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Estimates of fractional cover (fCover) across given land surfaces are used to assess, and often model, vegetation
composition and diversity, which are crucial for understanding the health and functioning of terrestrial eco-
systems. Remote sensing provides a useful means for scaling local, plot-measured fCover estimates to regional
scales. Leveraging a recently synthesized and harmonized plot database, this study generated wall-to-wall maps
of fCover for six Alaskan-Arctic plant functional types (PFT), including non-vascular plants, forbs, graminoids,
and deciduous and evergreen shrubs, using 20-m satellite data (Sentinel-1, Sentinel-2, ArcticDEM) using a ma-
chine learning regression approach, specifically the random forest (RF) algorithm, which is well-suited for
handling nonlinear relationships and high-dimensional satellite datasets. This study additionally addressed the
spatio-temporal inconsistencies e.g., sampling scale, plot size, and collection year in plot measured fCover by
adopting a multivariate outlier detection approach—Cook’s distance—to identify high-quality plots for model
training and validation. Our approach achieves high accuracy (R? = 0.59-0.93, root mean squared errors =
0.02-0.10 for all PFTs) between plot-observed and satellite-derived fCover when using high-quality plot samples.
The mapped fCover characterizes the spatial patterns of different PFTs across the tundra biome at a 20-m res-
olution, providing key information needed for improved representation of Arctic tundra vegetation in terrestrial
biosphere models to better understand climate-vegetation feedback across the Arctic tundra.

Arctic tundra
Machine learning
SHapley Additive exPlanations (SHAP)

1. Introduction presence of shrubs that associate with nitrogen-fixing bacteria may alter

hillslope nitrogen cycling (Salmon et al., 2019), while the colonization

The Arctic region is warming approximately four times faster than
lower latitude regions (Intergovernmental Panel on Climate Change
(IPCC) report, Shukla et al., 2019; Rantanen et al., 2022) due to polar
amplification (Graversen and Wang, 2009). Warming has led to an in-
crease in vegetation productivity—particularly of tall shrubs that have
extended their range, grown taller, and increased in biomass (Myers-
Smith et al., 2020, 2011). In turn, shrubification may amplify regional
warming via the entrainment of insulating snow by tall shrubs and also
decreased albedo from leaves or branches that extend above the melting
snowpack (Sturm et al., 2005, 2001). Changing vegetation community
composition may also impact biogeochemical cycling. The increased

of aquatic graminoids in inundated thaw ponds or thermokarst slumps
may lead to increased methane release to the atmosphere (Joabsson and
Christensen, 2001; Bao et al., 2021). Thus, understanding the fractional
cover (fCover) of plant species, as aggregated into groupings of species
with similar function (i.e., plant functional types, PFTs), across arctic
tundra landscapes is valuable for both modeling and analysis purposes.
Specifically, introducing detailed fCover of tundra PFTs into the Energy
Exascale Earth System Model (E3SM; Golaz et al., 2019) Land Model
(ELM) has been effective in quantifying biodiversity and biomass that
were more comparable to field measurements (Sulman et al., 2021).
Aside from modeling, fCover also conveys sub-pixel/plot details, which
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can be used to detect short-term vegetation structural responses to
climate anomalies, such as wildfires (Fernandez-Guisuraga et al., 2023),
faster than categorical PFT maps in ecological applications. Addition-
ally, it improves monitoring of vegetation degradation and desertifica-
tion compared with normal satellite-derived vegetation indices (Chu,
2020).

Spatially continuous remote sensing data offer a means for mapping
wall-to-wall PFT-level fCover by leveraging plot-scale fCover observa-
tions collected from boots-on-the-ground field observations or remotely-
sensed from Unoccupied Aerial Vehicles (UAVs) (Macander et al. 2017,
2022; Yang et al., 2023). For instance, Yang et al. (2023) mapped fCover
for twelve PFTs in western Alaska by combining UAV-estimated fCover
with NASA’s Airborne Visible / Infrared Imaging Spectrometer-Next
Generation (AVIRIS-NG) hyperspectral imagery (Chapman et al,
2019) with mean absolute errors (MAEs) < 0.13. Despite high accuracy,
UAV observations are often limited to small spatial scales (tens to
hundreds of square kilometers) and study regions. One step towards
enabling large-scale mapping could be building regressions between
AVIRIS-NG flight paths (usually a few kilometers wide by hundreds of
kilometers long; Chapman et al., 2019) where larger-scale fCover is
mapped by training on plot fCover, and explanatory variables derived
from downscaled climate models and topographic properties (Konduri
et al., 2022). However, this requires sufficient high-quality plot samples
overlapped with AVIRIS-NG flights for the initial AVIRIS-NG-wide
mapping, which is not always feasible given the sparse spatial
coverage of AVIRIS-NG over the Arctic Alaska region.

Synthesizing and harmonizing plot observations across areas with
similar site characteristics can resolve the data scarcity issue in plot
observations. With the widely available Landsat archive and plot sam-
ples spanning the North Slope of Alaska, Macander et al. (2017) suc-
cessfully mapped wall-to-wall fCover for nine PFTs including shrubs
subcategorized into low, dwarf, and tall classes at 30-m spatial resolu-
tion. Macander et al. (2022) then extended fCover mapping to the en-
tirety of Alaska and part of the Yukon, Canada, based on an expanded
plot network and 30-year Landsat time series, which aimed to under-
stand long-term PFT fCover changes. Regional scale fCover maps by
Macander et al. (2017, 2022) are expected to greatly benefit the
parameterization of land surface models for more reliable and realistic
simulations of vegetation distribution and dynamics. However, Mac-
ander et al. (2022) emphasized the development of a time series of
fCover to detect change and yield insight into landscape-level responses
to a changing climate. The time series approach necessitated fitting
training models to yearly data rather than the full dataset, leading to a
lower accuracy. However, the goal of some model simulations may be
better suited to a one-time, high accuracy fCover map as opposed to a
time series derived product. Moreover, across the Arctic Alaska tundra
landscape, there is large variability in plot-level sampling strategies used
for satellite-based fCover regression modeling, e.g., different sampling
crews, plot sizes, or year of collection. These inherent inconsistencies
among plot observations potentially affect the spatio-temporal repre-
sentativeness of the training data for the development of remote-sensing
vegetation data products, and thus the accuracy. The scan-line-
corrector-off issue in the Landsat product (Scaramuzza and Barsi,
2005) may also be inherited in any Landsat-based fCover mapping,
creating a spatial discontinuity (i.e., having a striped pattern).

The primary objective of our study was to build upon previous
observational and remote-sensing studies to develop PFT-level fCover
mapping of the Arctic Alaska region at a higher spatial resolution than
previously possible. First, we harmonized plot-level data sources span-
ning the North Slope and the Seward Peninsula of Alaska into a
consistent PFT scheme for wall-to-wall PFT fCover mapping of the entire
Arctic Alaska tundra realm. Second, to ensure that the mapped fCover
represented contemporary vegetation composition, we resolved in-
consistencies between the plots sampled for fCover and satellite obser-
vations using a quality control approach (i.e., Cook’s distance; Cook,
1977; Pinho et al., 2015). The quality control step allows us to separate
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two sets of plots: high-quality and low-quality samples that correlated
with satellite observations well and poorly, respectively. Third, we
produced spatially continuous, high-resolution (20-m) wall-to-wall
maps of fCover for several target tundra PFTs across the Alaskan
Arctic. These PFTs are compatible with the structure of the ELM model
(Sulman et al., 2021). The mapping was achieved using a RF regression
model trained on high-quality plot observations and corresponding
satellite-derived predictors from Sentinel imagery and ArcticDEM data
(Noh and Howat, 2017). Fourth, we identified the influential factors that
contribute to inconsistencies between plot and satellite observations.
Although these low-quality plots were not used for model training, they
were retained to help inform improvements in future vegetation surveys,
such as optimizing plot placement and enhancing measurement con-
sistency. Finally, we analyzed the importance of satellite-derived fea-
tures using SHapley Additive exPlanations (SHAP, Lundberg and Lee,
2017) to identify the variables that primarily account for the spatial
variability of each PFT’s fCover.

