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A B S T R A C T

Estimates of fractional cover (fCover) across given land surfaces are used to assess, and often model, vegetation 
composition and diversity, which are crucial for understanding the health and functioning of terrestrial eco
systems. Remote sensing provides a useful means for scaling local, plot-measured fCover estimates to regional 
scales. Leveraging a recently synthesized and harmonized plot database, this study generated wall-to-wall maps 
of fCover for six Alaskan-Arctic plant functional types (PFT), including non-vascular plants, forbs, graminoids, 
and deciduous and evergreen shrubs, using 20-m satellite data (Sentinel-1, Sentinel-2, ArcticDEM) using a ma
chine learning regression approach, specifically the random forest (RF) algorithm, which is well-suited for 
handling nonlinear relationships and high-dimensional satellite datasets. This study additionally addressed the 
spatio-temporal inconsistencies e.g., sampling scale, plot size, and collection year in plot measured fCover by 
adopting a multivariate outlier detection approach—Cook’s distance—to identify high-quality plots for model 
training and validation. Our approach achieves high accuracy (R2 = 0.59–0.93, root mean squared errors =
0.02–0.10 for all PFTs) between plot-observed and satellite-derived fCover when using high-quality plot samples. 
The mapped fCover characterizes the spatial patterns of different PFTs across the tundra biome at a 20-m res
olution, providing key information needed for improved representation of Arctic tundra vegetation in terrestrial 
biosphere models to better understand climate-vegetation feedback across the Arctic tundra.

1. Introduction

The Arctic region is warming approximately four times faster than 
lower latitude regions (Intergovernmental Panel on Climate Change 
(IPCC) report, Shukla et al., 2019; Rantanen et al., 2022) due to polar 
amplification (Graversen and Wang, 2009). Warming has led to an in
crease in vegetation productivity—particularly of tall shrubs that have 
extended their range, grown taller, and increased in biomass (Myers- 
Smith et al., 2020, 2011). In turn, shrubification may amplify regional 
warming via the entrainment of insulating snow by tall shrubs and also 
decreased albedo from leaves or branches that extend above the melting 
snowpack (Sturm et al., 2005, 2001). Changing vegetation community 
composition may also impact biogeochemical cycling. The increased 

presence of shrubs that associate with nitrogen-fixing bacteria may alter 
hillslope nitrogen cycling (Salmon et al., 2019), while the colonization 
of aquatic graminoids in inundated thaw ponds or thermokarst slumps 
may lead to increased methane release to the atmosphere (Joabsson and 
Christensen, 2001; Bao et al., 2021). Thus, understanding the fractional 
cover (fCover) of plant species, as aggregated into groupings of species 
with similar function (i.e., plant functional types, PFTs), across arctic 
tundra landscapes is valuable for both modeling and analysis purposes. 
Specifically, introducing detailed fCover of tundra PFTs into the Energy 
Exascale Earth System Model (E3SM; Golaz et al., 2019) Land Model 
(ELM) has been effective in quantifying biodiversity and biomass that 
were more comparable to field measurements (Sulman et al., 2021). 
Aside from modeling, fCover also conveys sub-pixel/plot details, which 
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can be used to detect short-term vegetation structural responses to 
climate anomalies, such as wildfires (Fernández-Guisuraga et al., 2023), 
faster than categorical PFT maps in ecological applications. Addition
ally, it improves monitoring of vegetation degradation and desertifica
tion compared with normal satellite-derived vegetation indices (Chu, 
2020).

Spatially continuous remote sensing data offer a means for mapping 
wall-to-wall PFT-level fCover by leveraging plot-scale fCover observa
tions collected from boots-on-the-ground field observations or remotely- 
sensed from Unoccupied Aerial Vehicles (UAVs) (Macander et al. 2017, 
2022; Yang et al., 2023). For instance, Yang et al. (2023) mapped fCover 
for twelve PFTs in western Alaska by combining UAV-estimated fCover 
with NASA’s Airborne Visible / Infrared Imaging Spectrometer-Next 
Generation (AVIRIS-NG) hyperspectral imagery (Chapman et al., 
2019) with mean absolute errors (MAEs) < 0.13. Despite high accuracy, 
UAV observations are often limited to small spatial scales (tens to 
hundreds of square kilometers) and study regions. One step towards 
enabling large-scale mapping could be building regressions between 
AVIRIS-NG flight paths (usually a few kilometers wide by hundreds of 
kilometers long; Chapman et al., 2019) where larger-scale fCover is 
mapped by training on plot fCover, and explanatory variables derived 
from downscaled climate models and topographic properties (Konduri 
et al., 2022). However, this requires sufficient high-quality plot samples 
overlapped with AVIRIS-NG flights for the initial AVIRIS-NG-wide 
mapping, which is not always feasible given the sparse spatial 
coverage of AVIRIS-NG over the Arctic Alaska region.

Synthesizing and harmonizing plot observations across areas with 
similar site characteristics can resolve the data scarcity issue in plot 
observations. With the widely available Landsat archive and plot sam
ples spanning the North Slope of Alaska, Macander et al. (2017) suc
cessfully mapped wall-to-wall fCover for nine PFTs including shrubs 
subcategorized into low, dwarf, and tall classes at 30-m spatial resolu
tion. Macander et al. (2022) then extended fCover mapping to the en
tirety of Alaska and part of the Yukon, Canada, based on an expanded 
plot network and 30-year Landsat time series, which aimed to under
stand long-term PFT fCover changes. Regional scale fCover maps by 
Macander et al. (2017, 2022) are expected to greatly benefit the 
parameterization of land surface models for more reliable and realistic 
simulations of vegetation distribution and dynamics. However, Mac
ander et al. (2022) emphasized the development of a time series of 
fCover to detect change and yield insight into landscape-level responses 
to a changing climate. The time series approach necessitated fitting 
training models to yearly data rather than the full dataset, leading to a 
lower accuracy. However, the goal of some model simulations may be 
better suited to a one-time, high accuracy fCover map as opposed to a 
time series derived product. Moreover, across the Arctic Alaska tundra 
landscape, there is large variability in plot-level sampling strategies used 
for satellite-based fCover regression modeling, e.g., different sampling 
crews, plot sizes, or year of collection. These inherent inconsistencies 
among plot observations potentially affect the spatio-temporal repre
sentativeness of the training data for the development of remote-sensing 
vegetation data products, and thus the accuracy. The scan-line- 
corrector-off issue in the Landsat product (Scaramuzza and Barsi, 
2005) may also be inherited in any Landsat-based fCover mapping, 
creating a spatial discontinuity (i.e., having a striped pattern).

The primary objective of our study was to build upon previous 
observational and remote-sensing studies to develop PFT-level fCover 
mapping of the Arctic Alaska region at a higher spatial resolution than 
previously possible. First, we harmonized plot-level data sources span
ning the North Slope and the Seward Peninsula of Alaska into a 
consistent PFT scheme for wall-to-wall PFT fCover mapping of the entire 
Arctic Alaska tundra realm. Second, to ensure that the mapped fCover 
represented contemporary vegetation composition, we resolved in
consistencies between the plots sampled for fCover and satellite obser
vations using a quality control approach (i.e., Cook’s distance; Cook, 
1977; Pinho et al., 2015). The quality control step allows us to separate 

two sets of plots: high-quality and low-quality samples that correlated 
with satellite observations well and poorly, respectively. Third, we 
produced spatially continuous, high-resolution (20-m) wall-to-wall 
maps of fCover for several target tundra PFTs across the Alaskan 
Arctic. These PFTs are compatible with the structure of the ELM model 
(Sulman et al., 2021). The mapping was achieved using a RF regression 
model trained on high-quality plot observations and corresponding 
satellite-derived predictors from Sentinel imagery and ArcticDEM data 
(Noh and Howat, 2017). Fourth, we identified the influential factors that 
contribute to inconsistencies between plot and satellite observations. 
Although these low-quality plots were not used for model training, they 
were retained to help inform improvements in future vegetation surveys, 
such as optimizing plot placement and enhancing measurement con
sistency. Finally, we analyzed the importance of satellite-derived fea
tures using SHapley Additive exPlanations (SHAP, Lundberg and Lee, 
2017) to identify the variables that primarily account for the spatial 
variability of each PFT’s fCover.

