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Machine learning–based observation-constrained
projections reveal elevated global socioeconomic
risks from wildfire
Yan Yu 1,6, Jiafu Mao 2,6✉, Stan D. Wullschleger2, Anping Chen 3, Xiaoying Shi2, Yaoping Wang 4,

Forrest M. Hoffman5, Yulong Zhang4 & Eric Pierce 2

Reliable projections of wildfire and associated socioeconomic risks are crucial for the

development of efficient and effective adaptation and mitigation strategies. The lack of or

limited observational constraints for modeling outputs impairs the credibility of wildfire

projections. Here, we present a machine learning framework to constrain the future fire

carbon emissions simulated by 13 Earth system models from the Coupled Model Inter-

comparison Project phase 6 (CMIP6), using historical, observed joint states of fire-relevant

variables. During the twenty-first century, the observation-constrained ensemble indicates a

weaker increase in global fire carbon emissions but higher increase in global wildfire exposure

in population, gross domestic production, and agricultural area, compared with the default

ensemble. Such elevated socioeconomic risks are primarily caused by the compound regional

enhancement of future wildfire activity and socioeconomic development in the western and

central African countries, necessitating an emergent strategic preparedness to wildfires in

these countries.
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W ildfires represent a major ecosystem disturbance and
aerosol emission source, affecting the global carbon
budget, climate, and human life1,2. A recent surge of

disastrous fires caused enormous social disruptions and huge
economic losses3. During the 2019–2020 Australian bushfire
season, a series of major wildfires burned more than 190,000 km2,
costing more than 20 billion 2020 USD, and killing at least 33
people4. Through global climate change5, human influence on fire
ignition6, land-use/land-cover change7, and complex response of
the land biosphere to human-induced climate change and CO2

fertilization8, anthropogenic activity has remarkably altered
wildfire behavior and its environmental risks9–11 at various
temporal and spatial scales. These scale-dependent human-fire
feedbacks also complicate the future projection of wildfire
regimes across the globe (e.g., size, frequency, and intensity, and
their socioeconomic impacts). Nonetheless, accurate spatio-
temporal wildfire prediction is essential to the estimate of future
socioeconomic risks because of the tight linkage between wildfire
regimes and fire-relevant socioeconomic effects, and the highly
heterogeneous nature of the projected socioeconomic
development3.

Process-based Earth system approaches, such as the use of
Earth system models (ESMs), have the potential to account for
many human-vegetation-fire-climate interactions and are thus
suggested as a practical way to predict future changes of wildfire
and associated socioeconomic exposure (e.g., population, gross
domestic product [GDP], and agricultural area). Notwithstand-
ing, reliable long-term wildfire projections remain highly uncer-
tain and challenging, primarily because even the state-of-the-
science ESMs are still limited in characterizing the human-
vegetation-fire-climate feedback12. Such uncertainties potentially
lead to biases in the simulated historical fire carbon emission13 by
ESMs participating in the latest Coupled Model Intercomparison
Projection phase 6 (CMIP6)14 (Supplementary Fig. 1), casting
doubt on the credibility of the projected wildfire evolution from
the default models. Given the uncertainty in the dynamically
simulated wildfire15,16, previous efforts on wildfire projections
were often focused on the use of fire weather simulated by ESMs
or global climate models as an emulator for fire potential17,18.
However, the linkages between fire weather and wildfire activity
are greatly affected by other factors, including terrain, fuel
abundance, fuel moisture content, source of ignition, and their
interactions19–22. Although current ESMs only include incom-
plete and highly parameterized driving processes for fire (Sup-
plementary Table 1), the involved physics-based coupling among
fire, climate, ecosystem, and human activities across different
scales (e.g., consistent mechanistic relationships between varia-
bility in fire-relevant variables, such as air temperature, pre-
cipitation, and vegetation coverage, and persistent sensitivity of
these climate or ecosystem variables to external anthropogenic
forcings) sets the basis for linking future fires with historical states
of these components in the ESMs23,24. Benefiting from both the
ESM-simulated history-future relationships and the availability of
multitype fire-relevant historical observations (e.g., fire carbon
emission, air temperature, precipitation, and leaf area index), we
hypothesize that constraining the ESM wildfire estimates by
observations is a potentially valid approach for reducing spatial
inaccuracies in global wildfire projections and related
socioeconomic risks.

Effective observational constraint of future wildfire changes
takes advantage of methodologies developed for projecting other
Earth system features (e.g., tropical land carbon25 and ecosystem
photosynthesis26) but needs to address additional challenges. The
emergent constraint (EC) approach has demonstrated robust
capability in reducing the uncertainty in characterizing or pro-
jecting Earth system variables simulated by a multimodel

ensemble25,26. The concept of EC relies on the existence of a tight
regression across ESMs between a quantity of interest that is
difficult or impossible to measure (e.g., a future state) and a
second, measurable variable27. Therefore, successful EC applica-
tions require a sufficient number of models with diverse struc-
tures and parameters. However, this is not applicable to wildfire
projections using the latest ESMs participating in CMIP6. Indeed,
at the time of this analysis, only 13 of the currently available
CMIP6 models provide fire carbon emissions in both historical
and future simulations (Supplementary Table 1), which is insuf-
ficient to perform a traditional EC analysis. Furthermore, tradi-
tional EC implementations only establish linear relationships
between a limited number of constraining factors and projected
variables, but wildfire-induced carbon emissions can result from
complex, nonlinear integration of meteorological, ecological, and
socioeconomic states3, causing largely insignificant linear rela-
tionships between future fire carbon emissions and historical
constraining variables across the analyzed ESMs, especially over
the currently fire-prone regions (Supplementary Fig. 2). Fur-
thermore, whereas the traditional EC has been successfully
applied to large-scale averaged quantities (e.g., tropical land
carbon25 and global terrestrial photosynthesis26), this analytical
framework may not be suitable for projections of variables of
local interest, such as wildfire regimes (Supplementary Fig. 2),
whose detailed spatial structures are critically needed for esti-
mating their socioeconomic impacts. Other studies have applied
performance-based approaches such as bias-correction28 and
model-weighting29, or process-oriented methods such as multiple
diagnostic ensemble regression30 for reducing the uncertainty in
multimodel projections of various Earth system variables. How-
ever, these constraining efforts normally rely on univariate and
temporally stable assumptions about model performance and
ambiguous, linear relationships of the observed metrics and
future projections31. Therefore, the observation-constrained
projection of global wildfire requires more advanced methodol-
ogies that can both vigorously capture complex, cross-sector
interactions with limited samples of ESM ensembles and accu-
rately resolve the detailed structure of wildfire regimes to better
inform future socioeconomic exposure to fire.