2. Materials and method
2.1. Study area

This study focused on mapping the fCover for eight common PFTs in
an Alaska tundra region (i.e., the Alaskan Arctic) that encompasses both
the North Slope and Seward Peninsula above the Arctic treeline as
defined by Circumpolar Arctic Vegetation Map (CAVM) (Walker et al.,
2005). The entire study region spans three CAVM bioclimate subzones
including subzones C, D, and E (Fig. 1) with mean July temperatures
reaching about 5-7C (coldest), 7-9 °C (moderate), and 9-12 °C
(warmest) respectively (Walker et al., 2005; Raynolds et al., 2019) and
topography ranging from coastal plains to inland mountains. The
vegetation composition in Arctic Bioclimate Subzones C, D, and E varies
significantly with climate and soil conditions (Raynolds et al., 2019).
Specifically, Subzone C is characterized by graminoid and prostrate
dwarf-shrub tundra, with sedges being dominant along with prostrate
shrubs less than 5 cm tall. This zone also includes prostrate and hemi-
prostrate dwarf-shrub, lichen tundra, which thrives in maritime, acidic
regions. Subzone D consists primarily of non-tussock sedge, dwarf-
shrub, and moss tundra. It is dominated by sedges and dwarf shrubs
under 40-cm tall, with a well-developed moss layer. Frost boils and
periglacial features are common. Erect dwarf-shrubs and moss tundra
are also prevalent in continental areas with acidic soils. Wetland com-
plexes dominated by sedges, mosses, and dwarf shrubs under 40-cm tall
are also found here. Subzone E supports taller vegetation, including
tussock-sedge, dwarf-shrub, and moss tundra, dominated by tussock
cottongrass (Eriophorum vaginatum L.) and dwarf shrubs under 40-cm
tall. Low-shrub, moss tundra dominates warmer, maritime areas with
deep, moist active layers. Wetland complexes in this zone include
sedges, mosses, and shrubs over 40-cm tall. This gradient from prostrate
shrubs in Subzone C to low shrubs in Subzone E reflects increasing
temperatures and moisture availability.

2.2. Plot data synthesis and harmonization

We used observations from the Pan-Arctic Vegetation Cover (PAVC)
database (Steckler et al., 2024, 2025) that synthesized and harmonized
plot observations of PFT fCover from five publicly available data sources
(Fig. 1) covering the entire tundra landscape of the North Slope and the
Seward Peninsula of Alaska, including the Alaska Biological Research,
Incorporated — Environmental Research Services (hereafter referred to
as ABR, total observations: 107, Macander et al., 2017), the Alaska
Vegetation Plots Database (AKVEG, total observations: 185, Nawrocki
et al., 2020), Alaska Arctic Vegetation Archive (AKAVA, total observa-
tions: 275, Davidson et al., 2016; Sloan et al., 2014 (under the Next
Generation Ecosystem Experiments in the Arctic (NGEE Arctic) project);
Villarreal, 2013; Villarreal et al., 2012; Walker et al., 2015, 2016), the



T. Zhang et al.

169°00'W  162°30'W  156°00'W

. /7
o

149°30'W

International Journal of Applied Earth Observation and Geoinformation 144 (2025) 104892

143°00'W

Bioclimate Zone
7} Subzone C
- [ subzone D

¢ AKVEG
A ABR

O NEON
O NGA

¥ AKAVA

136°30'W

...1 Subzone E

Circumpolar Arctic Vegetation Map
Land Cover Class
[] B1-Cryptogam, herb barren
[ B2a- Cryptogam/barren complex (bedrock)

| 2 B3 - Noncarbonate mountain complex

| =3 B4- carbonate mountain complex

| B2b - Prostrate shrub/barren complex (bedrock)
| ] G1-Rush/grass, forb, cryptogam tundra

[] G2 - Graminoid, prostrate dwarf-shrub, forb tundra

| ] G3 - Nontussock sedge, dwarf-shrub, moss tundra
| [ G4 - Tussock sedge, dwarf-shrub, moss tundra

[] P1 - Prostrate dwarf-shrub, herb tundra
[] P2 - Prostrate/Hemiprostrate dwarf-shrub tundra
[ S1-Erect dwarf-shrub tundra

[ S2 - Low shrub tundra

[] w1 -Sedge/grass, moss wetland

[] w2 - Sedge, moss, dwarf-shrub wetland
I w3 - Sedge, moss, low-shrub wetland
B FW - Fresh water

[] sw-Saline water

(] GL-Glacier

[ NA - Non-Arctic

162°30'W 156°00'W

149°3

143°00'W

Fig. 1. Overview of field observations collected from plots; land cover and bioclimate zones developed by the Circumpolar Arctic Vegetation Map (Walker et al.,

2005; Raynolds et al., 2019) for the Alaskan Arctic region.
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Fig. 2. Frequency of plot characteristics among all child plot sources (AKVEG, ABR, AKAVA, NEON, NGA), including plot size in meters (plot size (m)), year of
collection (year), methods used for field sampling (field sampling method) and fCover measurement (cover measurement).
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National Ecological Observatory Network (NEON, total observations:
275; NEON, 2023), and plots collected by the NGEE Arctic project across
the Seward Peninsula (NGA, total observations: 98, Breen et al., 2020).
Plots older than 2010 (mainly from AKAVA) were excluded from our
modeling to ensure only contemporary observations were included. In
addition, no historical fires (since 1983) are reported at the plots used in
our study (Alaska wildland fire information map series, accessed April
2024).

Spatio-temporal inconsistencies are, however, identified among plot
sources (Fig. 2 and Fig. S1), which could affect the representativeness of
their fCover observations in conjunction with recent satellite observa-
tions. First, ABR and NEON are more consistent than the other sources
regarding years of plot data collection, with all plots sampled in 2012
and 2021 respectively, whereas collection years for AKVEG, AKAVA,
and NGA range from 2010 to 2018. Second, to match the spatial reso-
lution of satellite pixels (e.g., Landsat) and reduce potential geolocation
mismatches, plot-level observations in ABR and AKVEG were averaged
within circular buffers of 30-m or 55-m radius (hereby referred to as
parent plots) (Macander et al., 2017). In contrast, plots from the other
sources are primarily original, non-aggregated transect-based observa-
tions—referred to here as child plots—with sizes (side or radius) ranging
from 0.5 to 2.5 m. To address the inconsistency in plot radii, we spatially
aggregated child plots that were close to one-other (within 55-m to
match ABR’s plot radius) and averaged the fCover to generate parent
plots for AKAVA, NGA, and NEON. Third, in ~ 20 % of the AKAVA plots,
the fCover was recorded using the 7-step Braun-Blanquet codes (a semi-
quantitative scale used to estimate plant species’ abundance and cover
in vegetation surveys, ranging from rare or occasional to dominant
presence), while percent cover estimates are used at the remaining plots.
Fourth, AKVEG and ABR use the center-staked point-intercept method
for sampling species to capture the spatial heterogeneity, while the rest
plots all used quadrats or transect-quadrats. In addition, ABR and
AKVEG provide both total and top fCover while the other plots primarily
recorded the total cover information. Total fCover estimates the percent
area cover of a species at the plot regardless of the canopies above or
below, whereas top fCover only counts the areas that are not shielded by
other species. Note that top fCover may underestimate the species’
signal received by satellite under low-density canopy conditions where
the signal may be able to penetrate the multilevel canopy. Given these
differences, this study specifically focused on wall-to-wall mapping of
total fCover.