2. Materials and method

2.1. Study area

This study focused on mapping the fCover for eight common PFTs in 
an Alaska tundra region (i.e., the Alaskan Arctic) that encompasses both 
the North Slope and Seward Peninsula above the Arctic treeline as 
defined by Circumpolar Arctic Vegetation Map (CAVM) (Walker et al., 
2005). The entire study region spans three CAVM bioclimate subzones 
including subzones C, D, and E (Fig. 1) with mean July temperatures 
reaching about 5–7̊C (coldest), 7–9 ◦C (moderate), and 9–12 ◦C 
(warmest) respectively (Walker et al., 2005; Raynolds et al., 2019) and 
topography ranging from coastal plains to inland mountains. The 
vegetation composition in Arctic Bioclimate Subzones C, D, and E varies 
significantly with climate and soil conditions (Raynolds et al., 2019). 
Specifically, Subzone C is characterized by graminoid and prostrate 
dwarf-shrub tundra, with sedges being dominant along with prostrate 
shrubs less than 5 cm tall. This zone also includes prostrate and hemi- 
prostrate dwarf-shrub, lichen tundra, which thrives in maritime, acidic 
regions. Subzone D consists primarily of non-tussock sedge, dwarf- 
shrub, and moss tundra. It is dominated by sedges and dwarf shrubs 
under 40-cm tall, with a well-developed moss layer. Frost boils and 
periglacial features are common. Erect dwarf-shrubs and moss tundra 
are also prevalent in continental areas with acidic soils. Wetland com
plexes dominated by sedges, mosses, and dwarf shrubs under 40-cm tall 
are also found here. Subzone E supports taller vegetation, including 
tussock-sedge, dwarf-shrub, and moss tundra, dominated by tussock 
cottongrass (Eriophorum vaginatum L.) and dwarf shrubs under 40-cm 
tall. Low-shrub, moss tundra dominates warmer, maritime areas with 
deep, moist active layers. Wetland complexes in this zone include 
sedges, mosses, and shrubs over 40-cm tall. This gradient from prostrate 
shrubs in Subzone C to low shrubs in Subzone E reflects increasing 
temperatures and moisture availability.

2.2. Plot data synthesis and harmonization

We used observations from the Pan-Arctic Vegetation Cover (PAVC) 
database (Steckler et al., 2024, 2025) that synthesized and harmonized 
plot observations of PFT fCover from five publicly available data sources 
(Fig. 1) covering the entire tundra landscape of the North Slope and the 
Seward Peninsula of Alaska, including the Alaska Biological Research, 
Incorporated – Environmental Research Services (hereafter referred to 
as ABR, total observations: 107, Macander et al., 2017), the Alaska 
Vegetation Plots Database (AKVEG, total observations: 185, Nawrocki 
et al., 2020), Alaska Arctic Vegetation Archive (AKAVA, total observa
tions: 275, Davidson et al., 2016; Sloan et al., 2014 (under the Next 
Generation Ecosystem Experiments in the Arctic (NGEE Arctic) project); 
Villarreal, 2013; Villarreal et al., 2012; Walker et al., 2015, 2016), the 
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Fig. 1. Overview of field observations collected from plots; land cover and bioclimate zones developed by the Circumpolar Arctic Vegetation Map (Walker et al., 
2005; Raynolds et al., 2019) for the Alaskan Arctic region.

Fig. 2. Frequency of plot characteristics among all child plot sources (AKVEG, ABR, AKAVA, NEON, NGA), including plot size in meters (plot size (m)), year of 
collection (year), methods used for field sampling (field sampling method) and fCover measurement (cover measurement).
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National Ecological Observatory Network (NEON, total observations: 
275; NEON, 2023), and plots collected by the NGEE Arctic project across 
the Seward Peninsula (NGA, total observations: 98, Breen et al., 2020). 
Plots older than 2010 (mainly from AKAVA) were excluded from our 
modeling to ensure only contemporary observations were included. In 
addition, no historical fires (since 1983) are reported at the plots used in 
our study (Alaska wildland fire information map series, accessed April 
2024).

Spatio-temporal inconsistencies are, however, identified among plot 
sources (Fig. 2 and Fig. S1), which could affect the representativeness of 
their fCover observations in conjunction with recent satellite observa
tions. First, ABR and NEON are more consistent than the other sources 
regarding years of plot data collection, with all plots sampled in 2012 
and 2021 respectively, whereas collection years for AKVEG, AKAVA, 
and NGA range from 2010 to 2018. Second, to match the spatial reso
lution of satellite pixels (e.g., Landsat) and reduce potential geolocation 
mismatches, plot-level observations in ABR and AKVEG were averaged 
within circular buffers of 30-m or 55-m radius (hereby referred to as 
parent plots) (Macander et al., 2017). In contrast, plots from the other 
sources are primarily original, non-aggregated transect-based observa
tions—referred to here as child plots—with sizes (side or radius) ranging 
from 0.5 to 2.5 m. To address the inconsistency in plot radii, we spatially 
aggregated child plots that were close to one-other (within 55-m to 
match ABR’s plot radius) and averaged the fCover to generate parent 
plots for AKAVA, NGA, and NEON. Third, in ~ 20 % of the AKAVA plots, 
the fCover was recorded using the 7-step Braun-Blanquet codes (a semi- 
quantitative scale used to estimate plant species’ abundance and cover 
in vegetation surveys, ranging from rare or occasional to dominant 
presence), while percent cover estimates are used at the remaining plots. 
Fourth, AKVEG and ABR use the center-staked point-intercept method 
for sampling species to capture the spatial heterogeneity, while the rest 
plots all used quadrats or transect-quadrats. In addition, ABR and 
AKVEG provide both total and top fCover while the other plots primarily 
recorded the total cover information. Total fCover estimates the percent 
area cover of a species at the plot regardless of the canopies above or 
below, whereas top fCover only counts the areas that are not shielded by 
other species. Note that top fCover may underestimate the species’ 
signal received by satellite under low-density canopy conditions where 
the signal may be able to penetrate the multilevel canopy. Given these 
differences, this study specifically focused on wall-to-wall mapping of 
total fCover.

Aside from various sampling and fCover measurement approaches, 
inconsistency in species naming also challenges plot harmonization for 
our regional-scale modeling. To address this issue, we used the 
comprehensive Alaska species checklist provided by AKVEG and leaf 
retention data documented in Macander et al. (2022) to associate PFT 
information with each species and then aggregate the species-level 
fCover to the PFT level following a harmonized scheme: litter, lichen, 
bryophyte, forb, graminoid, deciduous and evergreen shrub (Table 1). 
More details regarding plot synthesis and harmonization, differences 

among field sampling methods, and fCover measurement approaches 
were reported in Steckler et al. (2025). The density distribution of the 
harmonized plots at each PFT used in our study (Fig. 3) indicates that the 
fCover distribution of all PFTs, with the exception of bryophytes, is 
right-skewed with dominance towards low values. Moreover, forb- 
dominated plots seldom exist in the included plot sources, with rela
tively low median fCover (<0.1).

2.3. Satellite-derived explanatory variables

For explanatory variables as input to fCover regression modeling, we 
collected the ArcticDEM (Noh and Howat, 2017) mosaic to characterize 
topography; pre-processed and downloaded Sentinel-1 Synthetic Aper
ture Radar (SAR) polarizations in the SeNtinel Application Platform 
(SNAP); and pre-processed and downloaded Sentinel-2 multispectral 
data via the Google Earth Engine platform (Gorelick et al., 2017). The 
ArcticDEM mosaic product, a high-resolution (2-m) and high-quality 
DEM product covering the entire pan-Arctic area, was compiled from 
the best-quality 2-m ArcticDEM strip files generated from very-high- 
resolution optical stereo imagery to reduce the void areas and edge- 
matching artifacts (Noh and Howat, 2017). Despite demonstrating 
effectiveness in upscaling land cover and sparse lidar canopy heights to 
regional and global scales (Zhang and Liu, 2023; Korhonen et al., 2017; 
Li et al., 2020), both Sentinel-1 (S1) and Sentinel-2 (S2) data have 
remained under-explored in mapping fCover at the PFT level.

S1 is a dual-polarization C-band SAR instrument that provides 2 
single co-polarization bands (VV or HH) or 2 dual cross-polarization 
bands (HV or VH). In our study, the available polarization bands VV 
and VH were collected from the S1 Ground Range Detected scenes, 
which have been calibrated and orthorectified using the S1 Toolbox 
(Veci et al., 2014). For S2, we collected the Level-2A surface reflectance 
product, which has been atmospherically corrected by the sen2cor 
model (Louis et al., 2016). Only the 10 spectral bands that have spatial 
resolutions less than or equal to 20-m were introduced in this study, 
including blue, green, red, red edge 1–4 (redEdge1–4), near infrared 
(nir), and shortwave infrared 1–2 (swir1–2). We developed median 
composites for both S1 and S2 images collected over the growing sea
sons (June to September) for the year 2019. Before image compositing, 
all cloudy pixels were removed using the quality assessment (QA60) 
band provided with the Sentinel-2 data, which flags pixels affected by 
clouds, cirrus, and other atmospheric effects.