This study develops a machine learning–based analytical fra-
mework (Supplementary Fig. 3) to establish an observation-
constrained projection of global fire carbon emissions and
socioeconomic risks using 38 members from 13 CMIP6 ESMs
and various sources of observations. These ESMs provide coupled
carbon-ecosystem-climate simulations with a wide range of pro-
cesses and parameterizations included14. Their terrestrial com-
ponents typically contain fire models with process-based and/or
data-based parameterization for various landscapes, accounting
for effects of changes in both land surface meteorological states,
vegetation-soil conditions and human activities on fire regimes
(Supplementary Table 1 and reference therein). Inspired by the
EC concept and motivated by the complex influencing factors of
wildfire, machine learning techniques (MLT) are implemented to
quantify the emergent relationships between projected global fire
carbon emissions and historical, observed climate, terrestrial
ecosystem, and socioeconomic states, using the complete
historical-future spatial patterns simulated by the ESMs (see
Methods section). MLT provide useful tools to investigate the
nonlinear and complex effects of natural and anthropogenic
factors on wildfire activities32–34, and have been successfully used
for predicting seasonal fire carbon emissions and burned areas in
Africa35. Here, multiple MLT are first trained to capture the
ESM-simulated relationships among the selected historical cli-
mate, terrestrial ecosystem, and socioeconomic variables and
future multi-decadal wildfire-induced carbon emissions under the
Shared Socioeconomic Pathway (SSP) 5-8536. Observed, historical
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environmental (e.g., fire carbon emission, leaf area index [LAI],
soil moisture, temperature, precipitation, wind, relative humidity,
flash rate, and orography) and socioeconomic (e.g., land use and
population) variables (Supplementary Table 2 and reference
therein) are subsequently fed into the trained MLT models,
resulting in a multimodel, multi-data set ensemble of
observation-constrained projections of future global distribution
of fire carbon emissions for each decade. These driving variables
of wildfires are selected so that their nonlinear combinations as
determined by MLT reflect the fuel abundance8 (LAI, tempera-
ture, precipitation), fuel moisture37 (soil moisture, relative
humidity, precipitation, temperature), fire spread conditions38

(wind and orography), and ignition sources39 (flash rate, land use
and population). The socioeconomic risks associated with future
wildfires are then quantified using the default and observation-
constrained ensemble projections of fire carbon emissions, along
with the population, GDP, and agricultural area projected under
the SSP5-8536 (see Methods).

Here we apply the MLT-based analytical framework to
observationally constrain fire carbon emissions and their socio-
economic risks projected by CMIP6. This approach leads to a
weaker increase in global fire carbon emissions but higher
increase in global wildfire exposure in population, gross domestic
production, and agricultural area during the twenty-first century,
compared with the default ensemble.

Results
Evaluating observation-constrained fire carbon emissions for
the historical period. The MLT-based observational constraint
substantially boosts the consistency between simulated and
observed wildfire activities for the validation period, 2007–2016,
in terms of both magnitude and spatial pattern of global fire
carbon emissions (Figs. 1 and 2). The observation-constrained
product substantially reduces the overestimation of fire carbon
emissions over sparsely vegetated regions (mainly for EC-Earth3
models, Supplementary Fig. 1), tropical rainforests (mainly for
EC-Earth3 models), northern boreal regions (mainly for MRI-
ESM2.0), and densely populated regions in North America and
Europe (mainly for CNRM-ESM2.1 and MPI-ESM1.2-LR), as
well as the underestimation of fire carbon emissions over the
savannahs in Africa from most analyzed ESMs (Fig. 1). Relatively
large error between the observation-constrained and observed fire
carbon emissions remains in the present fire-prone regions (e.g.,
tropical and subtropical Africa, subtropical South America, and
southeast Asia) (Fig. 1c). During the validation period, the root
mean square error (RMSE) between the simulated multimodel
mean and observed historical annual total fire carbon emissions
decreases from 0.020 to 0.014 (0.010–0.017, 10th–90th percentile
across ensemble members) kg m-2 yr-1, and the squared spatial
correlation (R2) between the observed and simulated multimodel
mean, decadal averaged fire carbon emissions increases from 0.36
to 0.66 (0.47–0.92) (all ps < 0.001). The error metrics, namely
RMSE and R2, produced by the MLT-based observation con-
straint are significantly better than those derived from the tra-
ditional EC approach (Fig. 2), demonstrating the effectiveness of
the current approach in resolving the spatial distribution of his-
torical wildfires. The observation constraint also produces a more
realistic estimation of historical global fire carbon emissions
(Fig. 3a) and their socioeconomic risks compared with the default
ensemble (Fig. 4a, d, g). Furthermore, individual ESMs exhibit
improved spatial consistency with the observational constraint,
with a reduction in RMSE by 46% (NorESM2-LM) to 74% (MRI-
ESM2.0) across models and an increment in R2 by 0.30 (E3SM-
1.1) to 0.56 (EC-Earth3-CC) (Fig. 2). Such vast improvements in
reproducing the historical intensity and spatial pattern of global

fire carbon emissions among all the analyzed ESMs demonstrate
the advantage of the MLT-based observational constraint in
enhancing the reliability and confidence of the resultant global
wildfire projections.