Aside from various sampling and fCover measurement approaches,
inconsistency in species naming also challenges plot harmonization for
our regional-scale modeling. To address this issue, we used the
comprehensive Alaska species checklist provided by AKVEG and leaf
retention data documented in Macander et al. (2022) to associate PFT
information with each species and then aggregate the species-level
fCover to the PFT level following a harmonized scheme: litter, lichen,
bryophyte, forb, graminoid, deciduous and evergreen shrub (Table 1).
More details regarding plot synthesis and harmonization, differences

Table 1
Tundra PFTs used for fCover mapping at the study region.

PFT or others Description

Deciduous Leaves are deciduous, lost after the summer season; deciduous
shrub shrubs were mostly low or tall in the Arctic region we examined,
with canopy heights greater than or equal to 20 cm
Evergreen Leaves are evergreen, retained throughout the year; evergreen
shrub shrubs were mostly dwarf in the Arctic region we examined, with
canopy heights less than 20 cm
Graminoid Herbaceous plants including grasses and sedges; perennial plants
Forb Non-graminoid herbaceous flowering plants; often annual plants

Lichen A symbiotic partnership of a fungus and an alga, grouped into non-
vascular; perennial plants
Bryophyte Non-vascular perennial plants, including liverworts and mosses

Non-vascular Combination of lichens and bryophytes
Litter Dead plant matter or fallen leaves
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among field sampling methods, and fCover measurement approaches
were reported in Steckler et al. (2025). The density distribution of the
harmonized plots at each PFT used in our study (Fig. 3) indicates that the
fCover distribution of all PFTs, with the exception of bryophytes, is
right-skewed with dominance towards low values. Moreover, forb-
dominated plots seldom exist in the included plot sources, with rela-
tively low median fCover (<0.1).

2.3. Satellite-derived explanatory variables

For explanatory variables as input to fCover regression modeling, we
collected the ArcticDEM (Noh and Howat, 2017) mosaic to characterize
topography; pre-processed and downloaded Sentinel-1 Synthetic Aper-
ture Radar (SAR) polarizations in the SeNtinel Application Platform
(SNAP); and pre-processed and downloaded Sentinel-2 multispectral
data via the Google Earth Engine platform (Gorelick et al., 2017). The
ArcticDEM mosaic product, a high-resolution (2-m) and high-quality
DEM product covering the entire pan-Arctic area, was compiled from
the best-quality 2-m ArcticDEM strip files generated from very-high-
resolution optical stereo imagery to reduce the void areas and edge-
matching artifacts (Noh and Howat, 2017). Despite demonstrating
effectiveness in upscaling land cover and sparse lidar canopy heights to
regional and global scales (Zhang and Liu, 2023; Korhonen et al., 2017;
Li et al., 2020), both Sentinel-1 (S1) and Sentinel-2 (S2) data have
remained under-explored in mapping fCover at the PFT level.

S1 is a dual-polarization C-band SAR instrument that provides 2
single co-polarization bands (VV or HH) or 2 dual cross-polarization
bands (HV or VH). In our study, the available polarization bands VV
and VH were collected from the S1 Ground Range Detected scenes,
which have been calibrated and orthorectified using the S1 Toolbox
(Veci et al., 2014). For S2, we collected the Level-2A surface reflectance
product, which has been atmospherically corrected by the sen2cor
model (Louis et al., 2016). Only the 10 spectral bands that have spatial
resolutions less than or equal to 20-m were introduced in this study,
including blue, green, red, red edge 1-4 (redEdgel—4), near infrared
(nir), and shortwave infrared 1-2 (swirl-2). We developed median
composites for both S1 and S2 images collected over the growing sea-
sons (June to September) for the year 2019. Before image compositing,
all cloudy pixels were removed using the quality assessment (QA60)
band provided with the Sentinel-2 data, which flags pixels affected by
clouds, cirrus, and other atmospheric effects.

To enhance the separability of PFTs using Sentinel and ArcticDEM,
we additionally calculated slope, hillshade, and aspect in addition to
elevation from ArcticDEM to characterize the topographic variability and
19 vegetation indices from S2 multispectral bands accounting for soil
background, leaf water, and chlorophyll content that vary among PFTs.
The examined vegetation indices (Table 2 and Table S1) included: (1)
two normalized difference water indices (ndwi) using two swirl-2, Gao,
1996); (2) modified soil-adjusted vegetation index (msavi, Qi et al.,
1994); (3) visible atmospherically resistant index (vari, Gitelson et al.,
2002); (4) ratio vegetation index (rvi, Jordan, 1969); (5) optimized soil-
adjusted vegetation index (osavi, Rondeaux et al., 1996); (6) triangular
greenness index (tgi, Hunt Jr et al., 2011); (7) green leaf index (gli,
Louhaichi et al., 2001); (8) normalized green red difference index (ngrdi,
Tucker, 1979); (9) chlorophyll index-green (ci g, Gitelson et al., 2003);
(10) green normalized difference vegetation index (gNDVI, Gitelson
etal., 1996); (11) chlorophyll vegetation index (cvi, Vincini et al., 2008);
(12) second modified triangular vegetation index (mtvi2, Haboudane
et al., 2004); (13) transformed chlorophyll absorption reflectance index
(tcari, Haboudane et al., 2002); (14) triangular chlorophyll index (tci,
Haboudane et al., 2008); (15) normalized anthocyanin reflectance index
(nari, Bayle et al., 2019); we also included three tasseled cap indices—
(16) brightness, (17) greenness, and (18) wetness—which are orthogonal
transformations of spectral bands originally developed by Kauth and
Thomas (1976) for vegetation analysis.

To ensure the spatial consistency between satellite and plot
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Fig. 3. Fractional cover distribution of all PFTs at the plots after spatial aggregation. Only a few plots are observed with overlapped canopies among different species,
leading to > 1 fCover for some PFTs. In most cases, the PFT-level fCover does not exceed 1. Hence, all plots with > 1 fCover were rounded down to 1.