To enhance the separability of PFTs using Sentinel and ArcticDEM, 
we additionally calculated slope, hillshade, and aspect in addition to 
elevation from ArcticDEM to characterize the topographic variability and 
19 vegetation indices from S2 multispectral bands accounting for soil 
background, leaf water, and chlorophyll content that vary among PFTs. 
The examined vegetation indices (Table 2 and Table S1) included: (1) 
two normalized difference water indices (ndwi) using two swir1–2, Gao, 
1996); (2) modified soil-adjusted vegetation index (msavi, Qi et al., 
1994); (3) visible atmospherically resistant index (vari, Gitelson et al., 
2002); (4) ratio vegetation index (rvi, Jordan, 1969); (5) optimized soil- 
adjusted vegetation index (osavi, Rondeaux et al., 1996); (6) triangular 
greenness index (tgi, Hunt Jr et al., 2011); (7) green leaf index (gli, 
Louhaichi et al., 2001); (8) normalized green red difference index (ngrdi, 
Tucker, 1979); (9) chlorophyll index-green (ci_g, Gitelson et al., 2003); 
(10) green normalized difference vegetation index (gNDVI, Gitelson 
et al., 1996); (11) chlorophyll vegetation index (cvi, Vincini et al., 2008); 
(12) second modified triangular vegetation index (mtvi2, Haboudane 
et al., 2004); (13) transformed chlorophyll absorption reflectance index 
(tcari, Haboudane et al., 2002); (14) triangular chlorophyll index (tci, 
Haboudane et al., 2008); (15) normalized anthocyanin reflectance index 
(nari, Bayle et al., 2019); we also included three tasseled cap indices— 
(16) brightness, (17) greenness, and (18) wetness—which are orthogonal 
transformations of spectral bands originally developed by Kauth and 
Thomas (1976) for vegetation analysis.

To ensure the spatial consistency between satellite and plot 

Table 1 
Tundra PFTs used for fCover mapping at the study region.

PFT or others Description

Deciduous 
shrub

Leaves are deciduous, lost after the summer season; deciduous 
shrubs were mostly low or tall in the Arctic region we examined, 
with canopy heights greater than or equal to 20 cm

Evergreen 
shrub

Leaves are evergreen, retained throughout the year; evergreen 
shrubs were mostly dwarf in the Arctic region we examined, with 
canopy heights less than 20 cm

Graminoid Herbaceous plants including grasses and sedges; perennial plants
Forb Non-graminoid herbaceous flowering plants; often annual plants
Lichen A symbiotic partnership of a fungus and an alga, grouped into non- 

vascular; perennial plants
Bryophyte Non-vascular perennial plants, including liverworts and mosses
Non-vascular Combination of lichens and bryophytes
Litter Dead plant matter or fallen leaves
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observations, we re-projected all data to the geographic coordinate 
system (EPSG: 4326). The plot sizes of the parent plots are 30-m or 55-m 
after the spatial aggregation, so we evaluated two search radii (i.e., 30-m 
or 55-m) when sampling the explanatory variables for fCover regression 
model training together with the plot observed fCover.

2.4. Quality control

The uncertainties (i.e., inconsistencies due to varying years of plot 
collection, plot size, and sampling approaches) in our plot data sources 

may affect the overall regression modeling, introduce uncertainties in 
the representativeness of the mapped fCover, and bias the model eval
uation results if not properly addressed. However, without a systematic 
quality analysis, it is difficult to identify the plots that led to low cor
relations between plot and satellite observations when performing the 
fCover regression analysis.

To address this, we introduced an outlier detection approach known 
as the Cook’s distance (Cook, 1977) to identify and exclude outliers and 
low-quality plots from fCover regression modeling. Here the low-quality 
plots were defined as plots where fCover observations correlated poorly 

Fig. 3. Fractional cover distribution of all PFTs at the plots after spatial aggregation. Only a few plots are observed with overlapped canopies among different species, 
leading to > 1 fCover for some PFTs. In most cases, the PFT-level fCover does not exceed 1. Hence, all plots with > 1 fCover were rounded down to 1.

Table 2 
Formulas for calculating the input vegetation indices for fCover regression modeling. For implications of each index, please refer to Table S1.

Index Abbrev. Formula Reference

Normalized difference water index using swir1- 
2

ndwi (nir − swir)/(nir + swir)
Gao (1996)

Modified soil adjusted vegetation index msavi 0.5*
(

2*nir + 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*nir + 1)2 − 8*(nir − red)
√ )

Qi et al. (1994)
Visible atmospherically resistant index vari (green − red)/(green + red − blue)

Gitelson et al. (2002)
Ratio vegetation index rvi nir/red

Jordan (1969)
Optimized soil adjusted vegetation index osavi 1.16*(nir − red)/(nir + red + 0.16)

Rondeaux et al. (1996)
Triangular greenness index tgi 0.5*(120*(red − blue) − 190*(red − green))

Hunt Jr et al. (2011)
Green leaf index gli (2*green − red − blue)/(2*green + red + blue)

Louhaichi et al. (2001)
Normalized green red difference index ngrdi (green − red)/(green + red)

Tucker (1979)
Chlorophyll index-green ci_g nir/green − 1

Gitelson et al. (2003)
Green normalized difference vegetation index gNDVI (nir − green)/(nir + green)

Gitelson et al. (1996)
Chlorophyll vegetation index cvi (nir*red)/green2

Vincini et al. (2008)
Second modified triangular vegetation index mtvi2

1.5*(1.2*(nir − green) − 2.5*(red − green))/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*nir + 1)2 −
(

6*nir − 5
̅̅̅̅̅̅̅
red

√ )
− 0.5)

√

Haboudane et al. 
(2004)

Transformed Chlorophyll Absorption 
Reflectance Index

tcari 3*((redEdge1 − red) − 0.2*(redEdge1 − green)*(redEdge1/red))
Haboudane et al. 
(2002)

Triangular chlorophyll index tci 1.2*(redEdge1 − green) − 1.5*(red − green)*
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

redEdge1/red
√ )

Haboudane et al. 
(2008)

Normalized Anthocyanin Reflectance Index nari (1/green − 1/redEdge1)/(1/green + 1/redEdge1)
Bayle et al. (2019)

Tasseled cap brightness brightness 0.3037*blue + 0.2793*green + 0.4743*red + 0.5585*nir + 0.5082*swir1 +

0.1863*swir2 Kauth and Thomas 
(1976)Tasseled cap greenness greenness 0.7243*nir + 0.0840*swir1 − 0.2848*blue − 0.2435*green − 0.5436*red − 0.1800*swir2

Tasseled cap wetness wetness 0.1509*blue + 0.1973*green + 0.3279*red + 0.3406*nir − 0.7112*swir1 − 0.4572*swir2
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with satellite-observed vegetation conditions, which could be due to 
several reasons, including natural vegetation growth over time, geo
location errors and uncertainty, inconsistent sampling approaches, or a 
plot’s lack of representativeness. The Cook’s distance has an advantage 
over other outlier detection approaches (Kannan and Manoj, 2015) in 
that it quantifies a sample’s quality based on its impacts on the overall 
regression modeling, which has been proven effective in enhancing 
ICESat-2′s quality in predicting canopy heights comparable to airborne 
lidar derived counterparts (Zhang and Liu, 2023).

For each PFT, the Cook’s distance (Di) of the i-th sample is quantified 
as the change it brought to the least-squares regression model fitted 
between the plot-observed fCover and the satellite derived explanatory 
variables (Table 2) when excluding it from the analysis (Equation (1)– 
(2)): 

Di =

∑n
j=1

(
ŷj − ŷj(i)

)2

ps2 (1) 

where ŷj, ŷj(i) represent the predictions of j-th sample by the least- 
squares regression model fitted on observations including and 
excluding i-th sample respectively, n stands for the total number of 
samples, p denotes the number of unknown coefficients, and s2 is the 
mean squared error of the regression model calculated as 

s2 =

∑n
j=1

(
yj − ŷj

)2

n − p
(2) 

where yj is the observed value of the j-th sample.
Intuitively, samples with larger distances often indicate that they 

introduce more variability to the regression analysis. In this study, we 
replaced the least-squares regression model with a Gaussian generalized 
linear model linked by the identity function, where the D distribution for 
all samples appears more separable between the “outliers” and the “non- 
outliers”, compared with the result estimated using the ordinary least 
squares regression. Based on the calculated distances, we then randomly 
selected half of the samples with D less than the first quartile (Q1) of the 
distance distribution of all samples as the validation dataset. The 
remaining plots were regarded as the original samples used for fCover 
regression modeling. To evaluate the effectiveness of the proposed 
quality control, we also presented the results from a refined model that 
only input high-quality plots identified after a second round of quality 
control on the remaining training samples (excluding the validation 
data), selecting those with Ds < the critical distance (D*): 

D* = Q3+ k × IQR (3) 

where IQR is the interquartile range (Q3–Q1), Q1 marks the 25th 
percentile, and Q3 (the third quartile) marks the 75th percentile of the 
data distribution, k was tested from 1 to 3 in 0.5 increments to optimize 
the model training. This quality filtering was conducted on the training 
data (excluding the validation set) and was applied separately for each 
PFT. The method targets influential statistical outliers rather than 
relying on spatial or temporal alignment and improves the robustness 
and reproducibility of the modeling process.