Model-projected global fire carbon emissions in the twenty-
first century. Compared with the original, unconstrained multi-
model ensemble, the MLT-based observational constraint leads to
a reduced magnitude, a less pronounced future increase, and a
much narrower spread of global fire carbon emissions (Fig. 3).
The default multimodel ensemble projects a 6.0% (0.6%–9.4%)
decade−1 increase in global total fire carbon emission from
2.7 × 103 (1.6 × 103 – 4.7 × 103) Tg yr-1 during the 2010s to
4.0 × 103 (2.1 × 103 – 1.4 × 104) Tg yr−1 during the 2090 s
(Fig. 2a). According to the observation-constrained multimodel
ensemble, the global total fire carbon emission is projected to
increase by 4.1% (2.6% – 7.2%) decade-1 from 2.0 × 103 (1.7 × 103

– 2.4 × 103) Tg y−1 during the 2010s (2.0 × 103 Tg y−1 during the
2010s reported by two observational data sets) to 2.8 × 103

(2.7 × 103 – 3.4 × 103) Tg y−1 during the 2090 s. The global fire
carbon emission is projected to increase monotonically during the
twenty-first century, indicated by the original multimodel mean
and 9 out of the 13 analyzed ESMs. However, four ESMs
(CESM2, CESM2-WACCM, NorESM2-LM, and NorESM2-MM)
that share the same land component, namely the Community
Land Model (CLM) version 5 (Supplementary Table 1), simulate
a reduced global fire carbon emission during the first half of the
twenty-first century, resulting in a relatively stable fire carbon
emissions from 2010s to 2050s produced by the observation-
constrained ensemble (Fig. 3a). An exclusion of the NorESM2
models leads to a slightly elevated future increase in fire carbon
emissions produced by the observational constraint, especially
over the northern extratropical land surface (Supplementary
Fig. 4).

The projected evolution of fire carbon emission distribution is
substantially altered by the observational constraint (Fig. 3b–d
and Supplementary Fig. 5). Overall, the observation-constrained
ensemble estimates a robust increase in future fire carbon
emissions over most of the global land, with only a few regions
showing insignificant decrease (i.e., the northern boreal region in
Eurasia and the North American Great Lakes region) (Fig. 3c). In
contrast, the default multimodel ensemble consistently projects
increased fire carbon emissions over the Northern Hemispheric
subtropical and boreal regions, as well as southern Africa and
southern Australia, whereas the assessed ESMs produce divergent
future changes in fire carbon emissions for most of South
America, tropical Africa, southern Asia, and northern Australia
(Fig. 3b and Supplementary Fig. 5).

Specifically, the default and observation-constrained ensembles
demonstrate a consistent, positive future trend in fire carbon
emissions mainly for tropical forests in the Maritime Continent,
Central America, and Amazon, the tropical and subtropical
savannahs in northeastern South America, southern and eastern
sub-Saharan Africa, and southern Australia, as well as mid-
latitude grasslands and croplands in eastern Europe and central
and eastern Asia. Across the tropical forests and savannahs in
West Africa, Congo, northern Australia, and eastern South
America, the default multimodel ensemble (particular ESMs with
CLM as the land component, Supplementary Fig. 6 and
Supplementary Table 1) projects a future reduction in fire carbon
emissions, although the observation-constrained ensemble indi-
cates a significantly positive trend. The original multimodel
ensemble (mainly from CNRM-ESM2.1, Supplementary Fig. 6)
also simulates enhanced fire carbon emissions across the
subtropical, temperate, and boreal forests in North America,
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Europe, and east Asia during the twenty-first century (Fig. 3b) to
a larger extent than the observation-constrained multimodel
ensemble (Fig. 3c), and the observation-constrained ensemble
estimates a more drastic increase in fire carbon emissions in the
northeast United States and the Appalachian Mountains (Fig. 3c).
In the sparsely vegetated north Africa, Middle East, and central
Asia, the default multimodel ensemble simulates an increase in
fire carbon emissions (Fig. 3b), mainly contributed by the EC-
Earth3 and GFDL-ESM4, corresponding to the bias in their
simulated historical fire carbon emissions (Supplementary Figs. 1
and 6); however, these regions show minimal future changes in
fire carbon emissions in the observation-constrained ensemble.
Such inconsistency in the spatial distribution of projected fire

carbon emissions trend between the constrained and uncon-
strained multimodel ensembles leads to their distinct projected
evolution of the latitudinal fire carbon emissions (Fig. 3d).
Because of the projected future inhibition of fire carbon emissions
from eastern South America, Congo, south Asia, and northern
Australia, the default multimodel ensemble estimates a weakened
increase in fire carbon emission from 10°S–Equator and
Equator–10°N by 0.5% (−1.6%–1.8%, 10th–90th percentiles
among models) decade-1 and 0.4% (−1.7%–1.1%) decade-1

during the twenty-first century, roughly a quarter of the trend
from the observation-constrained ensemble. On the contrary, for
the Great Lakes region and boreal Eurasia where the default
ensemble projects a decrease in fire carbon emissions, the

Fire carbon emission 
(kg m-2 yr-1)

a

b

c

0.7
(-0.4 – 2.7) 
Gt yr-1

2.0 Gt yr-1

0.0
(-0.3 – 0.2) 
Gt yr-1

Fire carbon emission bias 
(kg m-2 yr-1)

Fire carbon emission bias 
(kg m-2 yr-1)

Fig. 1 Historical fire carbon emissions during 2007–2016 simulated by 13 Earth system models (ESMs) without and with the observational constraint.
a Observed mean fire carbon emissions (kg m−2 yr−1), averaged across two observational data sets. The global total fire carbon emission and its
uncertainty range is marked. b Spatial distribution of the bias in original, unconstrained multimodel mean fire carbon emissions (kg m−2 yr−1). c Spatial
distribution of the bias in observation-constrained multimodel, multi–data set mean fire carbon emissions (kg m−2 yr−1). The bias of global total fire carbon
emission and its uncertainty range (10th–90th percentiles) is marked in the corresponding panels b, c.
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observation-constrained ensemble predicts an increase in fire
carbon emissions by 0.6% (0.5%–0.7%) decade-1, 0.5%
(0.2%–0.9%) decade−1, and 0.03% (−0.1%–0.6%) decade−1 from
40°N–50°N, 50°N–60°N, and 60°N–70°N, respectively, with much
weaker trends than the default ensemble.