Table 2
Formulas for calculating the input vegetation indices for fCover regression modeling. For implications of each index, please refer to Table S1.
Index Abbrev. Formula Reference
Normalized difference water index using swirl-  ndwi (nir —swir) / (nir + swir)
2 Gao (1996)
Modified soil adjusted vegetation index msavi 0.5% (2*nir 11 —\/(2*nir+ 1)% — 8*(nir red)) Qi et al. (1994)
Visible at hericall istant ind i —red d —bl,
isible atmospherically resistant index vari (green —red) / (green + re: ue) Gitelson et al. (2002)
Ratio vegetation index i nir/red
Jordan (1969)
Optimized soil adjusted tation ind i 1.16*(nir —red) / (i d + 0.16
ptimized soil adjusted vegetation index osavi (nir —red) /(nir + red + ) Rondeaux et al. (1996)
Tri 1 ind i 0.5%(120*(red —blue) —190*(red —
riangular greenness index tgi ( (re ue) (red —green)) Hunt Jr et al, (2011)
G leaf ind li 2%, —red —bll 2% d + bl
reen leaf index gli (2*green —re: ue)/(2*green + red + blue) Louhaichi et al. (2001)
Normalized green red difference index ngrdi (green —red) / (green + red) Tucker (1979)
Chlorophyll index-green cig nir/green —1 Gitelson et al. (2003)
G lized diffe tation ind NDVI ir — i
reen normalized difference vegetation index g (nir —green)/(nir + green) Gitelson et al. (1996)
Chl hyll tation ind, i 2
Orophyl vegetation Index s (nir*red) green Vincini et al. (2008)
Second modified triangular vegetation index mtvi2
g & 1.5%(1.2*(nir — green) — 2.5*(red — green))/\/(Z*m'r +1)2 - (G*rlir - 5\/red) —0.5) Haboudane et al.
(2004)
Transformed Chlorophyll Absorption teari 3*((redEdgel —red) —0.2*(redEdgel —green)* (redEdgel /red))
Haboudane et al.
Reflectance Index
(2002)
Triangular chlorophyll index tci 1.2*(redEdeel — _1.5%(red — « dEdeel /red
.2*(redEdgel — green) —1.5*(red — green)* ( \/redEdgel /red Haboudane et al.
(2008)
Normalized Anthocyanin Reflectance Index nari (1/green —1/redEdgel)/(1/green + 1/redEdgel) Bayle et al. (2019)
Tasseled cap brightness brightness ~ 0.3037*blue + 0.2793*green + 0.4743*red + 0.5585*nir + 0.5082*swirl +
ey Kauth and Thomas
0.1863*swir2
Tasseled cap greenness greenness 0.7243*nir + 0.0840*swirl —0.2848*blue —0.2435*green —0.5436*red —0.1800*swir2 (1976)
Tasseled cap wetness wetness 0.1509*blue + 0.1973*green + 0.3279%*red + 0.3406*nir —0.7112*swirl —0.4572*swir2

observations, we re-projected all data to the geographic coordinate
system (EPSG: 4326). The plot sizes of the parent plots are 30-m or 55-m
after the spatial aggregation, so we evaluated two search radii (i.e., 30-m
or 55-m) when sampling the explanatory variables for fCover regression
model training together with the plot observed fCover.

2.4. Quality control

The uncertainties (i.e., inconsistencies due to varying years of plot
collection, plot size, and sampling approaches) in our plot data sources

may affect the overall regression modeling, introduce uncertainties in
the representativeness of the mapped fCover, and bias the model eval-
uation results if not properly addressed. However, without a systematic
quality analysis, it is difficult to identify the plots that led to low cor-
relations between plot and satellite observations when performing the
fCover regression analysis.

To address this, we introduced an outlier detection approach known
as the Cook’s distance (Cook, 1977) to identify and exclude outliers and
low-quality plots from fCover regression modeling. Here the low-quality
plots were defined as plots where fCover observations correlated poorly
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with satellite-observed vegetation conditions, which could be due to
several reasons, including natural vegetation growth over time, geo-
location errors and uncertainty, inconsistent sampling approaches, or a
plot’s lack of representativeness. The Cook’s distance has an advantage
over other outlier detection approaches (Kannan and Manoj, 2015) in
that it quantifies a sample’s quality based on its impacts on the overall
regression modeling, which has been proven effective in enhancing
ICESat-2's quality in predicting canopy heights comparable to airborne
lidar derived counterparts (Zhang and Liu, 2023).

For each PFT, the Cook’s distance (D;) of the i-th sample is quantified
as the change it brought to the least-squares regression model fitted
between the plot-observed fCover and the satellite derived explanatory
variables (Table 2) when excluding it from the analysis (Equation (1)-
(2

2
P ()’j - y,m)
Di=———5—— €y
DS

where yj, yji represent the predictions of j-th sample by the least-
squares regression model fitted on observations including and
excluding i-th sample respectively, n stands for the total number of
samples, p denotes the number of unknown coefficients, and s? is the
mean squared error of the regression model calculated as

2
, (-
= 2)
n—p
where y; is the observed value of the j-th sample.

Intuitively, samples with larger distances often indicate that they
introduce more variability to the regression analysis. In this study, we
replaced the least-squares regression model with a Gaussian generalized
linear model linked by the identity function, where the D distribution for
all samples appears more separable between the “outliers” and the “non-
outliers”, compared with the result estimated using the ordinary least
squares regression. Based on the calculated distances, we then randomly
selected half of the samples with D less than the first quartile (Q1) of the
distance distribution of all samples as the validation dataset. The
remaining plots were regarded as the original samples used for fCover
regression modeling. To evaluate the effectiveness of the proposed
quality control, we also presented the results from a refined model that
only input high-quality plots identified after a second round of quality
control on the remaining training samples (excluding the validation
data), selecting those with Ds < the critical distance (D*):

D* = Q3+k xIQR 3

where IQR is the interquartile range (Q3-Q1), Q1 marks the 25th
percentile, and Q3 (the third quartile) marks the 75th percentile of the
data distribution, k was tested from 1 to 3 in 0.5 increments to optimize
the model training. This quality filtering was conducted on the training
data (excluding the validation set) and was applied separately for each
PFT. The method targets influential statistical outliers rather than
relying on spatial or temporal alignment and improves the robustness
and reproducibility of the modeling process.

2.5. Machine learning based fractional cover regression

In this study, we employed an RF model to perform the regression
analysis between the plot-observed fCover and the satellite-derived
explanatory variables, as it leverages an ensemble of decision trees to
minimize the overall model variance. RF also demonstrates its effec-
tiveness in PFT-level fCover mapping studies (Macander et al., 2017,
2022) and outperforms other machine learning regression models on
forest attribute predictions (Zhang and Liu, 2023; Zhao et al., 2019).

Given the uncertainty of the plot observations, we could not perform
regular cross-validation to shuffle the training and testing datasets, as
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that assumed all observations were of equal quality. Instead, we per-
formed a grid search to identify the best RF model parameter setting
(number of trees used for fitting and maximum features used for splitting
the trees) for each PFT using the same validation dataset (randomly
chosen half from samples with D < Q1). The tested values for the number
of trees used for fitting and the maximum features used for splitting the
trees with the model regression results were [50, 100, 150, 200] and [5,
10, 15], respectively. The model with the highest accuracies was then
selected to map the wall-to-wall fCover based on spatially continuous
satellite imagery for each PFT using all high-quality plot samples having
distances shorter than D*. Hereon we refer to the gridded fCover esti-
mates as “PAVC-Gridded” product (Zhang et al., 2025).

2.6. Model evaluation

The model evaluation in this study focused on three aspects: (1)
fCover regression (model training and regional-scale mapping), (2) plot
quality analysis, and (3) feature importance analysis of fCover regres-
sion modeling. For fCover regression modeling, we performed a scat-
terplot analysis between the predicted (y) and observed (y) values and
reported three accuracy metrics, including the root mean square error
(RMSE), mean absolute error (MAE), and coefficient of determination
(R?) using a simple linear regression. Specifically, RMSE and MAE were
used for quantifying the average errors in the model predictions,
whereas R? describes the percentage of variance in y explained by .