2.5. Machine learning based fractional cover regression

In this study, we employed an RF model to perform the regression 
analysis between the plot-observed fCover and the satellite-derived 
explanatory variables, as it leverages an ensemble of decision trees to 
minimize the overall model variance. RF also demonstrates its effec
tiveness in PFT-level fCover mapping studies (Macander et al., 2017, 
2022) and outperforms other machine learning regression models on 
forest attribute predictions (Zhang and Liu, 2023; Zhao et al., 2019).

Given the uncertainty of the plot observations, we could not perform 
regular cross-validation to shuffle the training and testing datasets, as 

that assumed all observations were of equal quality. Instead, we per
formed a grid search to identify the best RF model parameter setting 
(number of trees used for fitting and maximum features used for splitting 
the trees) for each PFT using the same validation dataset (randomly 
chosen half from samples with D <Q1). The tested values for the number 
of trees used for fitting and the maximum features used for splitting the 
trees with the model regression results were [50, 100, 150, 200] and [5, 
10, 15], respectively. The model with the highest accuracies was then 
selected to map the wall-to-wall fCover based on spatially continuous 
satellite imagery for each PFT using all high-quality plot samples having 
distances shorter than D*. Hereon we refer to the gridded fCover esti
mates as “PAVC-Gridded” product (Zhang et al., 2025).

2.6. Model evaluation

The model evaluation in this study focused on three aspects: (1) 
fCover regression (model training and regional-scale mapping), (2) plot 
quality analysis, and (3) feature importance analysis of fCover regres
sion modeling. For fCover regression modeling, we performed a scat
terplot analysis between the predicted (ŷ) and observed (y) values and 
reported three accuracy metrics, including the root mean square error 
(RMSE), mean absolute error (MAE), and coefficient of determination 
(R2) using a simple linear regression. Specifically, RMSE and MAE were 
used for quantifying the average errors in the model predictions, 
whereas R2 describes the percentage of variance in y explained by ŷ.

For regional-scale fCover mapping, we visually compared the spatial 
patterns of PAVC-Gridded fCover with Sentinel-2 RGB imagery. To 
exclude non-vegetated areas, open water and ice were masked using 
ndwi > 0 and ndvi < 0.3. Given the widespread use of the CAVM in Arctic 
vegetation studies, we summarized zonal fCover statistics for all plant 
functional types (PFTs) across each CAVM zone. Additionally, we 
compared PAVC-Gridded fCover with the product from Macander et al. 
(2017) using scatter plot analysis, spatial pattern assessments, and zonal 
statistics over the CAVM classes. While both studies employed RF 
regression for fCover mapping, our approach incorporated a more 
diverse set of plot sources (NEON, AKVEG, NGA), including coverage of 
the Seward Peninsula. Furthermore, our satellite predictors were pri
marily derived from Sentinel imagery, which offers higher spatial res
olution and is unaffected by the scan-line corrector issue present in 
Landsat imagery used by Macander et al. (2017). To enhance model 
reliability, we additionally implemented quality control measures to 
mitigate spatial and temporal inconsistencies in plot samples when 
training the regression model with recent satellite observations. 
Furthermore, to evaluate model’s transferability, we conducted a leave- 
one-site-out validation. Specifically, for each plot source, we excluded 
all plots from that site during model training and then used them 
exclusively for validation, rotating through all available plot sources. 
This procedure assesses how well the models trained on high-quality 
plots (after Cook’s distance filtering) can generalize to new regions 
that were not seen during training. The results of this transferability 
analysis complement our standard validation, helping to demonstrate 
that the Cook’s distance quality control improves the spatial generaliz
ability of the fCover regression models by reducing site-specific biases.

For the plot quality analysis, we sought to disentangle the factors 
that contributed to uncertainty in the regression modeling between plot- 
observed fCover and recent satellite observations. Thus, we plotted the 
distribution of plot characteristics (plot data source, plot size, plot 
collection year, method used for sampling, and fCover measurement) of 
low-quality plots identified by the Cook’s distance method. This un
derstanding could help inform the design of future field campaigns for 
plot-level fCover sampling for regional scale mapping.

Lastly, feature importance analysis can inform both model inter
pretability and feature selection in model design. To quantify the rela
tive contribution of the included explanatory variables (Table 2) on 
fCover regression analysis, we performed SHapley Additive 
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exPlanations (SHAP, Lundberg and Lee, 2017) analysis based on the 
best-trained RF model. This approach computes the average marginal 
contribution of each variable across all possible feature coalitions, 
providing a consistent and theoretically grounded measure of how each 
variable influences the model output. Compared with permutation- 
based importance, SHAP offers a more robust and interpretable esti
mate of each variable’s impact without relying on random permutations, 
thereby improving the transparency of model-driven decisions.

3. Results

3.1. PFT level fractional cover mapping

The comparisons between the plot-observed fCover and the pre
dictions made by the best-trained models (Tables S2-S9) are shown in 
Fig. 4. Overall, with high-quality plot samples, the correlations (R2) 
between the predicted and observed fCover for all PFTs are substantially 
improved (to between 0.59 and 0.93) with relatively low bias (MAEs =
0.02–0.07, RMSEs = 0.02–0.09) in comparison to the predictions made 
from original non-enhanced plots (Fig. S2). PFTs predicted with highest 
accuracy are shrubs (R2 > 0.90, MAEs and RMSEs are <=0.04), followed 
by non-vascular plants (R2 > 0.7, RMSEs = 0.02–0.09) and graminoids 
(R2 = 0.75, RMSE = 0.08, MAE = 0.05). While it has a positively skewed 
distribution, the forb fCover prediction also reaches R2 of 0.59 (RMSE =
0.02). Litter is generally harder to predict, with the lowest R2 (0.36) 
(RMSE = 0.07, MAE = 0.06) in comparison to other PFTs, likely due to 
its heterogeneous and temporally dynamic nature (Facelli and Pickett, 
1991). The model transferability analysis results using a leave-one-site- 
out cross-validation framework were summarized in Tables S10-S13. 
Overall, the results indicate that the modeling framework demonstrates 
promising transferability across most sites and PFTs, with mean R2 

values of 0.77 for deciduous shrubs, 0.70 for evergreen shrubs, and 0.50 
for lichens, suggesting reasonable generalizability. However, some 
limitations emerge. Like model training results (Fig. 4), litter shows 
consistently poor transferability across all leave-out sites (mean R2 =

0.08), graminoids perform poorly when the AKAVA site was excluded 
(R2 = 0.04), and bryophytes struggle with transferability at the NGA and 
NEON sites (R2 < 0.15). These site-specific weaknesses likely reflect 
overall small sample sizes in our plot inventory, fCover underrepre
sentation of certain PFTs (such as predominant bryophyte in NEON 
compared with other sites) (Fig. S3-S7), and differences in sampling 
strategies between sites (Fig. S1).

The wall-to-wall PAVC-Gridded fCover maps are presented in 
Figs. 5–8. In general, the spatial patterns of fCover for each PFT align 
well with the vegetation distribution observed in the Landsat imagery, 
demonstrating the effectiveness of our fCover mapping approach. In 
addition, we find consistent spatial distribution patterns between PAVC- 
Gridded fCover and the CAVM dominant vegetation classes. Specifically, 
our maps indicate that deciduous shrubs grow in warmer areas (towards 
the treeline), whereas evergreen shrubs are spread out in regions of 
bioclimate zone E characterized by mild topography. With the fine-scale 
fCover map, we also identify deciduous shrubs in river valleys (Fig. 5). In 
comparison to the discrete CAVM vegetation classes, PAVC-Gridded 
fCover products reveal detailed and contrasting patterns of the spatial 
distribution of PFTs across the study region. For instance, PAVC-Gridded 
fCover maps indicate that graminoids occupy most of the northern cold 
and wet areas (bioclimate zone C and D), while forbs primarily exist in 
warmer bioclimate zone E with overall low fractional dominance across 
the entire study region (Fig. 6). Similarly, our maps suggest that lichens 
are only present in mountainous areas, yet bryophytes are pervasive 
across most of the bioclimate zone E except the mountains (Fig. 8).