Model-projected socioeconomic risks from wildfire in the
twenty-first century. The distinct future evolutions of fire carbon
emissions intensities and spatial patterns projected by the original
and observation-constrained multimodel ensembles also lead to
their divergent projections on socioeconomic exposures to wild-
fires at both global and national scales (Fig. 4 and Supplementary
Table 3). Under the projected changes in global fire carbon
emissions and socioeconomic development, the global wildfire
exposure in population, GDP, and agricultural area is projected to
increase by 5.5% (5.0%–6.2%) decade−1, 40.6% (33.7%–48.5%)
decade−1, and 2.5% (1.9%–3.7%) decade-1, respectively, during the
twenty-first century, based on the observation-constrained multi-
model, multi–data set ensemble average (Fig. 4a, d, g). As a
comparison, the original multimodel ensemble projects similar
absolute changes as the observation-constrained ensemble, yet with
a weaker relative increase by 3.2% (1.1%–7.9%), 12.6%
(7.0%–28.5%), and 1.8% (0.9%–5.5%) decade-1 in the global
wildfire exposure in population, GDP, and agricultural area,
respectively (Fig. 4a, d, g) because the models simulate higher
historical wildfire risks. The further intensified socioeconomic risks
from wildfire estimated by the observation-constrained versus the
default ensembles are primarily owing to the in-phase enhance-
ment of future wildfire activities and expected rapid socioeconomic
development in the currently fire-prone west and central African
countries (Fig. 3c), in direct opposition to the projected reduction
in wildfires over these regions by the default ensemble (Fig. 3b). As
a result, the observation-constrained ensemble indicates elevated
socioeconomic risks from wildfires in the west and central African
countries to a larger extent than the default ensemble during the
twenty-first century (Fig. 4b, c, e, f, h, i). Notably, although both
the default and observation-constrained ensembles highlight
African countries in their list of top 10 countries facing the greatest

relative changes in socioeconomic risks from wildfires during the
twenty-first century, the observation-constrained ensemble parti-
cularly tags west African countries, such as Niger and Sierra Leone,
as the most vulnerable countries in all the three metrics of socio-
economic risks from future wildfires (Supplementary Table 3).

Discussion
Our MLT-based analytical framework integrates the physical
processes contained in the ESMs and an observational constraint
to reduce the uncertainty in ESM simulations of historical and
future fire carbon emissions. ESMs include self-consistent dyna-
mical interactions among fire carbon emission, climate, and
ecosystem, which provide the basis for connecting future states
with historical, observable states. As characterized by the
fluctuation-dissipation theorem, there are profound mechanistic
relationships between short-term spatiotemporal variability in
near-linear systems or linear approximations of more complex
systems (e.g., the climate and ecosystem) and their long-term
response to external forcings (e.g., anthropogenic forcings)23,24.
This physics-based historical-future connection facilitates the
application of the EC concept in making long-term projections of
the climate and ecosystem, as well as the resultant global fire
carbon emissions and socioeconomic risks. However, the tradi-
tional EC framework appears less reliable in the projection of fire
carbon emissions (Supplementary Fig. 2), likely attributed to the
following factors31,40,41: (1) complex interactions among fire,
climate, ecosystem, and socioeconomic variables, inadequately
captured by the linear assumption adopted in the traditional EC
framework; and (2) the relatively small collection of fire simula-
tions and limited diversity in fire parameterizations for the
available ESMs (Supplementary Table 1), providing insufficient
sample for applying the traditional EC framework. Building on
the EC concept, our MLT-based observational constraining fra-
mework advances further in several key perspectives: (1) This
framework integrates the information from multitype observa-
tions of fire-relevant variables with the mechanistic history-future
relationship encompassed in ESMs. (2) This framework relies on
the power of MLT in capturing nonlinear and interactive
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Fig. 2 Accuracy of historical fire carbon emissions during 2007–2016 simulated by 13 Earth system models (ESMs) without and with the observational
constraint. a Root mean square error (RSME) (kg m−2 yr−1) between the observed, decadal mean global fire carbon emission and the original (star
representing each ensemble member) and observation-constrained (boxplot, representing the 10th, 25th, 50th, 75th, and 90th percentiles in the
multi–data set ensemble) simulations from 13 ESMs and their multimodel mean. b Squared spatial correlation (R2) between the observed, decadal mean
global fire carbon emission and the original (stars) and observation-constrained (boxplot) simulations from each of the 13 ESMs and their multimodel
mean. The black triangles in a and b indicate the RMSE and R2 produced by the traditional emergent constraint (EC) approach that constrains fire carbon
emissions during 2007–2016 with fire carbon emissions during 1997–2006.
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relationships between the simulated historical joint states in fire-
climate-ecosystem-socioeconomics and future wildfire activities. (3)
By taking advantage of the complete spatial pattern provided by the
relatively small collection of ESMs, this framework expands the
sample size of the training data, thereby enhancing MLT model
fitting efficiency and resolving the desired spatial pattern of future
wildfire regimes. Benefiting from the inclusion of the complete
spatial sample, this observational constraint leads to a consistent
and substantial error reduction in simulated global wildfire dis-
tribution (Figs. 1 and 2), demonstrating the robustness of our
analytical framework even with just 13 ESM ensembles. Indeed, our
MLT-based framework also shows satisfactory efficiency in error
reduction with only 6 CMIP6 ESMs that simulate burned area
fractions (Supplementary Fig. 7). Although the current MLT-based
EC framework improves the spatial accuracy of original ESM-
simulated fire carbon emissions during the historical validation
period, the performance of our framework in the future decades

partially relies on the accuracy of ESMs’ physical processes (e.g.,
complex responses of fire regimes to various natural and anthro-
pogenic forcings) and must be further evaluated. Not surprisingly,
the performance of our MLT-based observational constraint largely
relies on the spatial resolution of the input ESM data (Supple-
mentary Fig. 8) because finer resolution leads to both expanded
training data sample and resolved spatial patterns. Such detailed
structure of the target variable as projected by our MLT-based
observational constraining framework facilitates accurate assess-
ment of socioeconomic risks in the historical validation period
(Fig. 4) and potentially improved future projections, leading to
strategic implications for local and regional stakeholders. Similar
frameworks can benefit from the projection of other climate and
ecological variables that are of local interest (e.g., drought, heatwave,
flooding, primary productivity) and their socioeconomic influences.