For regional-scale fCover mapping, we visually compared the spatial
patterns of PAVC-Gridded fCover with Sentinel-2 RGB imagery. To
exclude non-vegetated areas, open water and ice were masked using
ndwi > 0 and ndvi < 0.3. Given the widespread use of the CAVM in Arctic
vegetation studies, we summarized zonal fCover statistics for all plant
functional types (PFTs) across each CAVM zone. Additionally, we
compared PAVC-Gridded fCover with the product from Macander et al.
(2017) using scatter plot analysis, spatial pattern assessments, and zonal
statistics over the CAVM classes. While both studies employed RF
regression for fCover mapping, our approach incorporated a more
diverse set of plot sources (NEON, AKVEG, NGA), including coverage of
the Seward Peninsula. Furthermore, our satellite predictors were pri-
marily derived from Sentinel imagery, which offers higher spatial res-
olution and is unaffected by the scan-line corrector issue present in
Landsat imagery used by Macander et al. (2017). To enhance model
reliability, we additionally implemented quality control measures to
mitigate spatial and temporal inconsistencies in plot samples when
training the regression model with recent satellite observations.
Furthermore, to evaluate model’s transferability, we conducted a leave-
one-site-out validation. Specifically, for each plot source, we excluded
all plots from that site during model training and then used them
exclusively for validation, rotating through all available plot sources.
This procedure assesses how well the models trained on high-quality
plots (after Cook’s distance filtering) can generalize to new regions
that were not seen during training. The results of this transferability
analysis complement our standard validation, helping to demonstrate
that the Cook’s distance quality control improves the spatial generaliz-
ability of the fCover regression models by reducing site-specific biases.

For the plot quality analysis, we sought to disentangle the factors
that contributed to uncertainty in the regression modeling between plot-
observed fCover and recent satellite observations. Thus, we plotted the
distribution of plot characteristics (plot data source, plot size, plot
collection year, method used for sampling, and fCover measurement) of
low-quality plots identified by the Cook’s distance method. This un-
derstanding could help inform the design of future field campaigns for
plot-level fCover sampling for regional scale mapping.

Lastly, feature importance analysis can inform both model inter-
pretability and feature selection in model design. To quantify the rela-
tive contribution of the included explanatory variables (Table 2) on
fCover regression analysis, we performed SHapley Additive
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exPlanations (SHAP, Lundberg and Lee, 2017) analysis based on the
best-trained RF model. This approach computes the average marginal
contribution of each variable across all possible feature coalitions,
providing a consistent and theoretically grounded measure of how each
variable influences the model output. Compared with permutation-
based importance, SHAP offers a more robust and interpretable esti-
mate of each variable’s impact without relying on random permutations,
thereby improving the transparency of model-driven decisions.

3. Results
3.1. PFT level fractional cover mapping

The comparisons between the plot-observed fCover and the pre-
dictions made by the best-trained models (Tables 52-S9) are shown in
Fig. 4. Overall, with high-quality plot samples, the correlations (R?)
between the predicted and observed fCover for all PFTs are substantially
improved (to between 0.59 and 0.93) with relatively low bias (MAEs =
0.02-0.07, RMSEs = 0.02-0.09) in comparison to the predictions made
from original non-enhanced plots (Fig. S2). PFTs predicted with highest
accuracy are shrubs ®R?> 0.90, MAEs and RMSEs are <=0.04), followed
by non-vascular plants (R? > 0.7, RMSEs = 0.02-0.09) and graminoids
(R? = 0.75, RMSE = 0.08, MAE = 0.05). While it has a positively skewed
distribution, the forb fCover prediction also reaches R? of 0.59 (RMSE =
0.02). Litter is generally harder to predict, with the lowest R? (0.36)
(RMSE = 0.07, MAE = 0.06) in comparison to other PFTs, likely due to
its heterogeneous and temporally dynamic nature (Facelli and Pickett,
1991). The model transferability analysis results using a leave-one-site-
out cross-validation framework were summarized in Tables S10-S13.
Overall, the results indicate that the modeling framework demonstrates
promising transferability across most sites and PFTs, with mean R?
values of 0.77 for deciduous shrubs, 0.70 for evergreen shrubs, and 0.50
for lichens, suggesting reasonable generalizability. However, some
limitations emerge. Like model training results (Fig. 4), litter shows
consistently poor transferability across all leave-out sites (mean R? =
0.08), graminoids perform poorly when the AKAVA site was excluded
(R? = 0.04), and bryophytes struggle with transferability at the NGA and
NEON sites (RZ < 0.15). These site-specific weaknesses likely reflect
overall small sample sizes in our plot inventory, fCover underrepre-
sentation of certain PFTs (such as predominant bryophyte in NEON
compared with other sites) (Fig. S3-S7), and differences in sampling
strategies between sites (Fig. S1).
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The wall-to-wall PAVC-Gridded fCover maps are presented in
Figs. 5-8. In general, the spatial patterns of fCover for each PFT align
well with the vegetation distribution observed in the Landsat imagery,
demonstrating the effectiveness of our fCover mapping approach. In
addition, we find consistent spatial distribution patterns between PAVC-
Gridded fCover and the CAVM dominant vegetation classes. Specifically,
our maps indicate that deciduous shrubs grow in warmer areas (towards
the treeline), whereas evergreen shrubs are spread out in regions of
bioclimate zone E characterized by mild topography. With the fine-scale
fCover map, we also identify deciduous shrubs in river valleys (Fig. 5). In
comparison to the discrete CAVM vegetation classes, PAVC-Gridded
fCover products reveal detailed and contrasting patterns of the spatial
distribution of PFTs across the study region. For instance, PAVC-Gridded
fCover maps indicate that graminoids occupy most of the northern cold
and wet areas (bioclimate zone C and D), while forbs primarily exist in
warmer bioclimate zone E with overall low fractional dominance across
the entire study region (Fig. 6). Similarly, our maps suggest that lichens
are only present in mountainous areas, yet bryophytes are pervasive
across most of the bioclimate zone E except the mountains (Fig. 8).

3.2. Comparison with existing fCover products

Fig. 9 shows the paired scatter-histogram analysis results between
our PAVC-Gridded fCover and published products by Macander et al.
(2017). Overall, the distribution of the predicted fCover for both prod-
ucts does not always follow the plot-observed distributions, e.g., gra-
minoids and litter, which suggests both model predictions are not biased
by the plot samples. Our modeled fCover distribution is generally
consistent with Macander et al. (2017) for shrubs (R > 0.5). Our model
slightly overpredicts the fCover of deciduous shrubs, while under-
predicts the evergreen shrubs and non-vascular plants in the regions
with higher fractional dominance (fCover = 0.2-0.5). They however,
differ substantially from each other for forb, graminoid, and litter (R? <
0.2, RMSEs = 0.06-0.14).

We further plotted the zonal statistics of the mapped fCover across
the CAVM vegetation classes in Fig. 10 and Fig. S8. Not surprisingly, due
to major differences in underlying methodology and spatial resolution,
large differences are found in these two products except for the forbs
that are consistently predicted with low dominance across all CAVM
classes. In addition, we notice higher separability among shrubs and
graminoids in our products compared to Macander et al. (2017). In
comparison to Macander et al. (2017), PAVC-Gridded fCover tends to
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Fig. 4. Scatter plot analysis between the predicted and observed fCover using the best tuned RF model, where “count” indicates the number of the high-quality
samples used for model training. The 1:1 and regression lines are indicated by black dashed and red solid lines respectively, with red shading covering the 95%
confidence interval for the regression estimate.
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Deciduous Shrub
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Evergreen Shrub

Fig. 5. Wall-to-wall fCover map for deciduous and evergreen shrub. Here, open water areas or ice are colored blue. The lower right corner shows a zoomed-in
comparison between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.