3.2. Comparison with existing fCover products

Fig. 9 shows the paired scatter-histogram analysis results between 
our PAVC-Gridded fCover and published products by Macander et al. 
(2017). Overall, the distribution of the predicted fCover for both prod
ucts does not always follow the plot-observed distributions, e.g., gra
minoids and litter, which suggests both model predictions are not biased 
by the plot samples. Our modeled fCover distribution is generally 
consistent with Macander et al. (2017) for shrubs (R2 > 0.5). Our model 
slightly overpredicts the fCover of deciduous shrubs, while under
predicts the evergreen shrubs and non-vascular plants in the regions 
with higher fractional dominance (fCover = 0.2–0.5). They however, 
differ substantially from each other for forb, graminoid, and litter (R2 <

0.2, RMSEs = 0.06–0.14).
We further plotted the zonal statistics of the mapped fCover across 

the CAVM vegetation classes in Fig. 10 and Fig. S8. Not surprisingly, due 
to major differences in underlying methodology and spatial resolution, 
large differences are found in these two products except for the forbs 
that are consistently predicted with low dominance across all CAVM 
classes. In addition, we notice higher separability among shrubs and 
graminoids in our products compared to Macander et al. (2017). In 
comparison to Macander et al. (2017), PAVC-Gridded fCover tends to 

Fig. 4. Scatter plot analysis between the predicted and observed fCover using the best tuned RF model, where “count” indicates the number of the high-quality 
samples used for model training. The 1:1 and regression lines are indicated by black dashed and red solid lines respectively, with red shading covering the 95% 
confidence interval for the regression estimate.
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conform better with CAVM with higher fCover over the CAVM shrub 
classes (S1–2) and over the CAVM graminoid classes (G1–2) for shrubs 
and graminoids classes respectively. The zoomed-in plots (Fig. S9) at 
same locations also suggest more separable and spatially more contin
uous results from our mapped fCover than Macander et al. (2017) due to 
quality control approach employed and no known scan-line-corrector- 
off issue in Sentinel-2 as opposed to Landsat.

3.3. Quality analysis on plot outliers having low consistency with satellite 
data

The results associated with plot samples having low correlations to 
satellite observations are shown in Fig. 11. In general, we observe 
variability among different PFTs in terms of the contributing factors. 
Plot size is an important factor affecting the fCover modeling, where 
small plots – especially the 2.5-m ones– lead to the most variability in 
the estimated fCover for almost all PFTs except evergreen shrubs and 
bryophyte, where 1.25-m plots have a marginally larger impact. 1.25-m 
and 2.5-m plots among the observations are primarily from the NGA 
datasets located across Seward Peninsula. Located in shrub to tundra 
transition zone, Seward Peninsula landscape consists of highly diverse 
and heterogeneous spatial distribution of PFTs, and thus the plot 

observations from the region (primarily from NGA) are found to have 
high variability in terms of their spectral response in the satellite remote 
sensing products and hence are associated with higher Cook’s distance 
when developing regression models. Plot observations from NGA are 
often a source of bias for fCover estimation of especially forbs, shrubs, 
and lichens. NEON plots are located in relatively homogeneous areas, 
with relatively consistent spectral signatures for same PFT types, and 
thus are robust for fCover modeling with lower fractions of low-quality 
plots except for bryophytes. Despite having consistent plot sizes, ABR 
plots show high variability in terms of their spectral response in satellite 
observations, likely due to a mixed pixel effect in the large plots (55-m in 
radius), especially for litters.

For all PFTs, the year of plot data collection is a large source of 
variability, due to growth and change in vegetation conditions by the 
time of satellite remote sensing images. The fCover collected between 
2016 and 2018 suggests more uncertainties for almost all PFTs. Plots 
collected in 2012 additionally contribute to highest variability for litter 
fCover estimate. Field plot sampling methods do not contribute any 
significant variability to the modeling, and comparatively among the 
different sampling methods. The point-intercept method has more im
pacts on graminoids, forbs, and litters. Aside from deciduous shrubs and 
graminoids, the fCover quality of all other PFTs is more affected by the 

Fig. 5. Wall-to-wall fCover map for deciduous and evergreen shrub. Here, open water areas or ice are colored blue. The lower right corner shows a zoomed-in 
comparison between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.

Fig. 6. Wall-to-wall fCover map for forbs and graminoids. Here, open water areas or ice are colored blue. The lower right corner shows a zoomed-in comparison 
between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.
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percent-based measurement. In addition to factors affecting the quality 
of sampled fractional cover (fCover), herbaceous and shrub PFTs exhibit 
contrasting patterns. For example, compared with graminoids, forbs are 
more influenced by small plots (2.5-m) from NGA collected over the 
Seward Peninsula, well away from the North Slope where the other plot 
sources for forbs were from. Likewise, we find that deciduous shrubs are 
more sensitive to spatio-temporal inconsistencies compared with ever
green shrubs. For non-vascular plants, most low-quality plot samples 
also primarily arise from NGA, especially for lichens, where an addi
tional concentration of low-quality data is associated with plots 
collected in 2010 (from AKAVA). In contrast, for bryophytes, low- 
quality plots are more evenly spread across sites and years, with mod
erate contributions from NEON.

3.4. Feature importance analysis on fCover regression modeling

Fig. 12 summarizes the mean absolute SHAP values for each 
explanatory variable, calculated from the best-performing model 
configuration, with dot color encoding the underlying feature value 
(dark purple = low, yellow = high). Similar to the quality analysis, 
contrasting outcomes are observed across all PFTs. For S2-derived 

indices, msavi is the top predictor for forb cover (its yellow dots clus
tered at the highest SHAP values suggest that higher msavi values are 
associated with higher forb predictions), yet it has minimal influence on 
other PFTs. Similarly, ngrdi’s relative importance varies between forb 
and graminoid models, and the red-edge bands (rededge2 and rededge3) 
show yellow points at their highest SHAP values for forbs—indicating 
that higher red-edge reflectances are linked to higher forb cover esti
mates. In contrast, the greenness index reaches its highest SHAP values 
(with yellow–orange at the apex) for both forbs and litter. For deciduous 
shrubs, greenness still shows yellow dots at its SHAP maximum, implying 
that higher greenness is associated with higher predicted cover
—whereas wetness leans toward dark purple at its maximum SHAP, 
suggesting that lower wetness (drier conditions) is associated with 
higher deciduous-shrub cover.

Among topographic features, elevation is the dominant predictor for 
most PFTs (except for forbs, graminoids, and lichens), but its highest 
SHAP values correspond to low elevations (dark purple dots), indicating 
that lower altitudes are linked to higher predicted fractional cover for 
those types. Aspect contributes more broadly than slope or hillshade (the 
latter only showing relevance for graminoids). Within the non-vascular 
group, bryophytes show their largest SHAP contributions from elevation, 

Fig. 7. Wall-to-wall fCover map for litter and non-vascular plants (lichen + bryophyte). Here, open water areas or ice are colored blue. The lower right corner shows 
a zoomed-in comparison between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.

Fig. 8. Wall-to-wall fCover map for bryophyte and lichen. Here, open water areas or ice are colored blue. The lower right corner shows a zoomed-in comparison 
between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.
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tgi, osavi, and ci_g (all with yellow dots at their SHAP maxima), whereas 
lichens are more strongly associated with swir1, brightness, and wetness. 
Finally, in the SAR domain, VV backscatter shows its brightest yellow 
dots on the left (negative SHAP) side for both evergreen shrubs and 

lichens, suggesting that high VV values are linked to lower predicted 
cover. The largest positive SHAP values (furthest right) instead corre
spond to lower-to-intermediate VV values (orange through purple). 
Conversely, VH shows yellow clusters at its positive SHAP extreme 

Fig. 9. Paired scatter-histogram analysis results between our PAVC-Gridded fCover and that mapped by Macander et al. (2017). The inset histograms show the plot- 
observed fCover distribution. Here 1:1 line and the regression line are marked in black-dashed and red solid lines respectively.

Fig. 10. Boxplots over the CAVM vegetation classes based on our PAVC-Gridded fCover (a) and that mapped by Macander et al. (2017) (b). Because our product 
spans the entire Alaskan Arctic tundra region, it preserves a greater number of CAVM vegetation classes (such as B2a and GL) compared to the product by Macander 
et al. (2017).
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Fig. 11. Quality analysis on plots having low consistency with satellite data for all target PFTs, where plot size is measured in meters and the y-axis indicates the 
fraction of low-quality plots (with Cook’s distance > D*) within each category listed on the x-axis. In general, taller bars indicate more plots contributing variability 
to fCover regression from this category.
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across most other PFTs (except for bryophytes), indicating that higher 
VH values are associated with higher fractional-cover predictions.

