (direction predictability)was also examined, and its probability density
function (PDF)was distributed to about 60%with a range of about 50%–80%as shown infigure 3(a). The value
reached up to about 80% in some places over these three regions that aremost responsive to SSTs.We further
evaluatedwhether themodel can correctly predict the sign of EVI anomalies when they are abnormally extreme
(direction predictability in extreme events), i.e., beyond one standard deviation. PDF of this predictabilitymetric
infigure 3(b) peaked at 100%, indicating the high ability of themodel to correctly predict the signs for those
extremely abnormal EVI values. Though the number of grid cells with extreme EVI occurrences was small (only
2.15%of vegetated grid cells), high predictability above 90%was seen over large proportions of these grid cells
primarily over part of eastern tropical Africa (68.25%over SouthAmerica, 77.34%over Africa, and 66.17%over
Southeast Asia). The percentages for the three rainforests were 59.21% (Amazon), 59.80% (Congo), and 61.45%
(Southeast Asia). These high percentages indicate that even simple statisticalmodels can correctly predict the
direction in vegetation response to extreme events severalmonths in advance, which is the bottom line of
developing forecastmodels.

Predictability (in terms of all three-predictabilitymetrics)was higher over open shrub, savanna, grassland,
and sparsely vegetated area (figures 2(d)–(f)) than other biome types. Rainforests were associatedwith the lowest
predictability (the EBF) comparedwith all other 8 biome types that cover at least 0.5%of vegetated area over the
tropics. For example, the anomaly predictability was not significant for almost all controlling SST indices except
Niño3.4 andNiño4 (with the highest values passed beyond the significant threshold).

Figure 3.Density distribution of (a)direction predictability (i.e., the percentage of correctly predicted signs of EVI anomalies) and
(b)direction predictability in extreme conditions (i.e., correctly predicted signs of EVI anomalies with the anomalies exceeding a
standard deviation) over the three tropical continents.
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4.Discussion

Thewidely reported strong influence of SSTs on vegetation dynamics over the tropics (e.g. Lyon 2004) indicates
a potential predictive skill, which is the focus of this research. Northeastern Brazil, eastern tropical Africa, and
northAustralia were found to be associatedwith high predictability of vegetation greenness using SSTs. These
three regions are all located in arid or semi-arid climate zones with strong seasonal cycles in precipitation and
rainy season(s) of 3–6months (e.g. Drosdowsky 1993,Nicholls et al 1997,Uvo et al 1998, Yang et al 2015), and
are coveredmainly by sparse vegetation spanning fromopen shrublands to savanna.

Anomalies in SSTs drive the changes in atmospheric circulations and consequentlymodify the
spatiotemporal distributions of climate variables (e.g., air temperature, cloud fraction, and precipitation), which
then regulate vegetation functioning through plant physiological processes. For example, Philippon et al (2014)
showed that ENSO’s impacts onNormalizedDifference Vegetation Index (NDVI) over eastern tropical Africa
occurmainly through its effect on rainfall. Those three regions are recognized as substantially influenced by SSTs
and have also been found to be associatedwith strong coupling between SSTs and local precipitation change in
previous studies, suggesting that the climate variable linking ocean status and vegetation responses is primarily
precipitation.

Over northeastern Brazil, we found that vegetation growthwas almost entirely controlled by tropical South
Atlantic SSTs, with higher ocean temperature favoring vegetation growth. The tropical Atlanticmeridional SST
gradient has long been recognized as a potential influence on the precipitation anomalies over northeastern
Brazil (or theNordeste). For example, Uvo et al (1998) revealed strong positive correlations between south
tropical Atlantic SST anomalies and rainy-season precipitation over northeastern Brazil on amonthly time scale
in February and especially in April andMay. Though the correlation of the contemporary SST anomalies and
precipitation is weak inMarch, SSTs still have a pronounced positive impact on the rainy season precipitation
due to their persistent impact that lasts 2–3months. The region of the south tropical Atlantic basin previously
found to exert the impacts is almost identical to the boxwhere the TSA index is defined and calculated (Enfield
et al 1999). Giannini et al (2004) further showed that awarmer than normal TSA or colder than normal TNA
during the boreal spring (March-May) drives the Atlantic Inter-Tropical Convergence Zone (ITCZ) southward,
favoring an early start of the rainy season and a higher accumulated precipitation during the rainy season in the
BrazilianNordeste. The longer response time for vegetation found in our study (3–5months) comparedwith
2–3months found for precipitation byUvo et al (1998)may result from additional factors including soil
moisturememory (Notaro 2008) and plant resilience (Potts et al 2006).