Graminoid

Fig. 6. Wall-to-wall fCover map for forbs and graminoids. Here, open water areas or ice are colored blue. The lower right corner shows a zoomed-in comparison

between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.

conform better with CAVM with higher fCover over the CAVM shrub
classes (S1-2) and over the CAVM graminoid classes (G1-2) for shrubs
and graminoids classes respectively. The zoomed-in plots (Fig. S9) at
same locations also suggest more separable and spatially more contin-
uous results from our mapped fCover than Macander et al. (2017) due to
quality control approach employed and no known scan-line-corrector-
off issue in Sentinel-2 as opposed to Landsat.

3.3. Quality analysis on plot outliers having low consistency with satellite
data

The results associated with plot samples having low correlations to
satellite observations are shown in Fig. 11. In general, we observe
variability among different PFTs in terms of the contributing factors.
Plot size is an important factor affecting the fCover modeling, where
small plots — especially the 2.5-m ones- lead to the most variability in
the estimated fCover for almost all PFTs except evergreen shrubs and
bryophyte, where 1.25-m plots have a marginally larger impact. 1.25-m
and 2.5-m plots among the observations are primarily from the NGA
datasets located across Seward Peninsula. Located in shrub to tundra
transition zone, Seward Peninsula landscape consists of highly diverse
and heterogeneous spatial distribution of PFTs, and thus the plot

observations from the region (primarily from NGA) are found to have
high variability in terms of their spectral response in the satellite remote
sensing products and hence are associated with higher Cook’s distance
when developing regression models. Plot observations from NGA are
often a source of bias for fCover estimation of especially forbs, shrubs,
and lichens. NEON plots are located in relatively homogeneous areas,
with relatively consistent spectral signatures for same PFT types, and
thus are robust for fCover modeling with lower fractions of low-quality
plots except for bryophytes. Despite having consistent plot sizes, ABR
plots show high variability in terms of their spectral response in satellite
observations, likely due to a mixed pixel effect in the large plots (55-m in
radius), especially for litters.

For all PFTs, the year of plot data collection is a large source of
variability, due to growth and change in vegetation conditions by the
time of satellite remote sensing images. The fCover collected between
2016 and 2018 suggests more uncertainties for almost all PFTs. Plots
collected in 2012 additionally contribute to highest variability for litter
fCover estimate. Field plot sampling methods do not contribute any
significant variability to the modeling, and comparatively among the
different sampling methods. The point-intercept method has more im-
pacts on graminoids, forbs, and litters. Aside from deciduous shrubs and
graminoids, the fCover quality of all other PFTs is more affected by the
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Non-vascular

Fig. 7. Wall-to-wall fCover map for litter and non-vascular plants (lichen + bryophyte). Here, open water areas or ice are colored blue. The lower right corner shows
a zoomed-in comparison between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.

Bryophyte

Lichen

Fig. 8. Wall-to-wall fCover map for bryophyte and lichen. Here, open water areas or ice are colored blue. The lower right corner shows a zoomed-in comparison

between the Sentinel-2 RGB imagery and mapped fCover at the red outlined grid.

percent-based measurement. In addition to factors affecting the quality
of sampled fractional cover (fCover), herbaceous and shrub PFTs exhibit
contrasting patterns. For example, compared with graminoids, forbs are
more influenced by small plots (2.5-m) from NGA collected over the
Seward Peninsula, well away from the North Slope where the other plot
sources for forbs were from. Likewise, we find that deciduous shrubs are
more sensitive to spatio-temporal inconsistencies compared with ever-
green shrubs. For non-vascular plants, most low-quality plot samples
also primarily arise from NGA, especially for lichens, where an addi-
tional concentration of low-quality data is associated with plots
collected in 2010 (from AKAVA). In contrast, for bryophytes, low-
quality plots are more evenly spread across sites and years, with mod-
erate contributions from NEON.

3.4. Feature importance analysis on fCover regression modeling

Fig. 12 summarizes the mean absolute SHAP values for each
explanatory variable, calculated from the best-performing model
configuration, with dot color encoding the underlying feature value
(dark purple = low, yellow = high). Similar to the quality analysis,
contrasting outcomes are observed across all PFTs. For S2-derived

indices, msavi is the top predictor for forb cover (its yellow dots clus-
tered at the highest SHAP values suggest that higher msavi values are
associated with higher forb predictions), yet it has minimal influence on
other PFTs. Similarly, ngrdi’s relative importance varies between forb
and graminoid models, and the red-edge bands (rededge2 and rededge3)
show yellow points at their highest SHAP values for forbs—indicating
that higher red-edge reflectances are linked to higher forb cover esti-
mates. In contrast, the greenness index reaches its highest SHAP values
(with yellow-orange at the apex) for both forbs and litter. For deciduous
shrubs, greenness still shows yellow dots at its SHAP maximum, implying
that higher greenness is associated with higher predicted cover-
—whereas wetness leans toward dark purple at its maximum SHAP,
suggesting that lower wetness (drier conditions) is associated with
higher deciduous-shrub cover.

Among topographic features, elevation is the dominant predictor for
most PFTs (except for forbs, graminoids, and lichens), but its highest
SHAP values correspond to low elevations (dark purple dots), indicating
that lower altitudes are linked to higher predicted fractional cover for
those types. Aspect contributes more broadly than slope or hillshade (the
latter only showing relevance for graminoids). Within the non-vascular
group, bryophytes show their largest SHAP contributions from elevation,
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Fig. 9. Paired scatter-histogram analysis results between our PAVC-Gridded fCover and that mapped by Macander et al. (2017). The inset histograms show the plot-
observed fCover distribution. Here 1:1 line and the regression line are marked in black-dashed and red solid lines respectively.
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[] B1: Cryptogam, herb barren
. B2a: Cryptogam, barren complex
. B3: Non-carbonate mountain complex
[l B4: Carbonate mountain complex
[] B2b: Cryptogam, barren, dwarf-shrub complex

Fractional Cover
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CAVM Map Units

Graminoid Tundra
D G1: Graminoid, forb, cryptogam tundra
|:| G2: Graminoid, prostrate dwarf-shrub, forb, moss tundra
E] G3: Non-tussock sedge, dwarf-shrub, moss tundra
[[] G4: Tussock-sedge, dwarf-shrub, moss tundra
Prostrate Dwarf-Shrub Tundra
[] P1: Prostrate dwarf-shrub, herb, lichen tundra

[ P2: Prostrate/hemi-prostrate dwarf-shrub, lichen tundra

Erect Dwarf-Shrub Tundra
[ S1: Erect dwarf-shrub, moss tundra
[ S2: Low-shrub, moss tundra
Wetland
[] W1: Sedge/grass, moss wetland complex

Fractional Cover

D W2: Sedge, moss, dwarf-shrub wetland complex

- W3: Sedge, moss, low-shrub wetland complex
Water

B FW: Fresh water

[] sw: Saline water

[] GL: Glacier

Fig. 10. Boxplots over the CAVM vegetation classes based on our PAVC-Gridded fCover (a) and that mapped by Macander et al. (2017) (b). Because our product
spans the entire Alaskan Arctic tundra region, it preserves a greater number of CAVM vegetation classes (such as B2a and GL) compared to the product by Macander

et al. (2017).

tgi, osavi, and ci g (all with yellow dots at their SHAP maxima), whereas
lichens are more strongly associated with swirl, brightness, and wetness.
Finally, in the SAR domain, VV backscatter shows its brightest yellow
dots on the left (negative SHAP) side for both evergreen shrubs and

10

lichens, suggesting that high VV values are linked to lower predicted
cover. The largest positive SHAP values (furthest right) instead corre-
spond to lower-to-intermediate VV values (orange through purple).
Conversely, VH shows yellow clusters at its positive SHAP extreme
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Fig. 12. SHAP analysis on all target PFTs, where bold numbers on the right indicate the mean absolute SHAP value. Only the top 20 most influential features

are shown.

across most other PFTs (except for bryophytes), indicating that higher
VH values are associated with higher fractional-cover predictions.