The MLT-based observational constraint modifies the inten-
sity, distribution, and future projections of global wildfire carbon
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Fig. 3 Global and latitudinal evolution of fire carbon emissions from the original and observation-constrained multimodel ensembles. a Time series of
global total fire carbon emission (Tg y−1) from the 2010s to 2090s, according to the original individual Earth system models (ESMs) (circles), their
multimodel mean (thick black line), and the observation-constrained multimodel, multi–data set mean (thick red line). The pink shading with dashed
boundaries indicates the 10th and 90th percentiles in the multimodel, multi–data set observation-constrained ensemble; and the gray shading with dashed
boundaries indicates the 10th and 90th percentiles in the original multimodel ensemble. The blue stars indicate the observed global fire carbon emission
from two data sets. b Unconstrained and c constrained multimodel mean trend in fire carbon emissions (units: change per decade as the percentage of the
historical fire carbon emissions in the 2010s) from the 2010s to 2090s. Stitches indicate areas with a robust trend in fire carbon emissions, with a
consistent sign of trend among at least 80% of the ensemble members. d Trend in the total fire carbon emission (% of the historical fire carbon emission in
the 2010s per decade) from each 10° zonal band during the 2010s to 2090s, according to the original (multimodel mean: gray bars; 25th–75th percentiles:
thick horizontal lines; 10th–90th percentiles: thin horizontal lines) and observation-constrained (multimodel mean: red bars; 25th–75th percentiles: thick
horizontal lines; 10th–90th percentiles: thin horizontal lines) ESM simulations.
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emissions and their socioeconomic risks. This observational
constraint leads to reduced fire carbon emission magnitudes and
a weakened increase in future global fire carbon emission when
compared with the original, unconstrained multimodel ensemble
(Fig. 3 and Supplementary Fig. 5). The smaller future changes
(e.g., both the trends and mean magnitudes) in global fire carbon
emission estimated by the observation-constrained multimodel
ensemble indicates an overestimated intensity of future wildfires
simulated by the default ESMs, and such biases may introduce an
overestimation of positive feedbacks of fire to global warming
through fire-induced changes in vegetation and soil carbon42,
surface albedo43, and atmospheric concentrations of aerosols and
greenhouse gases44. Although the current approach does not
account for climate or ecological feedbacks of global fire carbon
emissions, dynamical coupling between observation-constrained
fire carbon emissions and other components of the Earth system
will likely result in a more reliable projection of all these com-
ponents. The overestimated historical and future enhancement of
fire carbon emissions simulated by the default ESMs is mainly
distributed across the historically sparsely vegetated regions
(Supplementary Fig. 4), potentially as a result of unrealistic
representation of dynamic vegetation processes45. Furthermore,
these ESMs display consistently strong linkage between the
simulated historical and future fire carbon emissions (Supple-
mentary Fig. 9), suggesting the primary need to improve histor-
ical wildfire simulation for better prediction of future wildfire
evolution.

In particular, the observation-constrained ensemble projects
increased wildfire activity over the Amazonian and Congo Basins,
in contrast to the default simulation for Congo and to a larger
extent for Amazon (Fig. 3b, c). The observation-constrained
projection of pan-tropical enhancement in wildfire activities is

likely affected by the changes in soil moisture and relative
humidity (Supplementary Fig. 10), consistent with previous
conclusions regarding accelerated drying over the tropics under
climate change46 and increased occurrence of severe tropical
droughts47–49. Such apparent association between future drying
and elevated fire carbon emission is also identified over other
forest, grassland, and cropland, as estimated by the observation-
constraint (Supplementary Fig. 11). In the Congo basin, the
projected elevation in the amount of fuel50, partially reflected by
the positive contribution of leaf area index trends to the future
increased fire carbon emissions as indicated by the observational
constraints (Supplementary Fig. 10b), further supports a more
flammable future. The leading role of fuel abundance in future
fire regimes also appears in other forest, shrubland, savannahs,
and cropland (Supplementary Fig. 11). Because of the global,
spatial sampling approach (see Methods), our constraining
approach results in a much weaker contribution of projected local
socioeconomic development (e.g., population density and land
use) to the projected trend in fire carbon emissions than the
default ensemble, for all major land-cover types (Supplementary
Fig. 11). Although the parameterized anthropogenic source and
suppression of wildfires in ESMs reflects valuable efforts to
represent socioeconomic influence on wildfire regimes, their
accuracy and applicability to future scenarios remain to be rig-
orously evaluated. In this perspective, our MLT-based observa-
tion-constrained ensemble raises an alternative scenario of future
evolution of fires in the Congo region—with relative weak
anthropogenic suppression and/or more anthropogenic ignitions
than that estimated by CMIP6 ESMs.

The MLT-based observation-constrained multimodel ensemble
projects a further enhancement of wildfire carbon emissions in
the historically fire-prone tropical forest ecoregions in western
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and equatorial Africa (Fig. 3) and consequently elevated socio-
economic risks in these regions (Fig. 4). Owing to their rapid
expansion in socioeconomics, including population, GDP, and
agriculture, and consequently projected increased vulnerability to
wildfires, western and central African countries need to develop
mitigation and/or adaptation strategies3 to minimize potential
socioeconomic loss caused by wildfires. Effective wildfire hazard
prevention practices may include fuel management through
rationally planned prescribed burning51 and manual modification
of vegetation patterns52, real-time monitoring of smoke spread53,
and accurate forecast of air quality degradation as a result of
biomass smoke54. For the populated western and northeastern
coasts and the Appalachian Mountains of the United States, as
well as northern and eastern Australia, our observational con-
straint confirms the previously projected more flammable future
from fuel drying under climate change55,56, suggesting an
increased likelihood of the 2019–2020 Australian bushfire and
2020 extreme western United States wildfire seasons in the
upcoming decades. Over these fire-prone regions, projected ele-
vation in mean fire states is likely accompanied with increased
occurrence and intensity of extreme wildfire events that may grow
beyond suppression capability, thereby requiring a paradigm shift
in measuring the effectiveness of fire management policies57.

The projected fire regimes and their socioeconomic risks
depend on the projected socioeconomic pathway. The currently
examined SSP5-85 reflects a high-emission scenario58, whereas a
lower-emission scenario, SSP2-45, suggests a generally milder
increase in global fire carbon emission, for both the original and
observation-constrained ensembles (Supplementary Fig 12). In
the northern subtropical and mid-to-high latitudes, while the
default ensemble indicates a spatially homogeneous but slightly
weaker increase in fire carbon emission in SSP2-45, compared
with that estimated for SSP5-85 from the same set of ESMs
(Supplementary Fig. 13), the observation-constrained ensemble
indicates opposite sign of changes in the Appalachian Mountains
of the United States in SSP2-45 and SSP5-85. Greater differences
in the projected fire carbon emission between SSP5-85 and SSP2-
45, in terms of both sign and magnitude of changes, are seen over
the northern subtropics, tropics, and Southern Hemisphere. Such
complicated dependency of future projection of fire regimes on
socioeconomic pathways is likely attributed to the nonlinear
interaction among fire, climate, vegetation, and human activity, as
well as potential occurrence of tipping points in ecology and/or
climate evolution59,60.