Over eastern tropical Africa, SSTs fromall three ocean basinswere found to control some area in our study,
withDMI andNiño4 imposing positive controls andTSA imposing negative controls. Among the three indices,
DMI from the IndianOcean controlled the largest area of this region. The IndianOcean SST has been identified
as themain driver of precipitation variability over eastern tropical Africa (Goddard andGraham1999).
Specifically, Black et al (2003) indicated that extreme September-October-November precipitation over this
regionwas associatedwith periods of persistently highDMI, i.e., an anomalous highwest-east SST gradient over
the tropical IndianOcean. The variability of seasonal rainfall over eastern tropical Africa is also affected by ENSO
(e.g. Giannini et al 2008). Parhi et al (2016) demonstrated that ElNiño (quantified by positive values ofNiño3.4
in their study)was associatedwith an increase in the number of wet days and consequently an increase in
seasonalmean precipitation. Ourfindings that tropical Pacific SSTs impose a positive control on eastern tropical
African vegetation growth are in line with other studies. Specifically, a positive control ofNiño3.4 on the
interannual variability inNDVI has been reported (Zhao et al 2018). Similarfindingswere also shownbetween
ENSOand gross primary production (GPP) on seasonal time scales (Zhu et al 2017). Although the direct
relationships betweenAtlantic SST and precipitation variability over the eastern tropical Africa have not been
reported in the literature, to the best of our knowledge these twomight be connected through the impacts of
TSAon Indianmonsoon variability (Kucharski et al 2008) and the subsequent influences of Indian ocean SST on
precipitation over TEA (Wang et al 2017).

Over northernAustralia, our results indicate that tropical Pacific SST (Niño3.4, Niño3,Niño4)negatively
correlates and tropical Atlantic SST (TSA andTNA) positively correlates with vegetation anomalies (both
significantwith p<0.01). The negative controls of ENSOon vegetation greenness over this region are
consistent with other studies (e.g. Zhao et al 2018). Kirono et al (2010)demonstrated that the seasonal
precipitation in northernAustralia was best predicted byNiño4 during austral spring and autumn. They also
indicated that the summer rainfall over northernAustralia can be predicted byNiño4 and the Southern
Oscillation Index (SOI). Precipitation over easternAustralia is alsowell known for its strong response to ENSO
modewith the positive phase associatedwith decreasing precipitation (e.g. Catto et al 2012). Studies have also
reported the impacts of AtlanticOcean SST onAustralia rainfall. For example, Lin and Li (2012) identified a
positive correlation between tropical Atlantic SST anomalies and rainfall in the northwestern Australia. Though
most of the regions in these studies are out of the spatial scope of our research due to the limited spatial coverage
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in the tropics within 20°S–20°N, these studies provide further insights into ocean influences on northern
Australian rainfall.

Vegetation growth over these three semi-arid regions has been indicated as primarily positively controlled by
water availability on seasonal (Seddon et al 2016, Papagiannopoulou et al 2017, Green et al 2017) and interannual
(Gonsamo et al 2016, Zhao et al 2018) time scales despite differences in statisticalmethods and temporal ranges
of these past studies. As revealed by a rainfall exclusion experiment, not only the rainfall amount but its
frequency and timing strongly influence the structure and functioning of semi-arid ecosystems (Miranda et al
2011). Specifically, Barbosa et al (2006) showed that the seasonal variations ofNDVI over northeastern Brazil
were largely influenced by the seasonal dry andwet periods. They found that greening and browning periods of
about 7–8 years coincidedwith prolonged extremewet and drought periods, respectively. Over eastern tropical
Africa, Hawinkel et al (2016) indicated that the interannual variability in precipitation explainedmost of the
variability in plant growth, particularly over those areas covered by herbaceous plants, with topography and soil
playing a limited role. Seddon et al (2016) proposed an explanation for the high plant sensitivity towater
availability over northeastern Brazil that indicated the high phenotypic plasticity of leaf senescence and green-up
resulted in large amplitudes in the EVI response to drought variability. Green et al (2017) further suggested that
the higher fraction of C4 plants in these wet-dry transitional area (Still et al 2003) can explain the higher
sensitivity towater limitation since C4 plants also have higher water use efficiency thanC3 plants
(Ghannoum2008).

Our results show that oceanic signals substantially contributed to the seasonal and intra-seasonal ecosystem
dynamics in the semi-arid regions, and thus can be used to predict ecosystemdynamics in advance. Semi-arid
ecosystems have been reported to play a dominant role in the inter-annual variability and trends in global carbon
cycle (e.g. Ahlström et al 2015, Poulter et al 2014). This study thus serves as a step forward in our future
predictions of global carbon cycles in response to environmental change (Luo et al 2015). In addition, evidence
has shown that ecosystem functioning is influenced by variations in hydrological conditions evenwithout
changes inmean annual precipitation (e.g. Knapp et al 2002). Our focus on precipitation variability originating
fromSST variability on seasonal to intra-seasonal time scales thus provides further insights into potential
impacts fromongoing anthropogenic climate change.