4. Discussion

4.1. Comparison between our mapped products and the published fCover 
products

High-quality PFT-level fCover is critical for accurate representation 
of tundra vegetation diversity and physiology (e.g., carbon capture, 
biomass allocation, snow trapping) in terrestrial ecosystem modeling 
(Sulman et al., 2021). By leveraging high-resolution Sentinel data and 
five plot sources spanning the entire North Slope and Seward Peninsula 
of Alaska, our machine learning-based fCover regression framework 
predicts reliable fCover for the targeted PFTs, including litters, non- 
vascular plant species (bryophytes and lichen), herbaceous species 
(forbs and graminoid) and woody shrubs (deciduous and evergreen). 
Compared with Macander et al. (2017), we not only expanded the study 
extent to the entire Alaskan tundra region to capture broader ecological 
variability, but also examined the spatial heterogeneity over different 
CAVM bioclimatic zones. The mapped fCover successfully reveals sub- 
pixel details of the spatial distribution of the PFTs of interest, which is 
crucial for understanding short-term disturbances that are often missed 
in pixel-based maps.

Moreover, we note that the fCover of nearly all of the PFTs is 
underestimated by Macander et al. (2017, 2022), especially for forbs, 
likely due to the lack of treatment for temporal inconsistencies among 
plot-sampled fCover (ABR and AKVEG) and satellite data. To address 
these inconsistencies, we employed a statistical quality control approach 
using Cook’s distance to filter out low-quality plots that contributed a 
large amount of variability to regression modeling with recent satellite 

observations. With the high-quality plots, we substantially reduced the 
bias and enhanced the correlation between the satellite-predicted fCover 
and plot-observed counterparts for all PFTs.

In addition, we incorporated SHapley Additive exPlanations (SHAP) 
to interpret model predictions and quantify the relative contribution and 
directionality of each satellite-derived variable. These improvements, 
including robust feature importance analysis and data-driven plot 
screening, collectively advance the generation of PFT-level fCover maps 
and provide a better representation of the Alaskan Arctic tundra land
scape. This, in turn, enhances our understanding of how local environ
mental factors (e.g., topography) shape PFT distributions and responses 
to climate change. Ultimately, the resulting maps can support initiali
zation and benchmarking of terrestrial land surface models, improving 
the realism of future climate projections.

4.2. Importance of consistent plot sampling for fCover regression modeling

Our quality analysis suggests that influential factors responsible for 
the low consistency (e.g., phenological changes, vegetation growth) 
between plot and satellite observations are not consistent for different 
PFTs. In general, we observe greater temporal variability in forbs and 
deciduous shrubs compared to graminoids and evergreen shrubs, likely 
due to their more pronounced seasonal phenological changes such as 
rapid shifts in greenness, biomass, or moisture content during the 
growing season. The limited dynamics in evergreen shrubs and grami
noids are also supported by the fact that their growth is largely allocated 
belowground to roots compared with leaves and other aboveground 
components where the latter can persist for multiple seasons (Iversen 
et al., 2015; Sulman et al., 2021). Likewise, litter is more affected by 
large temporal differences compared with living PFTs as it is primarily 
derived from deciduous PFTs. Although lichens and bryophytes are both 

Fig. 12. SHAP analysis on all target PFTs, where bold numbers on the right indicate the mean absolute SHAP value. Only the top 20 most influential features 
are shown.
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non-vascular plants, the difference in their fractional cover is not as 
substantial as that observed between other groups such as shrubs and 
herbs, apart from lichen samples collected from NGA. This is likely 
because both lichens and bryophytes are low-lying ground cover types 
whose fractional cover tends to remain relatively stable from year to 
year, except in cases of abrupt disturbances. Nevertheless, we notice the 
fCover consistency of lichens is more impacted by spatial heterogeneity 
(NGA) than that of bryophytes. Among all plot sources, NEON is more 
reliable in almost all PFT fCover estimation due to more recent and 
consistent sampling (2021). NGA, in contrast, contributes more bias 
than the other plot sources due to high spatial heterogeneity on the 
Seward Peninsula, and different plant communities from the North 
Slope, and hence could be under-represented in our plot inventory. 
Despite more consistent plot sizes that match the resolution of the sat
ellites, ABR also contributes larger variation in deciduous PFTs and lit
ters, likely because all their plots were collected in 2012. All these 
findings highlight the importance of consistent sampling of PFT fCover, 
especially those subject to seasonality (deciduous shrubs, forbs, litters) 
in future field work. Our quality control approach demonstrates its 
effectiveness in identifying high-quality plot samples that correlate well 
with satellite observations for building reliable fCover regression models 
when plot sampling ambiguity (e.g., plot size, approach used for sam
pling and fCover measurement, collection year) is present.

While our approach to filtering plots improved overall model per
formance, it is important to acknowledge potential tradeoffs. Cook’s 
distance, originally designed for linear regression diagnostics, was used 
here as a conservative screening method to flag highly influential sam
ples likely tied to measurement errors, geolocation issues, or outlier 
reflectance values. However, in the context of machine learning, such 
influential samples may not always be erroneous. Some may represent 
valid but complex or transitional vegetation conditions that are impor
tant for model generalization. Excluding such “hard” examples may 
reduce the model’s ability to capture transitional or edge-case vegeta
tion conditions, especially in heterogeneous landscapes. Future work 
may benefit from incorporating model-based uncertainty quantification 
(e.g., ensemble disagreement or residual spread) or adaptive weighting 
schemes that retain these samples while downweighting their influence, 
rather than excluding them entirely.

In addition, while the modeling framework integrates satellite im
agery and plot data collected across multiple years, the current product 
is designed as a static representation tied specifically to the 2019 sat
ellite observation window. This decision was made due to the limited 
availability and uneven temporal distribution of high-quality plot sam
ples, which precludes robust year-to-year generalization. Temporal in
consistencies between plot measurements and satellite acquisition dates 
were instead addressed through a targeted quality control strategy (see 
Section 2.4), which improves the coherence between in-situ and remote 
sensing data by filtering samples with large statistical influence or 
mismatched conditions. As a result, the fractional cover maps generated 
in this study should be interpreted as snapshot estimates representative 
of Arctic vegetation conditions around 2019. Extending the model 
temporally for monitoring interannual dynamics would require more 
densely distributed and time-aligned plot measurements, as well as 
careful validation across years to ensure reliability under shifting envi
ronmental and phenological conditions. Nevertheless, the core frame
work (e.g., feature engineering, PFT-specific modeling, quality control) 
remains adaptable and could be expanded for future temporal applica
tions with improved field data support.

4.3. Relative importance of input explanatory variables for modeling 
fCover

The feature importance analysis conveys key information regarding 
the controlling factors that explain the most about the fCover variations 
for each PFT. Due to differences in plant physiognomy and physiology, 
the relative importance of satellite-derived features differs across PFTs. 

For example, VH polarization is generally more influential than VV, 
particularly for annual and deciduous plants (e.g., forbs, deciduous 
shrubs), compared with perennial and evergreen plants (e.g., evergreen 
shrubs). This is likely because VH is more sensitive to changes in vege
tation structure than VV (Bousbih et al., 2017; Vreugdenhil et al., 2020). 
Seasonal changes in deciduous plants may reflect more on VH vari
ability. Among all topography related features, elevation consistently 
emerges as a key factor associated with fCover, likely due to its close link 
with temperature gradients. For tasseled cap indices, annual and de
ciduous plants (forbs and deciduous shrubs) are more sensitive to 
greenness than perennial and evergreen PFTs (graminoids, evergreen 
shrubs), as the changes in the former group mainly occur at the canopy 
layer. Although lichens and bryophytes are both non-vascular, lichens 
are essentially fungal symbionts attached to the ground surface, making 
them more sensitive to soil brightness and wetness. Regarding vegeta
tion indices, though ngrdi has been found to outperform solar-induced 
chlorophyll fluorescence in end of season extraction of evergreen nee
dleleaf forest (Yin et al., 2022), it is found less influential to other PFTs 
aside from graminoids for fCover regression modeling. A much higher 
SHAP sensitivity to msavi observed in forbs compared with deciduous 
and evergreen shrubs suggests that forbs are more exposed to soil 
background during leaf development stages. In contrast, deciduous 
shrubs, with their broader canopy, tend to show higher importance for 
ci_g and gNDVI, which relate more directly to leaf chlorophyll content 
and photosynthetic activity.