Several uncertainties and limitations of the current study, as
shared by most EC applications41, are noted here. First, the
uncertainty in observational data may evolve into the current
observational constraint. Although we analyze a spectrum of data
sources for most climatic and ecosystem variables, the single data
set used for lightning and socioeconomic variables, as well as the
deteriorated reliability of reanalysis-based wind and specific
humidity over observation-sparse regions61, likely leads to a
weakened constraint gained from these variables. In addition, the
currently examined fire carbon emission data sets were derived
from relatively coarse-resolution satellite measurements of
burned area (~500 m resolution), which may miss nearly half of
the burned area and associated carbon emissions in Africa as
detected by higher-resolution satellite measurements (~20 m
resolution) in a given year62. Inclusion of such small fires in the
observational data sets may result in an even greater magnitude of
both historical and future global fire carbon emissions estimated
by our observational constraint, likely as well as the default
ensemble if tuned to match such observation. Second, the
inconsistency between observed quantities and model-simulated
or model-utilized variables limits further strengthening of our
observational constraint. For example, the above ground biomass,

as provided by most ESMs, more directly captures the amount of
fuel than the combination of LAI, temperature, and precipitation,
as used in our current analytical framework. Yet, a lack of long-
term, reliable observational record of above ground biomass
prohibits the direct use of such key driving variable in the current
analysis. Another example involves the effects of sub-grid topo-
graphy, such as slope, aspect, and terrain ruggedness at a typical
scale of several kilometers, on wildfire spread and intensity63.
Future ESM development are encouraged to incorporate the sub-
grid topographic factors to improve their representation of
wildfire regimes and facilitate better observational constraint.
Third, the incomplete independence of the analyzed ESMs (e.g.,
CLM as the terrestrial component of several models) reduces
the multimodel spread of the original ensemble, causing higher
dependency of our MLT-based EC results on these shared
modeling components as well. Moreover, as much as our
observation-constrained ensemble provides bias-corrected his-
torical and likely future fire carbon emissions, our approach does
not directly account for more complex feedback from socio-
economic development to wildfire regimes beyond the prescribed
parameterization of socioeconomic drivers of fire carbon emis-
sion involved in the currently examined ESMs. Future model
development on socioeconomic-wildfire interactions, such as
anthropogenic ignition, urbanization, prescribed burning, and
anthropogenic suppression on naturel ignitions, will enhance our
confidence in predicting future socioeconomic risks from
wildfires11,64,65. Finally, the current MLT-based observation-
constraint framework does not directly account for potential
tipping points in fire regime evolution59,66 or certain threshold in
fuel moisture content below which more intense fire behavior
may occur22. The applicability of our framework to these extreme
fire regimes needs further investigation.

In summary, we have developed and applied an MLT-based
analytical framework to establish an observation-constrained
projection of global fire carbon emissions and socioeconomic
exposure using 13 CMIP6 ESMs and multisource, fire-relevant
observations. This approach leads to improved representation of
both the magnitude and spatial distribution of global fire carbon
emission during the validation period. The observation-
constrained ensemble projects a 4.1% (2.6%–7.2%) decade-1

increase in the global fire carbon emission during the twenty-first
century, to a lesser extent than the 6.0% (0.6%–9.4%) decade−1

increase as indicated by the default ensemble. Moreover, the
observation-constrained ensemble indicates a further enhance-
ment of wildfire carbon emission in the historically fire-prone
subtropical savannahs and tropical forests and savannahs in West
Africa, Congo, northern Australia, and eastern South America,
opposite or to a larger extent than the default ensemble. The rapid
development in socioeconomics, including population, GDP, and
agriculture in these projected fire-increasing regions results in
increased global wildfire risks to population, GDP, and agri-
cultural area by 5.5% (5.0%–6.2%) decade−1, 40.6%
(33.7%–48.5%) decade−1, and 2.5% (1.9%–3.7%) decade−1,
respectively, during the twenty-first century, which is 39–238%
higher than the default ensemble. Such elevated socioeconomic
risks from global wildfires are primarily attributed to the con-
currently enhanced wildfire activity and socioeconomic exposure
across the currently fire-prone West and central Africa during the
upcoming decades, calling for mitigation and/or adaptation
strategies to minimize potential socioeconomic loss caused by
wildfires in these rapidly developing countries. Our MLT-based
observational constraining framework provides an encouraging
approach for correcting model biases and can be expanded to
estimate reasonable evolution of other global and regional climate
or ecosystem properties, especially those with extensive local
impacts.
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Methods
Applying traditional EC for global fire carbon emissions. The recently devel-
oped emergent constraint (EC) approach has demonstrated robust capability in
reducing the uncertainty in characterizing or projecting Earth system variables
simulated by a multimodel ensemble25,26. The basic concept of EC is that, despite
the distinct model structures and parameters, there exists various across-model
relationships (emergent constraints) between pairs of quantities when we analyze
outputs from multiple models27. Therefore, the EC concept is especially useful to
derive the relationship between a variable that is difficult or impossible to measure
(e.g., future wildfires) and a second, measurable variable (e.g., historical wildfires),
across multiple ESMs. We start with global total values and find significant linear
relationship between historical and future global total fire carbon emission across
38 ensemble members of 13 ESMs (Supplementary Fig. 2a). Because we are par-
ticularly interested in the spatial distribution of future wildfires, which are critical
for quantifying future socioeconomic risks from wildfires, we further apply the EC
concept to every grid cell of the globe, using either a single constraint variable
(historical fire carbon emissions) or multiple constraint variables (the atmospheric
and terrestrial variables in Supplementary Table 2), with the latter being shown in
Supplementary Fig. 2b. We find insignificant linear relationships between these
historical fire-relevant variables and future wildfires in the historically fire-prone
regions across the analyzed 38 members of 13 ESMs. The failure of the traditional
EC concept in constraining fire carbon emissions at local scales could be attributed
to the highly nonlinear interactions between fire and its cross-section drivers,
which is likely inadequately captured by the linear relationship under the EC
assumption. Therefore, we further develop an MLT-based constraint to deal with
the complex response of wildfires to environmental and socioeconomic drivers.