In contrast to the sparse vegetation located in the semi-arid regions, the lowest predictability of the statistical
models was identified over the tropical rainforests, implying non-climatic factorsmight exert the first-order
control of plant growth variability. There is an ongoing debate regarding the driving factors underlying the
rainforest growth. Zhao et al (2018)demonstrated significantly positive correlations betweenNDVI and
Photosynthetically Active Radiation (PAR) over theAmazon and Southeast Asia rainforests on interannual time
scales. UsingGranger Causality technique, Green et al (2017) found that seasonal variations in PARwere
responsible for the solar-induced fluorescence (SIF) dynamics over only a very small area in theAmazonwith
most areas uncontrolled by either PARor precipitation. Other studies, however, showed no clear climatic
control on vegetation variability over the tropical rainforests at seasonal (Papagiannopoulou et al 2017) or
interannual (Gonsamo et al 2016) time scales. The dense tropical forests are relatively resilient to climatic
variability, which is to a certain extent facilitated bymanymechanisms, including their deep roots system that
can buffer the drought impacts (Christina et al 2017). In addition,Wu et al (2016) found that leaf development
and demographywas the primary driver of photosynthetic seasonality in tropical evergreen forests while the
seasonality of climate variables played a negligible role. Other factors thatmay determine the variabilities of
tropical forests includewildfires (VanDerWerf et al 2008), availability of soil nutrient (Fisher et al 2012), and
deforestation (Hansen et al 2013). The possiblemajor role of these non-climatic factors could explain the lowest
predictability of rainforest growth using SSTs as seen in our study.However, ourfindings that vegetation growth
of tropical rainforests is poorly predicted using SSTs do not necessarily apply to other aspects of ecosystem
functioning. In contrast, Chen et al (2016) demonstrated that SSTswere good predictors of burned areas over
various tropical rainforest regions, including southwestern, eastern, and southeastern Amazon and almost the
entire Southeast Asia rainforest.More efforts are thus needed to explore the possibility of predicting growth
variation in tropical rainforests.

Behavior of oceanicmodes is not completely independent, and interactions among themhave been
previously reported. For example, Uvo et al (1998) found that the tropical Pacific SST anomaly patternwaswell
correlatedwith that of the northern tropical Atlantic, with the temporal correlation coefficient reaching up to
0.8. They also demonstrated that tropical Pacific SST anomalies in winter trigger tropical Indian SST anomalies
in spring. Dannenberg et al (2018) revealed that the inclusion of interaction of teleconnections on vegetation
phenology improvedmodel accuracy overNorth American land surfaces. One limitation of our studymay thus
stem fromour lack of consideration of the interactive impacts of different oceanmodes on vegetation growth.
The resulting potential uncertaintiesmight be the overestimation or underestimation of effects and
predictability from the additive sumof a combination ofmultiple SST indices. Specifically, in our SST2model,
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i.e. a linearmodel with contributions from two additive terms (SST indices), the actual total effects of the two
SST indicesmight be greater or lesser than the sumof themdepending on the coefficient of the interaction term.

The selection ofmodel forms, for example, themodel complexity, is also expected to highly influence our
predictability abilities andmay introduce uncertainties.We built three statisticalmodels and compared their
performance infigure S6. Based on themedian predictability from100 runs of all threemodels, SST2was
significantlymore accurate than SST1 and SST1p, and SST1pwas significantlymore accurate than SST1. A
Student’s-t test between each combination of twomodels (table S1) confirms thatmore complexmodels are
alwaysmore significantly accurate than the less complex ones, in terms of themedian predictability. Further
comparisons in the three continents show similar order of themodels’ accuracy (figure S7). These comparisons
indicate thatmore complexmodels bring in higher predictability in vegetation responses.

5. Conclusions

Three tropical regions, namely northeastern Brazil, eastern tropical Africa, and northernAustralia, that are
located in arid or semi-arid climate zones and coveredmainly by sparse vegetation including open shrub, were
found to be associatedwith evident influences of SSTs on vegetation growth and consequently high ecological
predictability on seasonal to intra-seasonal time scales. Over the tropical rainforests, however, theweakest
oceanic influences and thus lowest predictability were identified. The developed statisticalmodels partially
predicted the EVI dynamics based on selected SST indices over the pan tropics with limitations owing to the
impacts from factors other than climate andmodel simplicity. As a future direction,more sophisticated
statisticalmodels will be tested.Wewill also evaluate the reliability of the statistics-basedmodel for extracting
key oceanic impacts on tropical terrestrial ecosystemproduction using dynamic experiments with an Earth
systemmodel, for example those from theHighResolutionModel Intercomparison Project driven by observed
SSTs (Haarsma et al 2016).Wewill include vegetation data that ismore physiologically related to plant
photosynthesis, including the observation-basedGPP (e.g., Zhao et al 2005, Jung et al 2009) and SIF (Joiner et al
2011). Furthermore, dimension reduction techniques (Gonsamo et al 2016)will be applied to quantify the
leadingmodes of SSTs and precipitation and their relationships with vegetation greenness, thus to reduce
dimensionality.
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