4.4. Future work

This study demonstrates the effectiveness of employing the Cook’s 
distance in mitigating the spatio-temporal inconsistencies among plot 
sources that span the entire Alaskan-arctic tundra landscape with 
different field sampling approaches. The high-quality plots in combi
nation with the spatially continuous satellite observations successfully 
estimate fCover that is highly correlated with plot-observed counter
parts with low bias. We expect PAVC-Gridded fCover product containing 
spatially detailed fractional cover distribution for the included PFTs 
(litter, forb, graminoid, lichen, bryophyte, deciduous and evergreen 
shrubs) can greatly benefit the parameterization in terrestrial ecosystem 
models for more accurate simulation of vegetation and carbon cycle 
above and below ground and their projections under changing climate 
(Sulman et al., 2021). Nevertheless, a few limitations are acknowledged 
here which should be considered as a priority in future work.

First of all, due to limited plot samples, we chose to harmonize all 
plot sources to augment the training data for reliable predictions rather 
than performing regression modeling based on plots collected over every 
year to capture the PFT changes like Macander et al. (2022). To account 
for temporal inconsistency, we limited the training data to plots that 
were collected after 2010 with no fire history. Nevertheless, these older 
plots (earlier than 2015) still account for ~ 1/3 of the total training data 
with 5–9-year temporal gaps. Fortunately, our quality control effectively 
filtered out low-quality plots that are poorly correlated with satellite 
observations. Based on our quality analysis, we found the spatio- 
temporal inconsistencies affect the plot’ quality more in annual and 
deciduous (forb, litter, and deciduous shrub) than in perennial and 
evergreen plants (graminoid, non-vascular plants, evergreen shrub), 
which highlights the necessity for expanding deciduous especially forb 
sampling in future field efforts. In addition, plots sampled from Seward 
Peninsula were appended to the north slope plot sources for sample 
augmentation. Yet in general, we find large spatial heterogeneity in 
these samples, which are mostly filtered out from our regional regres
sion analysis. To address this spatial heterogeneity, we recommend 
performing a spatial representation analysis (Hoffman et al., 2013) to 
ensure the regional representativeness of the sampled plots and the 
trained regression models. To augment the field measured fCover, 
AVIRIS-NG (Chapman et al., 2019) can be introduced to leverage its 
spatial-and-spectral advantages over plot and multispectral satellite 
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imagery respectively as an intermediate product on fCover regression.
Secondly, shrubs subcategorized into different vegetation heights 

should be represented in detail in ecosystem modeling since they can 
function distinctly in climate-vegetation dynamics (Kropp et al., 2020; 
Loranty et al., 2018; Wullschleger et al., 2014; Sturm et al., 2001). For 
instance, low vegetation can act as insulation for snow cover, promoting 
higher albedo and potentially mitigating warming. In contrast, tall 
vegetation can deliver negative feedback to carbon flux by growing 
above snow cover, reducing the surface albedo, and trapping snow, 
which contributes to soil warming during winter and provides a cooling 
effect for the soils beneath during hotter summers. Although integrating 
shrub height stratification is highly relevant, its reliable implementation 
would require a substantially larger sample of in situ plots with accu
rately measured shrub heights, to build and validate stratified fCover 
models. At present, our available plot network does not include 
consistent canopy height data to support this finer categorization, 
making robust stratification beyond the scope of the current study. 
However, we recognize its importance and propose that a dedicated 
shrub height product could be developed in the future by integrating 
sparse canopy height observations from spaceborne lidar, such as 
ICESat-2, with spatially continuous satellite-derived explanatory vari
ables (Travers-Smith et al., 2024). Alternatively, shrub heights can be 
mapped based on empirical relationships established between satellite- 
derived features and field-measured shrub heights (Bartsch et al., 2020). 
Future work combining such shrub height maps with fractional cover 
would enable a more nuanced stratification of shrub PFTs for climate
–ecosystem modeling applications.

5. Conclusion

Accurate PFT-level fCover information is crucial for improving the 
vegetation composition and function estimate by the land surface model 
to a comparable level of the field measured counterpart. In this study, we 
successfully generated a 20-m wall-to-wall fCover for several typical 
PFTs at the Arctic-Alaskan tundra landscape by integrating the plot- 
observed fCover (i.e., the PAVC database) with Sentinel and Arctic
DEM predictors using random forest regression models. The novelty of 
our fCover mapping work, compared with previous studies, lies in that 
we systematically filtered out plots having low consistency with recent 
satellite observations by adopting a quality control approach namely the 
Cook’s distance. Our results suggest that PAVC-Gridded fCover esti
mated by the high-quality plot observations achieves much improved 
accuracy in comparison to the raw, unfiltered plots. Moreover, PAVC- 
Gridded fCover is also consistent with the distribution of CAVM vege
tation classes and spatial pattern of vegetation in the satellite imagery 
more closely than that developed by Macander et al. (2017). We addi
tionally find that annual and deciduous plants such as deciduous shrubs, 
forbs, and litters are more susceptible to spatio-temporal heterogeneity 
(e.g., small plots, older plots, plots that were collected from Seward 
Peninsula), which need more awareness in field sampling efforts. Lastly, 
when choosing the influential factors input for the fCover regression, we 
find deciduous plants more affected by variables that are related to 
canopies. In contrast, non-vascular lichens and bryophytes are more 
influenced by soil moisture content. For future work, we will incorporate 
additional data sources such as the AVIRIS-NG to augment the fCover 
training samples and introduce shrub heights information to further 
divide the shrub PFTs into dwarf, low, and tall subcategories that are 
associated with divergent eco-functions. Our high-resolution PAVC- 
Gridded fCover dataset provides valuable input for terrestrial ecosystem 
models, enabling more accurate simulations of Arctic vegetation dy
namics, carbon fluxes, and climate-vegetation feedback under future 
climate scenarios.
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Wilcox, E.J., Jones, B.M., Frost, G.V., Höfler, A., Pointner, G., 2020. Feasibility of 

T. Zhang et al.                                                                                                                                                                                                                                   International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104892 

14 

https://doi.org/10.15485/2483557
https://doi.org/10.15485/2513385
https://github.com/climatemodeling/alaska_pft_fcover_modeling
https://github.com/climatemodeling/alaska_pft_fcover_modeling
https://github.com/climatemodeling/pavc
https://github.com/climatemodeling/pavc
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1016/j.jag.2025.104892
https://doi.org/10.1016/j.jag.2025.104892
https://doi.org/10.1021/acs.est.1c01616
https://doi.org/10.1021/acs.est.1c01616


tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data. Remote Sens. 
Environ. 237, 111515. https://doi.org/10.1016/j.rse.2019.111515.

Bayle, A., Carlson, B.Z., Thierion, V., Isenmann, M., Choler, P., 2019. Improved Mapping 
of Mountain Shrublands using the Sentinel-2 Red-Edge Band. Remote Sens. (Basel) 
11, 2807. https://doi.org/10.3390/rs11232807.

Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., El Hajj, M., Gao, Q., Mougenot, B., 
2017. Potential of Sentinel-1 Radar Data for the Assessment of Soil and cereal Cover 
Parameters. Sensors 17, 2617. https://doi.org/10.3390/s17112617.

Breen, A., Iversen, C., Salmon, V., VanderStel, H., Busey, B., Wullschleger, S., 2020. 
NGEE Arctic plant traits: plant community composition, Kougarok road mile marker 
64, Seward Peninsula, Alaska, 2016. Next Generation Ecosystems Experiment-Arctic, 
Oak Ridge National Laboratory 2020. https://doi.org/10.5440/1465967.

Chapman, J.W., Thompson, D.R., Helmlinger, M.C., Bue, B.D., Green, R.O., Eastwood, M. 
L., Geier, S., Olson-Duvall, W., Lundeen, S.R., 2019. Spectral and radiometric 
calibration of the next generation airborne visible infrared spectrometer (AVIRIS- 
NG). Remote Sens. (Basel) 11, 2129.

Chu, D., 2020. Fractional Vegetation Cover. In: Chu, D. (Ed.), Remote Sensing of Land 
Use and Land Cover in Mountain Region: A Comprehensive Study at the Central 
Tibetan Plateau. Springer, Singapore, pp. 195–207. https://doi.org/10.1007/978- 
981-13-7580-4_10.

Cook, R.D., 1977. Detection of influential observation in linear regression. 
Technometrics 19, 15–18.