MLT-based observational constraining of global fire carbon emissions. MLT
provide powerful tools for capturing the nonlinear and interactive roles among reg-
ulators of an Earth system feature, thereby facilitating effective, multivariate constraint
on wildfire activity, which represents an integrated function of climate, terrestrial
ecosystem, and socioeconomic conditions. MLT have been widely applied for iden-
tifying empirical regulators32 and building prediction systems for global and regional
fire activity35. To constrain the projected fire carbon emissions simulated by 13 ESMs
using observational data, the current study establishes an MLT-based emergent
relationship between the future fire carbon emissions and historical fire carbon
emissions, climate, terrestrial ecosystem, and socioeconomic drivers.

Here, we use MLT to examine the empirical relationships between historical,
observed influencing factors of wildfires and future fire carbon emissions from
ESMs and then feed observational data into the trained machine learning models
(Supplementary Fig. 3). To train the MLT to use historical states for the prediction
of future fire carbon emission, the historical and future simulations from the SSP
(Shared Socioeconomic Pathway) 5-8536, a high-emission scenario, are analyzed
for the currently available 13 ESMs in CMIP6 (Supplementary Table 1). A subset of
these ESMs (i.e., nine ESMs that provide simulation in a lower-emission scenario,
SSP2-45) is also analyzed to examine the dependence of fire regimes on
socioeconomic pathway. The training is conducted using the spatial sample of
decadal mean predictors and target variable, both individually from each ESM and
from their aggregation, with the later referred to as multimodel mean and
subsequently analyzed for projecting fire carbon emission and its socioeconomic
risks. Corresponding to the spatial resolution of the observational products of fire
carbon emission, all model outputs are bilinearly interpolated to a 0.25° × 0.25°
grid, resulting in a spatial sample of 11,325 points per model for the training. To
perform the observational constraint, the historical observed predictors are then
fed into the trained machine learning models. The historical predictors are listed in
Supplementary Table 2 with their observational data sources, temporal coverages,
and spatial resolutions. For the atmospheric and terrestrial variables, the annual
mean value and climatology in each of 12 calendar months are included as
predictors. This training and observational constraining is performed for target
decades (2011–2020, 2021–2030,… 2091–2100), and the historical period is always
2001–2010. Future changes in fire carbon emission are quantified and expressed as
the relative trend (% decade−1) (i.e., the ratio between the absolute trend and the
mean value during the 2010s), for both the default and observation-constrained
ensembles.

The current spatial sample training approach establishes a history-future
relationship for each pixel using the entire global sample. To minimize local
prediction errors for a certain pixel, MLT search all pixels, regardless of their
geographical location, to optimize the prediction model of future fires at the target
pixel. In this way, a physically robust history-future relationship is established
based on the global sample of locations, whereas influences of localized features,
such as socioeconomic development, on wildfire trends are naturally damped in
our approach (Supplementary Figs. 10 and 11). The reliability of MLT is degraded
when the actual observational data space is insufficiently covered by the training
(historical CMIP6 simulation) data space, namely the extrapolation uncertainty.
Here, we further evaluate the data space of both observation and historical
simulation of the climate and fire variables (Supplementary Fig. 14), and we find all
these assessed variables are largely overlapped, indicating minimal extrapolation
error involved in the current MLT application.

To minimize the projection uncertainty associated with the selected machine
learning algorithms, this study examines three MLT—random forest (rf), support

vector machine with Radial Basis Function Kernel (svmRadialCost), and gradient
boosting machine (gbm). These three algorithms differ substantially in their
function. The average among these algorithms is thus believed to better capture the
complex interrelation between the historical predictors and future fire carbon
emissions than any single algorithm. The MLT analysis is performed using the
“caret,” “dplyr,” “randomForest,” “kernlab,” and “gbm” packages in the R statistical
software. The prediction model is fitted for each MLT using the training data set
that targets each future decade, with parameters optimized for the minimum RMSE
via 10-fold cross-validation—in other words, using a randomly chosen nine-tenth
of the entire spatial sample (n= 10,193) for model fitting and the remaining one-
tenth of the entire spatial sample (n= 1,132) for validation, and repeating the
process 10 times. For svmRadialCost, the optimal pair of cost parameter (C) and
kernel parameter sigma (sigma) is searched from 30 (tuneLength= 30) C
candidates and their individually associated optimal sigma. For gbm, we set the
complexity of trees (interaction.depth) to 3, and learning rate (shrinkage) to 0.2,
and let the “train” function search for the optimal number of trees from 10 to 200
with an increment of 5 (10, 15, 20, …, 200). For rf, the number of variables
available for splitting at each tree node (mtry) is allowed to search between 5 and
50 with an increment of 1 (5, 6, 7, …, 50); the number of trees is determined by the
algorithm provided by randomForest package and the “train” function by the caret
package. The cross-validation R2s exceed 0.8 (n= 1,132) for all optimized MLT
and all future periods. The currently examined ESMs, MLT, and hundreds of
observational data set combinations constitute a multimodel, multi–data set
ensemble of projected fire carbon emissions for the twenty-first century. This
multimodel, multi–data set ensemble allows natural quantification of uncertainty
in the future projection derived from observational sources and MLT, compared
with a previous single-MLT, single-observation approach67.

This MLT-based observational constraining approach is validated for a historical
period using the emergent relation between the fire-climate-ecosystem-
socioeconomics during 1997–2006 and fire carbon emission during 2007–2016. The
spatial correlation and RMSE with the observed decadal mean fire carbon emission
(n= 11,325) is evaluated and compared for the constrained and unconstrained
ensemble, reported in the main text (Figs. 1 and 2). The RMSE and R2 produced by
the traditional EC approach that constrains fire carbon emissions during 2007–2016
with fire carbon emissions during 1997–2006 are reported along with the MLT-based
observational constraint in Fig. 1e, f. The MLT-based observational constraining
approach is also applied to six ESMs that report burned area fraction, and validation
is also conducted and reported in Supplementary Fig. 6.