4. Discussion

4.1. Comparison between our mapped products and the published fCover
products

High-quality PFT-level fCover is critical for accurate representation
of tundra vegetation diversity and physiology (e.g., carbon capture,
biomass allocation, snow trapping) in terrestrial ecosystem modeling
(Sulman et al., 2021). By leveraging high-resolution Sentinel data and
five plot sources spanning the entire North Slope and Seward Peninsula
of Alaska, our machine learning-based fCover regression framework
predicts reliable fCover for the targeted PFTs, including litters, non-
vascular plant species (bryophytes and lichen), herbaceous species
(forbs and graminoid) and woody shrubs (deciduous and evergreen).
Compared with Macander et al. (2017), we not only expanded the study
extent to the entire Alaskan tundra region to capture broader ecological
variability, but also examined the spatial heterogeneity over different
CAVM bioclimatic zones. The mapped fCover successfully reveals sub-
pixel details of the spatial distribution of the PFTs of interest, which is
crucial for understanding short-term disturbances that are often missed
in pixel-based maps.

Moreover, we note that the fCover of nearly all of the PFTs is
underestimated by Macander et al. (2017, 2022), especially for forbs,
likely due to the lack of treatment for temporal inconsistencies among
plot-sampled fCover (ABR and AKVEG) and satellite data. To address
these inconsistencies, we employed a statistical quality control approach
using Cook’s distance to filter out low-quality plots that contributed a
large amount of variability to regression modeling with recent satellite
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observations. With the high-quality plots, we substantially reduced the
bias and enhanced the correlation between the satellite-predicted fCover
and plot-observed counterparts for all PFTs.

In addition, we incorporated SHapley Additive exPlanations (SHAP)
to interpret model predictions and quantify the relative contribution and
directionality of each satellite-derived variable. These improvements,
including robust feature importance analysis and data-driven plot
screening, collectively advance the generation of PFT-level fCover maps
and provide a better representation of the Alaskan Arctic tundra land-
scape. This, in turn, enhances our understanding of how local environ-
mental factors (e.g., topography) shape PFT distributions and responses
to climate change. Ultimately, the resulting maps can support initiali-
zation and benchmarking of terrestrial land surface models, improving
the realism of future climate projections.

4.2. Importance of consistent plot sampling for fCover regression modeling

Our quality analysis suggests that influential factors responsible for
the low consistency (e.g., phenological changes, vegetation growth)
between plot and satellite observations are not consistent for different
PFTs. In general, we observe greater temporal variability in forbs and
deciduous shrubs compared to graminoids and evergreen shrubs, likely
due to their more pronounced seasonal phenological changes such as
rapid shifts in greenness, biomass, or moisture content during the
growing season. The limited dynamics in evergreen shrubs and grami-
noids are also supported by the fact that their growth is largely allocated
belowground to roots compared with leaves and other aboveground
components where the latter can persist for multiple seasons (Iversen
et al., 2015; Sulman et al., 2021). Likewise, litter is more affected by
large temporal differences compared with living PFTs as it is primarily
derived from deciduous PFTs. Although lichens and bryophytes are both
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non-vascular plants, the difference in their fractional cover is not as
substantial as that observed between other groups such as shrubs and
herbs, apart from lichen samples collected from NGA. This is likely
because both lichens and bryophytes are low-lying ground cover types
whose fractional cover tends to remain relatively stable from year to
year, except in cases of abrupt disturbances. Nevertheless, we notice the
fCover consistency of lichens is more impacted by spatial heterogeneity
(NGA) than that of bryophytes. Among all plot sources, NEON is more
reliable in almost all PFT fCover estimation due to more recent and
consistent sampling (2021). NGA, in contrast, contributes more bias
than the other plot sources due to high spatial heterogeneity on the
Seward Peninsula, and different plant communities from the North
Slope, and hence could be under-represented in our plot inventory.
Despite more consistent plot sizes that match the resolution of the sat-
ellites, ABR also contributes larger variation in deciduous PFTs and lit-
ters, likely because all their plots were collected in 2012. All these
findings highlight the importance of consistent sampling of PFT fCover,
especially those subject to seasonality (deciduous shrubs, forbs, litters)
in future field work. Our quality control approach demonstrates its
effectiveness in identifying high-quality plot samples that correlate well
with satellite observations for building reliable fCover regression models
when plot sampling ambiguity (e.g., plot size, approach used for sam-
pling and fCover measurement, collection year) is present.

While our approach to filtering plots improved overall model per-
formance, it is important to acknowledge potential tradeoffs. Cook’s
distance, originally designed for linear regression diagnostics, was used
here as a conservative screening method to flag highly influential sam-
ples likely tied to measurement errors, geolocation issues, or outlier
reflectance values. However, in the context of machine learning, such
influential samples may not always be erroneous. Some may represent
valid but complex or transitional vegetation conditions that are impor-
tant for model generalization. Excluding such “hard” examples may
reduce the model’s ability to capture transitional or edge-case vegeta-
tion conditions, especially in heterogeneous landscapes. Future work
may benefit from incorporating model-based uncertainty quantification
(e.g., ensemble disagreement or residual spread) or adaptive weighting
schemes that retain these samples while downweighting their influence,
rather than excluding them entirely.

In addition, while the modeling framework integrates satellite im-
agery and plot data collected across multiple years, the current product
is designed as a static representation tied specifically to the 2019 sat-
ellite observation window. This decision was made due to the limited
availability and uneven temporal distribution of high-quality plot sam-
ples, which precludes robust year-to-year generalization. Temporal in-
consistencies between plot measurements and satellite acquisition dates
were instead addressed through a targeted quality control strategy (see
Section 2.4), which improves the coherence between in-situ and remote
sensing data by filtering samples with large statistical influence or
mismatched conditions. As a result, the fractional cover maps generated
in this study should be interpreted as snapshot estimates representative
of Arctic vegetation conditions around 2019. Extending the model
temporally for monitoring interannual dynamics would require more
densely distributed and time-aligned plot measurements, as well as
careful validation across years to ensure reliability under shifting envi-
ronmental and phenological conditions. Nevertheless, the core frame-
work (e.g., feature engineering, PFT-specific modeling, quality control)
remains adaptable and could be expanded for future temporal applica-
tions with improved field data support.