Davidson, S.J., Santos, M.J., Sloan, V.L., Watts, J.D., Phoenix, G.K., Oechel, W.C., 
Zona, D., 2016. Mapping Arctic Tundra Vegetation Communities using Field 
Spectroscopy and Multispectral Satellite Data in North Alaska, USA. Remote Sens. 
(Basel) 8, 978. https://doi.org/10.3390/rs8120978.

Facelli, J.M., Pickett, S.T., 1991. Plant litter: its dynamics and effects on plant 
community structure. Bot. Rev. 57, 1–32.

Fernández-Guisuraga, J.M., Calvo, L., Quintano, C., Fernández-Manso, A., Fernandes, P. 
M., 2023. Fractional vegetation cover ratio estimated from radiative transfer 
modeling outperforms spectral indices to assess fire severity in several 
Mediterranean plant communities. Remote Sens. Environ. 290, 113542.

Gao, B.-C., 1996. NDWI—A normalized difference water index for remote sensing of 
vegetation liquid water from space. Remote Sens. Environ. 58, 257–266.

Gitelson, A.A., Gritz, Y., Merzlyak, M.N., 2003. Relationships between leaf chlorophyll 
content and spectral reflectance and algorithms for non-destructive chlorophyll 
assessment in higher plant leaves. J. Plant Physiol. 160, 271–282.

Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote 
sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289–298. 
https://doi.org/10.1016/S0034-4257(96)00072-7.

Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D., 2002. Novel algorithms for 
remote estimation of vegetation fraction. Remote Sens. Environ. 80, 76–87.

Golaz, J., Caldwell, P.M., Van Roekel, L.P., Petersen, M.R., Tang, Q., Wolfe, J.D., 
Abeshu, G., Anantharaj, V., Asay-Davis, X.S., Bader, D.C., Baldwin, S.A., Bisht, G., 
Bogenschutz, P.A., Branstetter, M., Brunke, M.A., Brus, S.R., Burrows, S.M., 
Cameron-Smith, P.J., Donahue, A.S., Deakin, M., Easter, R.C., Evans, K.J., Feng, Y., 
Flanner, M., Foucar, J.G., Fyke, J.G., Griffin, B.M., Hannay, C., Harrop, B.E., 
Hoffman, M.J., Hunke, E.C., Jacob, R.L., Jacobsen, D.W., Jeffery, N., Jones, P.W., 
Keen, N.D., Klein, S.A., Larson, V.E., Leung, L.R., Li, H., Lin, W., Lipscomb, W.H., 
Ma, P., Mahajan, S., Maltrud, M.E., Mametjanov, A., McClean, J.L., McCoy, R.B., 
Neale, R.B., Price, S.F., Qian, Y., Rasch, P.J., Reeves Eyre, J.E.J., Riley, W.J., 
Ringler, T.D., Roberts, A.F., Roesler, E.L., Salinger, A.G., Shaheen, Z., Shi, X., 
Singh, B., Tang, J., Taylor, M.A., Thornton, P.E., Turner, A.K., Veneziani, M., 
Wan, H., Wang, H., Wang, S., Williams, D.N., Wolfram, P.J., Worley, P.H., Xie, S., 
Yang, Y., Yoon, J., Zelinka, M.D., Zender, C.S., Zeng, X., Zhang, C., Zhang, K., 
Zhang, Y., Zheng, X., Zhou, T., Zhu, Q., 2019. The DOE E3SM coupled Model Version 
1: Overview and Evaluation at Standard Resolution. J. Adv. Model. Earth Syst. 11, 
2089–2129. https://doi.org/10.1029/2018MS001603.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. 
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. 
Environ. 202, 18–27.

Graversen, R.G., Wang, M., 2009. Polar amplification in a coupled climate model with 
locked albedo. Clim. Dyn. 33, 629–643.

Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. 
Hyperspectral vegetation indices and novel algorithms for predicting green LAI of 
crop canopies: Modeling and validation in the context of precision agriculture. 
Remote Sens. Environ. 90, 337–352.

Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002. 
Integrated narrow-band vegetation indices for prediction of crop chlorophyll content 
for application to precision agriculture. Remote Sens. Environ. 81, 416–426.

Haboudane, D., Tremblay, N., Miller, J.R., Vigneault, P., 2008. Remote estimation of 
crop chlorophyll content using spectral indices derived from hyperspectral data. 
IEEE Trans. Geosci. Remote Sens. 46, 423–437.

Hoffman, F.M., Kumar, J., Mills, R.T., Hargrove, W.W., 2013. Representativeness-based 
sampling network design for the State of Alaska. Landsc. Ecol. 28, 1567–1586. 
https://doi.org/10.1007/s10980-013-9902-0.

Hunt Jr, E.R., Daughtry, C.S.T., Eitel, J.U., Long, D.S., 2011. Remote sensing leaf 
chlorophyll content using a visible band index. Agron. J. 103, 1090–1099.

Iversen, C.M., Sloan, V.L., Sullivan, P.F., Euskirchen, E.S., McGuire, A.D., Norby, R.J., 
Walker, A.P., Warren, J.M., Wullschleger, S.D., 2015. The unseen iceberg: plant roots 
in arctic tundra. New Phytol. 205, 34–58. https://doi.org/10.1111/nph.13003.

Joabsson, A., Christensen, T.R., 2001. Methane emissions from wetlands and their 
relationship with vascular plants: an Arctic example. Glob. Chang. Biol. 7, 919–932. 
https://doi.org/10.1046/j.1354-1013.2001.00044.x.

Jordan, C.F., 1969. Derivation of leaf-area index from quality of light on the forest floor. 
Ecology 50, 663–666.

Kannan, K.S., Manoj, K., 2015. Outlier detection in multivariate data. Appl. Math. Sci. 
47, 2317–2324.

Kauth, R.J., Thomas, G.S., 1976. The tasselled cap–a graphic description of the spectral- 
temporal development of agricultural crops as seen by Landsat. LARS Symposia, in, 
p. 159.

Korhonen, L., Packalen, P., Rautiainen, M., 2017. Comparison of Sentinel-2 and Landsat 
8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. 
Environ. 195, 259–274.

Kropp, H., Loranty, M.M., Natali, S.M., Kholodov, A.L., Rocha, A.V., Myers-Smith, I., 
Abbot, B.W., Abermann, J., Blanc-Betes, E., Blok, D., 2020. Shallow soils are warmer 
under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res. Lett. 
16, 015001.

Konduri, Venkata, et al. “Hyperspectral remote sensing-based plant community map for 
region around NGEE-Arctic intensive research watersheds at Seward Peninsula, 
Alaska, 2017-2019.” , Aug. 2022. Doi: 10.5440/1828604.

Li, W., Niu, Z., Shang, R., Qin, Y., Wang, L., Chen, H., 2020. High-resolution mapping of 
forest canopy height using machine learning by coupling ICESat-2 LiDAR with 
Sentinel-1, Sentinel-2 and Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 92, 
102163. https://doi.org/10.1016/j.jag.2020.102163.

Loranty, M.M., Abbott, B.W., Blok, D., Douglas, T.A., Epstein, H.E., Forbes, B.C., Jones, B. 
M., Kholodov, A.L., Kropp, H., Malhotra, A., Mamet, S.D., Myers-Smith, I.H., 
Natali, S.M., O’Donnell, J.A., Phoenix, G.K., Rocha, A.V., Sonnentag, O., Tape, K.D., 
Walker, D.A., 2018. Reviews and syntheses: changing ecosystem influences on soil 
thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 
5287–5313. https://doi.org/10.5194/bg-15-5287-2018.

Louhaichi, M., Borman, M.M., Johnson, D.E., 2001. Spatially located Platform and Aerial 
Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 16, 
65–70. https://doi.org/10.1080/10106040108542184.

Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, 
E., Gascon, F., 2016. Sentinel-2 Sen2Cor: L2A processor for users, in: Proceedings 
Living Planet Symposium 2016. Spacebooks Online, pp. 1–8.

Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predictions. In: 
Advances in Neural Information Processing Systems, p. 30.

Macander, M.J., Frost, G.V., Nelson, P.R., Swingley, C.S., 2017. Regional Quantitative 
Cover Mapping of Tundra Plant Functional Types in Arctic Alaska. Remote Sens. 
(Basel) 9, 1024. https://doi.org/10.3390/rs9101024.

Macander, M.J., Nelson, P.R., Nawrocki, T.W., Frost, G.V., Orndahl, K.M., Palm, E.C., 
Wells, A.F., Goetz, S.J., 2022. Time-series maps reveal widespread change in plant 
functional type cover across Arctic and boreal Alaska and Yukon. Environ. Res. Lett. 
17, 054042. https://doi.org/10.1088/1748-9326/ac6965.

Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K. 
D., Macias-Fauria, M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., 
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