Because the MLT are trained using the global spatial sample, we expect the
performance of MLT to be sensitive to the spatial resolution of the training data set.
This assumption is tested by varying the interpolation grids (1°, 2.5°, 5°, and 10°
latitude by longitude) of the ESMs and fitting MLT using this specific-resolution
training data for the validation period (Supplementary Fig. 7). Observational data
sets at 0.25° resolution are subsequently fed into the fitted MLT models, regardless
of the input model data resolution. This sensitive test sheds light on the importance
of spatial resolution to our observational constraining and thereby implies potential
accuracy improvement of our MLT-based observation constraint with the
development of higher-resolution ESMs.

Socioeconomic risks from fire carbon emission. Here, we define the socio-
economic exposure to wildfires as a product of decadal mean fire carbon emission
and number of people, amount of GDP, and agricultural area exposed to the
burning in each grid cell, following previous definition for extreme heat68. These
exposure metrics measure the amount of population, GDP, and agricultural area
affected by wildfires, whose severity is represented by the amount of fire carbon
emission. The projected population at 1/8° × 1/8° resolution under SSP5-85 is
obtained from the National Center for Atmospheric Research’s Integrated
Assessment Modeling Group and the City University of New York Institute for
Demographic Research69. The projected GDP at 1 km resolution under SSP5 is
disaggregated from national GDP projections using nighttime light and
population70. The agricultural area projection at 0.05° × 0.05° resolution under
SSP5-85 is obtained from the Global Change Analysis Model and a geospatial
downscaling model (Demeter)71. All the projected socioeconomic variables are
resampled to 0.25° × 0.25° resolution before the calculation of exposure to fire
carbon emission fraction. Future changes in socioeconomic exposure to wildfires
are quantified as the relative trend (% decade−1) (i.e., the ratio between the absolute
trend and the mean value during the 2010s) for the default and observation-
constrained ensembles. These relative changes provide direct implications on what
the future would be like compared with the current state, regardless of the potential
biases simulated by the default ESMs.

Understanding projected wildfire trends through importance scores reported
by MLT. The mechanisms underlying the projected evolution in fire carbon
emissions are explored in two tasks, addressing the importance of drivers in the
historical and dynamical perspectives. The first task assesses the relative con-
tribution of each environmental and socioeconomic driver’s historical distribution
to the projected future wildfire distribution, for directly understanding how the
current observational constraint works (Supplementary Fig. 8). The second task
examines the relative contribution of each driver’s projected trend to the projected
wildfires trends in a specific region, for disentangling the dynamical mechanisms
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underlying future evolution of regional wildfires (Supplementary Fig. 9). These
tasks benefit from the importance score as an output of MLT. Although the cal-
culation of importance scores varies substantially by MLT, all the importance
scores qualitatively reflect relative importance of each predictor when making a
prediction. For each tree in both rf and gbm, the prediction accuracy on the out-of-
bag portion of the data is recorded. Then, the same is done after permuting each
predictor variable. For rf, the differences are averaged for each tree and normalized
by the standard error. For gbm, the importance order is first calculated for each
tree and then summed up over each boosting iteration. For svm, we estimate the
contribution of a single variable by training the model on all variables except that
specific variable. The difference in performance between that model and the one
with all variables is then considered the marginal contribution of that particular
variable; such marginal contribution of each variable is standardized to derive the
variable’s relative importance. Because we apply multiple MLT in this study, the
average importance scores from these MLT are reported in the corresponding
figures for robustness.

In the first task, the importance of each historical driver to future global wildfire
distributions is examined in three MLT models (random forest, support vector
machine, and gradient boosting machine) that are trained for projecting future fire
carbon emissions (Supplementary Fig. 8). For the atmospheric and terrestrial
variables that include annual mean and monthly climatology as predictors, to
account for the overall importance of a particular variable while considering the
possible information overlapping contained in each month and annual mean, the
importance of each variable is represented by the highest importance score among
these 13 predictors (annual mean, January, February, …, December). The
importance score of each historical driver reflects the relative weight of each
historical, environmental driver in determining the spatial pattern of fire carbon
emissions in each future decade.

In the second task, the dynamical importance of each environmental driver’s future
evolution is assessed for targeted tropical regions (i.e., Amazon and Congo) and major
land cover types (tropical forests, other forest, shrubland, savannas, grasslands, and
croplands) in both default and constrained ensembles through the importance of each
driver’s trend to the projected wildfire trend. For the default ensemble, the three MLT
models (random forest, support vector machine, and gradient boosting machine) are
used to predict the spatial distribution of simulated trends in fire carbon emission
using the simulated trends in the socioeconomic, atmospheric, and terrestrial variables
that are considered in our observational constraint for wildfires, for each ESM and
their multimodel mean. This analysis excludes flash rate, another predictor in
constraining future wildfires, because it is not dynamically simulated by most ESMs.
For the observation-constrained ensemble, we first constrain the projected atmospheric
and terrestrial variables in each future decade, using a similar approach as we constrain
future fire carbon emissions, for each individual ESM and their multimodel
aggregation. In this constraint for environmental drivers, all the variables in
Supplementary Table 2 are considered as predictors, thereby achieving self-consistency
of the constrained future evolution of all these fire-relevant variables. Noticing that the
socioeconomic trends are determined by the SSPs, future socioeconomic developments
are therefore not constrained in the current approach. Then, the same three MLT
models are used to predict the spatial distribution of constrained trends in fire carbon
emissions using the constrained trends in those environmental and socioeconomic
drivers. For computational efficiency, only the annual mean trends in the
environmental drivers are constrained and analyzed in this task. The importance
scores of projected trends in socioeconomic and environmental drivers reflect their
dynamic role in future evolution of wildfires in the target tropical regions. Here, the
Amazon and Congo regions are shown as examples of how this analysis is applied to
understand regional wildfire evolutions, though the mechanism underlying the future
evolution of wildfires in other regions could be similarly explored.

Data availability
CMIP6 model outputs can be openly accessed via different Earth System Grid Federation
(ESGF) data nodes (e.g., https://esgf-node.llnl.gov/projects/cmip6/). The observational
datasets utilized in this study are derived from published sources, cited in the
Supplementary Table 2. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.

Code availability
The code to carry out the current analyses is available from the corresponding author
upon request.
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