4.3. Relative importance of input explanatory variables for modeling
fCover

The feature importance analysis conveys key information regarding
the controlling factors that explain the most about the fCover variations
for each PFT. Due to differences in plant physiognomy and physiology,
the relative importance of satellite-derived features differs across PFTs.
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For example, VH polarization is generally more influential than VV,
particularly for annual and deciduous plants (e.g., forbs, deciduous
shrubs), compared with perennial and evergreen plants (e.g., evergreen
shrubs). This is likely because VH is more sensitive to changes in vege-
tation structure than VV (Bousbih et al., 2017; Vreugdenhil et al., 2020).
Seasonal changes in deciduous plants may reflect more on VH vari-
ability. Among all topography related features, elevation consistently
emerges as a key factor associated with fCover, likely due to its close link
with temperature gradients. For tasseled cap indices, annual and de-
ciduous plants (forbs and deciduous shrubs) are more sensitive to
greenness than perennial and evergreen PFTs (graminoids, evergreen
shrubs), as the changes in the former group mainly occur at the canopy
layer. Although lichens and bryophytes are both non-vascular, lichens
are essentially fungal symbionts attached to the ground surface, making
them more sensitive to soil brightness and wetness. Regarding vegeta-
tion indices, though ngrdi has been found to outperform solar-induced
chlorophyll fluorescence in end of season extraction of evergreen nee-
dleleaf forest (Yin et al., 2022), it is found less influential to other PFTs
aside from graminoids for fCover regression modeling. A much higher
SHAP sensitivity to msavi observed in forbs compared with deciduous
and evergreen shrubs suggests that forbs are more exposed to soil
background during leaf development stages. In contrast, deciduous
shrubs, with their broader canopy, tend to show higher importance for
ci g and gNDVI, which relate more directly to leaf chlorophyll content
and photosynthetic activity.

4.4. Future work

This study demonstrates the effectiveness of employing the Cook’s
distance in mitigating the spatio-temporal inconsistencies among plot
sources that span the entire Alaskan-arctic tundra landscape with
different field sampling approaches. The high-quality plots in combi-
nation with the spatially continuous satellite observations successfully
estimate fCover that is highly correlated with plot-observed counter-
parts with low bias. We expect PAVC-Gridded fCover product containing
spatially detailed fractional cover distribution for the included PFTs
(litter, forb, graminoid, lichen, bryophyte, deciduous and evergreen
shrubs) can greatly benefit the parameterization in terrestrial ecosystem
models for more accurate simulation of vegetation and carbon cycle
above and below ground and their projections under changing climate
(Sulman et al., 2021). Nevertheless, a few limitations are acknowledged
here which should be considered as a priority in future work.

First of all, due to limited plot samples, we chose to harmonize all
plot sources to augment the training data for reliable predictions rather
than performing regression modeling based on plots collected over every
year to capture the PFT changes like Macander et al. (2022). To account
for temporal inconsistency, we limited the training data to plots that
were collected after 2010 with no fire history. Nevertheless, these older
plots (earlier than 2015) still account for ~ 1/3 of the total training data
with 5-9-year temporal gaps. Fortunately, our quality control effectively
filtered out low-quality plots that are poorly correlated with satellite
observations. Based on our quality analysis, we found the spatio-
temporal inconsistencies affect the plot’ quality more in annual and
deciduous (forb, litter, and deciduous shrub) than in perennial and
evergreen plants (graminoid, non-vascular plants, evergreen shrub),
which highlights the necessity for expanding deciduous especially forb
sampling in future field efforts. In addition, plots sampled from Seward
Peninsula were appended to the north slope plot sources for sample
augmentation. Yet in general, we find large spatial heterogeneity in
these samples, which are mostly filtered out from our regional regres-
sion analysis. To address this spatial heterogeneity, we recommend
performing a spatial representation analysis (Hoffman et al., 2013) to
ensure the regional representativeness of the sampled plots and the
trained regression models. To augment the field measured fCover,
AVIRIS-NG (Chapman et al., 2019) can be introduced to leverage its
spatial-and-spectral advantages over plot and multispectral satellite
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imagery respectively as an intermediate product on fCover regression.

Secondly, shrubs subcategorized into different vegetation heights
should be represented in detail in ecosystem modeling since they can
function distinctly in climate-vegetation dynamics (Kropp et al., 2020;
Loranty et al., 2018; Wullschleger et al., 2014; Sturm et al., 2001). For
instance, low vegetation can act as insulation for snow cover, promoting
higher albedo and potentially mitigating warming. In contrast, tall
vegetation can deliver negative feedback to carbon flux by growing
above snow cover, reducing the surface albedo, and trapping snow,
which contributes to soil warming during winter and provides a cooling
effect for the soils beneath during hotter summers. Although integrating
shrub height stratification is highly relevant, its reliable implementation
would require a substantially larger sample of in situ plots with accu-
rately measured shrub heights, to build and validate stratified fCover
models. At present, our available plot network does not include
consistent canopy height data to support this finer categorization,
making robust stratification beyond the scope of the current study.
However, we recognize its importance and propose that a dedicated
shrub height product could be developed in the future by integrating
sparse canopy height observations from spaceborne lidar, such as
ICESat-2, with spatially continuous satellite-derived explanatory vari-
ables (Travers-Smith et al., 2024). Alternatively, shrub heights can be
mapped based on empirical relationships established between satellite-
derived features and field-measured shrub heights (Bartsch et al., 2020).
Future work combining such shrub height maps with fractional cover
would enable a more nuanced stratification of shrub PFTs for climate-
—ecosystem modeling applications.

5. Conclusion

Accurate PFT-level fCover information is crucial for improving the
vegetation composition and function estimate by the land surface model
to a comparable level of the field measured counterpart. In this study, we
successfully generated a 20-m wall-to-wall fCover for several typical
PFTs at the Arctic-Alaskan tundra landscape by integrating the plot-
observed fCover (i.e., the PAVC database) with Sentinel and Arctic-
DEM predictors using random forest regression models. The novelty of
our fCover mapping work, compared with previous studies, lies in that
we systematically filtered out plots having low consistency with recent
satellite observations by adopting a quality control approach namely the
Cook’s distance. Our results suggest that PAVC-Gridded fCover esti-
mated by the high-quality plot observations achieves much improved
accuracy in comparison to the raw, unfiltered plots. Moreover, PAVC-
Gridded fCover is also consistent with the distribution of CAVM vege-
tation classes and spatial pattern of vegetation in the satellite imagery
more closely than that developed by Macander et al. (2017). We addi-
tionally find that annual and deciduous plants such as deciduous shrubs,
forbs, and litters are more susceptible to spatio-temporal heterogeneity
(e.g., small plots, older plots, plots that were collected from Seward
Peninsula), which need more awareness in field sampling efforts. Lastly,
when choosing the influential factors input for the fCover regression, we
find deciduous plants more affected by variables that are related to
canopies. In contrast, non-vascular lichens and bryophytes are more
influenced by soil moisture content. For future work, we will incorporate
additional data sources such as the AVIRIS-NG to augment the fCover
training samples and introduce shrub heights information to further
divide the shrub PFTs into dwarf, low, and tall subcategories that are
associated with divergent eco-functions. Our high-resolution PAVC-
Gridded fCover dataset provides valuable input for terrestrial ecosystem
models, enabling more accurate simulations of Arctic vegetation dy-
namics, carbon fluxes, and climate-vegetation feedback under future
climate scenarios.

Code and data availability statement

The harmonized plot inventory, Pan-Arctic Vegetation Cover (PAVC)
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database, is publicly accessible at Doi: 10.15485/2483557. The PAVC-
Gridded fCover product at the PFT level developed by this study
(across the Arctic tundra in Alaska at 20-m resolution) is available
through ESS-DIVE at https://doi.org/10.15485/2513385. Satellite-
derived explanatory variables used for model training and prediction,
including Sentinel-1, Sentinel-2, and ArcticDEM products, can be
accessed via Google Earth Engine. Scripts for mapping the PFT-level
fCover and plot harmonization are available at https://github.com/cli
matemodeling/alaska_pft_fcover modeling and https://github.com/cli
matemodeling/pavc respectively.
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